This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/rewriting/half.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
% 

Author:          R. A. Fleming

Affiliation:     Hewlett Packard Laboratories, Bristol

Address:         Hewlett Packard Laboratories,
                 Filton Road,
                 Stoke Gifford
                 Bristol BS12 6QZ
                 U.K.

Tel:             +44 272 799910

Fax:             +44 272 890554

Email:           ..!mcvax!ukc!hplb!raf
                 raf@hplb.hpl.hp.com

File:            "Half rewriting" tactics for HOL

Date:            16/11/90
                 25/2/91   Modifications made to make compatible
                           with HOL version 12
                 14/5/91   Modified to abandon restrictions on what
                           variables can be rewritten, and adding
                           1/4 rewrites

This file contains the tactics for "half rewriting".  The idea is to be
able to do re-writing in some restricted form, when the rewriting laws are
implications rather than equations.

In the conversions, if C[...] is a monotonically increasing context, then
given a term C[A] and a rewrite law A==>B, the theorem C[A] ==> C[B]
results.  If C[...] is a decreasing context, given a term C[B], the theorem
C[A] ==> C[B] is returned.

Some contexts are neither monotonically increasing or decreasing.  No
rewriting can be done in these contexts.

The following describes the contexts that are encoded in these converions.
+ means an increasing context, - a decreasing one, and 0 means neither.

               + \/ +                     + /\ +
               
               ?x. +                      !x. +

               ~ -

               - ==> +

               0 => + | +

               0 = 0                      0 <=> 0

Considering just implications for the moment, theorems of the form A ==> B
are transformed into A' ==> B' where A' and B' are rewrites of A and B, and
where A' ==> A and B ==> B'.  (I.e. A' ==> A ==> B ==> B'.)  In other
words, "strengthening" of the theorem results.

Things happen conversely in backwards proof.  Goals of the form A ==> B are
transformed into A' ==> B' where A' and B' are rewrites of A and B, and
where A ==> A' and B' ==> B.  (I.e. A ==> A' ==> B' ==> B.)  This results
in the left hand and right hand sides becoming "closer together".  In other
words, "weakening" of the goal results.

Equalities are also handled as laws.  These are rewritten in a left to right
manner in all contexts.  (Thus the rules and tactics can perform the standard
simplifications.)

There is now the addition of two more classes of half rewriting conversions,
rules and tactics.

  LR_...

versions just do rewriting of implicational laws from left to right, and

  RL_...

versions write from right to left.

The basic rewrites in RL_... versions are retained, so simplification works
as usual.  However, all user-supplied equalities

  x = y

(where "x" and "y" are boolean) are written from right to left, as the name
implies.

%

% The analogy of THENC for half rewriting conversions. %

begin_section half;;

let THENHC thm h_cnv sng (tm:term) =
  if sng then IMP_TRANS thm (h_cnv sng (snd (dest_imp (concl thm))))
         else IMP_TRANS (h_cnv sng (fst (dest_imp (concl thm)))) thm;;

ml_curried_infix `HALF_THEN`;;

let h_cnv1 HALF_THEN h_cnv2 sng tm =
  THENHC (h_cnv1 sng tm) h_cnv2 sng tm;;

% h_cnv1 HALF_THENTRY h_cnv2 tries applying h_cnv1, and if that succeeds,
it tries applying h_cnv2. %

ml_curried_infix `HALF_THENTRY`;;

let h_cnv1 HALF_THENTRY h_cnv2 sng tm = 
  let thm = h_cnv1 sng tm in
  ((THENHC thm h_cnv2 sng tm) ? thm);;

% ALL_HCONV tm always works.  It just returns tm ==> tm. %

let ALL_HCONV sng tm = DISCH tm (ASSUME tm);;

let NO_HCONV sng tm = failwith `NO_HCONV`;;

% 

HALF_TRY_BOTH h_cnv1 h_cnv2 tries applying h_cnv1 and then h_cnv2.  If
the attempt to apply h_cnv1 fails, h_cnv2 is applied.  It only fails if
both h_cnv1 and h_cnv2 fail. 

%

let HALF_TRY_BOTH  h_cnv1 h_cnv2 sng tm =
  ((h_cnv1 HALF_THENTRY h_cnv2) sng tm) ? (h_cnv2 sng tm);;

% The analogy of REPEATC. %

letrec REPEATHC h_cnv sng t = 
  (h_cnv HALF_THENTRY (REPEATHC h_cnv)) sng t;;

% This deals with half-rewriting conversions on terms of the form ~t. %

let NEG_HCONV h_cnv sng tm = CONTRAPOS (h_cnv (not sng) (dest_neg tm));;

%

tm is assumed to have the form a/\b.  The half conversion h_cnv sng is
applied to a to produce a theorem x ==> y.  (Typically this theorem has
the form a ==> c or else c ==> a, but this is not required.)  The result is
a theorem x /\ b ==> y /\ b

%

let CONJ1_HCONV h_cnv sng tm =
  let a,b = dest_conj tm
  in let thm = h_cnv sng a
  in let ab = ASSUME (mk_conj (fst (dest_imp (concl thm)), b))
  in let a,b = CONJUNCT1 ab, CONJUNCT2 ab
  in DISCH (concl ab) (CONJ (MP thm a) b);;

% Below, CONJ2_HCONV is like CONJ1_HCONV but works on the second
conjunct. %

let CONJ2_HCONV h_cnv sng tm =
  let a,b = dest_conj tm
  in let thm = h_cnv sng b
  in let ab = ASSUME (mk_conj (a, fst (dest_imp (concl thm))))
  in let a,b = CONJUNCT1 ab, CONJUNCT2 ab
  in DISCH (concl ab) (CONJ a (MP thm b));;

%

tm is assumed to have the form a\/b.  The half conversion h_cnv sng is
applied to a to produce a theorem x ==> y.  (Typically this theorem has
the form a ==> c or else c ==> a, but this is not required.)  The result is
a theorem x \/ b ==> y \/ b

%

let DISJ1_HCONV h_cnv sng tm =
  let a,b = dest_disj tm
  in let thm = h_cnv sng a
  in let x,y = dest_imp (concl thm)
  in let ass = mk_disj (x,b)
  in DISCH ass 
           (DISJ_CASES (ASSUME ass) (DISJ1 (MP thm (ASSUME x)) b)
                                    (DISJ2 y (ASSUME b)));;

let DISJ2_HCONV h_cnv sng tm =
  let a,b = dest_disj tm
  in let thm = h_cnv sng b
  in let x,y = dest_imp (concl thm)
  in let ass = mk_disj (a,x)
  in DISCH ass 
           (DISJ_CASES (ASSUME ass) (DISJ1 (ASSUME a) y)
                                    (DISJ2 a (MP thm (ASSUME x))));;

let IMP1_HCONV h_cnv sng tm =
  let a,b = dest_imp tm
  in let thm = h_cnv (not sng) a
  in let x,y = dest_imp (concl thm)
  in let yb = mk_imp(y,b)
  in DISCH yb (IMP_TRANS thm (ASSUME yb));;

let IMP2_HCONV h_cnv sng tm =
  let a,b = dest_imp tm
  in let thm = h_cnv sng b
  in let x,y = dest_imp (concl thm)
  in let ax = mk_imp(a,x)
  in DISCH ax (IMP_TRANS (ASSUME ax) thm);;

let COND_THM1 = PROVE ("!a b b' c. (b ==> b') ==> (a => b | c) ==> (a => b' | c)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
DISJ_CASES_THEN (\x. REWRITE_TAC [x]) (SPEC "a:bool" BOOL_CASES_AX) THEN
POP_ASSUM ACCEPT_TAC);;

let COND1_HCONV h_cnv sng tm =
  let a,b,c = dest_cond tm
  in if type_of b = ":bool"
  then let thm = h_cnv sng b
  in let b' = snd (dest_imp (concl thm))
  in MP (SPECL [a;b;b';c] COND_THM1) thm
  else failwith `COND1_HCONV`;;

let COND_THM2 = PROVE ("!a b c c'. (c ==> c') ==> (a => b | c) ==> (a => b | c')",
REPEAT GEN_TAC THEN DISCH_TAC THEN
DISJ_CASES_THEN (\x. REWRITE_TAC [x]) (SPEC "a:bool" BOOL_CASES_AX) THEN
POP_ASSUM ACCEPT_TAC);;

let COND2_HCONV h_cnv sng tm =
  let a,b,c = dest_cond tm
  in if type_of b = ":bool"
  then let thm = h_cnv sng b
  in let c' = snd (dest_imp (concl thm))
  in MP (SPECL [a;b;c;c'] COND_THM2) thm
  else failwith `COND2_HCONV`;;

let FORALL_HCONV h_cnv sng tm =
  let v,a = dest_forall tm
  in let thm = h_cnv sng a
  in let x,y = dest_imp (concl thm)
  in let h = mk_forall (v,x)
  in DISCH h (GEN v (MP thm (SPEC v (ASSUME h))));;

let EXISTS_HCONV h_cnv sng tm =
  let v,a = dest_exists tm
  in let thm = h_cnv sng a
  in let x,y = dest_imp (concl thm)
  in let h = mk_exists (v,x)
  in DISCH h (CHOOSE (v, ASSUME h)
                     (EXISTS (mk_exists(v,y), v)
                             (MP thm (ASSUME x))));;

let is_implies tm =  (rator (rator tm) = "==>")?false;;

%

Note that this conversion does not always yield rewrites when they are valid.
This is due to clashes of variables in hypotheses with bound variables in the
term being rewritten.  No attempt has been made to fix this, as this is in
line with the standard rewriting tactics.  (The alternative is also rather
inefficient.) 

%

let SUBTERMS_HCONV h_cnv sng tm =
  if is_neg tm
  then NEG_HCONV h_cnv sng tm
  else if is_conj tm 
  then (HALF_TRY_BOTH (CONJ1_HCONV h_cnv) 
                      (CONJ2_HCONV h_cnv)) sng tm
  else if is_disj tm
  then (HALF_TRY_BOTH (DISJ1_HCONV h_cnv)
                      (DISJ2_HCONV h_cnv)) sng tm
  else if is_implies tm
  then (HALF_TRY_BOTH (IMP1_HCONV h_cnv)
                      (IMP2_HCONV h_cnv)) sng tm
  else if is_cond tm
  then (HALF_TRY_BOTH (COND1_HCONV h_cnv)
                      (COND2_HCONV h_cnv)) sng tm
  else if is_forall tm
  then FORALL_HCONV h_cnv sng tm
  else if is_exists tm
  then EXISTS_HCONV h_cnv sng tm
  else failwith`SUBTERMS_HCONV`;;

% Does recursive rewriting in a single top-down pass through the term. %

letrec TOP_DOWN_HCONV h_cnv sng t =
  ((HALF_TRY_BOTH h_cnv
          (SUBTERMS_HCONV (TOP_DOWN_HCONV h_cnv))) sng t)
  ? failwith `TOP_DOWN_HCONV`;;

letrec BOTTOM_UP_HCONV h_cnv sng t =
  ((HALF_TRY_BOTH (SUBTERMS_HCONV (BOTTOM_UP_HCONV h_cnv))
                  h_cnv) sng t)
  ? failwith `BOTTOM_UP_HCONV`;;

letrec ONCE_DEPTH_HCONV h_cnv sng t =
  ((h_cnv sng) ORELSEC 
  (SUBTERMS_HCONV (ONCE_DEPTH_HCONV h_cnv) sng)) t;;

let HALF_ONCE_OR_MORE c s = (c HALF_THENTRY (REPEATHC c)) s;;

% The analogue of TOP_DEPTH_CONV for half rewriting. %

letrec TOP_DEPTH_HCONV h_cnv sng t =
  letrec aux1 sng = ((SUBTERMS_HCONV (TOP_DEPTH_HCONV h_cnv)) HALF_THENTRY aux2) sng 
     and aux2 sng = (HALF_ONCE_OR_MORE h_cnv HALF_THENTRY aux1) sng 
in ((HALF_TRY_BOTH (HALF_ONCE_OR_MORE h_cnv) aux1) sng t)?failwith `TOP_DEPTH_HCONV`;;

%

Laws which is not implicational are transformed to A = T.  (This is then
used to replace A by T in both +ve and -ve contexts.

%

let mk_HALF_imp_rewrite th =
letrec split_thm th = 
  let th = GSPEC th in
  let c = concl th in
  else if is_implies c then [th,th]
  else if is_conj c then flat (map split_thm (CONJUNCTS th))
  else if is_eq c then 
    ([EQ_IMP_RULE th]
     ?split_thm (EQT_INTRO th))
  else split_thm (EQT_INTRO th) in
split_thm th;;

let mk_LR_imp_rewrite th =
let th' = GSPEC th in 
letrec pos_split_thm th = 
  let c = concl th in
  else if is_implies c then [th]
  else if is_conj c then flat (map pos_split_thm (CONJUNCTS th))
  else if is_eq c then 
    ([fst (EQ_IMP_RULE th)]
     ?pos_split_thm (EQT_INTRO th))
  else pos_split_thm (EQT_INTRO th) 
and neg_split_thm th = 
  let c = concl th in
  else if is_implies c then []
  else if is_conj c then flat (map neg_split_thm (CONJUNCTS th))
  else if is_eq c then 
    ([snd (EQ_IMP_RULE th)]
     ?neg_split_thm (EQT_INTRO th))
  else neg_split_thm (EQT_INTRO th) 
in pos_split_thm th', neg_split_thm th';;

let mk_LR_imp_rewrites thl = (flat#flat) (split (map mk_LR_imp_rewrite thl));;

let mk_RL_imp_rewrite th =
let th' = GSPEC th in 
letrec pos_split_thm th = 
  let c = concl th in
  else if is_implies c then []
  else if is_conj c then flat (map pos_split_thm (CONJUNCTS th))
  else if is_eq c then 
    ([snd (EQ_IMP_RULE th)]
     ?pos_split_thm (EQT_INTRO th))
  else pos_split_thm (EQT_INTRO th) 
and neg_split_thm th = 
  let c = concl th in
  else if is_implies c then [th]
  else if is_conj c then flat (map neg_split_thm (CONJUNCTS th))
  else if is_eq c then 
    ([fst (EQ_IMP_RULE th)]
     ?neg_split_thm (EQT_INTRO th))
  else neg_split_thm (EQT_INTRO th) 
in pos_split_thm th', neg_split_thm th';;

let mk_RL_imp_rewrites thl = (flat#flat) (split (map mk_RL_imp_rewrite thl));;

let mk_HALF_imp_rewrite th =
letrec split_thm th = 
  let th = GSPEC th in
  let c = concl th in
  else if is_implies c then [th,th]
  else if is_conj c then flat (map split_thm (CONJUNCTS th))
  else if is_eq c then 
    ([EQ_IMP_RULE th]
     ?split_thm (EQT_INTRO th))
  else split_thm (EQT_INTRO th) in
split_thm th;;

let mk_HALF_imp_rewrites thml = split (flat (map mk_HALF_imp_rewrite thml));;

% The next set of stuff is just to generate new variables names.
  They are the first of
            newvar, newvar0, newvar1, ...
  which do not already appear amoungst the variables in the argument list.
%

let newvar = explode `newvar`;;

letrec strip_list l l' =
  if null l then l'
  else if null l' then fail
  else if hd l = hd l' then strip_list (tl l) (tl l') else fail;;

let newvar_numbers =
  mapfilter (\x. let n = strip_list newvar (explode (fst (dest_var x)))
                 in if n = [] then 0 else (int_of_string (implode n))+1);;

letrec get_num nl n =
  if mem n nl then get_num nl (n+1) else n;;

letrec get_new_numbered_vars nl l =
  if null l then []
  else let n = get_num nl 0 in
       (mk_var (implode (if n = 0 then newvar
                else newvar@(explode (string_of_int (n-1)))), type_of (hd l))).
       (get_new_numbered_vars (n.nl) (tl l));;

let get_new_vars l l' =
  get_new_numbered_vars (newvar_numbers l) l';;

%
let ALL_IMPLICANS_EXISTS_INTRO thm =
  let newvars = let a,b = dest_imp (concl thm) in 
                          subtract (frees a) (union (frees (concl thm)) (frees b)) in
  let replvars = get_new_vars newvars
%

letrec CHOOSEL (tm,l) thm =
  if null l then thm
  else let tm' = mk_exists (hd l,tm) in
       CHOOSEL (tm', tl l) (DISCH tm' (CHOOSE (hd l, ASSUME tm') (MP thm (ASSUME tm))));;

let IMPLICANS_EXISTS_INTRO thm =
  let a,b = dest_imp (concl thm) in
  let newvars = subtract (frees a) (union (frees b) (flat (map frees (hyp thm)))) in
  let replvars = get_new_vars (union (flat (map frees (hyp thm))) (frees (concl thm))) newvars in
  let s = combine (replvars,newvars) in
  CHOOSEL (subst s a, rev replvars) (INST s thm);;

let IMPLICAND_FORALL_INTRO thm =
  let a,b = dest_imp (concl thm) in
  let newvars = subtract (frees b) (union (frees a) (flat (map frees (hyp thm)))) in
  let replvars = get_new_vars (union (flat (map frees (hyp thm))) (frees (concl thm))) newvars in
  ((DISCH a (GENL replvars (INST (combine (replvars,newvars)) (MP thm (ASSUME a)))))?thm);;

let POS_REWRITE_HCONV th = 
    let mtch = match (rand (rator (concl th))) in
    ((\tm. let u = mtch tm in
           let instth = INST_TY_TERM u th in
           let l = rand (rator (concl instth)) in
           let thm' = if (l = tm) then instth 
                      else let B = genvar ":bool" in
                      SUBST [ALPHA l tm, B] (mk_imp (B,rand (concl instth))) instth
           in IMPLICAND_FORALL_INTRO thm'))
    ? failwith `POS_REWRITE_HCONV: bad theorem argument (not an implication)`
and NEG_REWRITE_HCONV th = 
    let mtch = match (rand (concl th)) in
    ((\tm. let u = mtch tm in
           let instth = INST_TY_TERM u th in
           let r = rand (concl instth) in
           let thm' = if (r = tm) then instth 
                      else let B = genvar ":bool" in
                      SUBST [ALPHA r tm, B] (mk_imp (rand (rator (concl instth)),B)) instth
           in IMPLICANS_EXISTS_INTRO thm'))
    ? failwith `NEG_REWRITE_HCONV: bad theorem argument (not an implication)`;;

let mk_LRCONV_nets thl =
let pos_rewrites,neg_rewrites = mk_LR_imp_rewrites thl in
 itlist
  enter_term
  (map (\th. (rand (rator (concl th)),POS_REWRITE_HCONV th)) pos_rewrites)
  nil_term_net,
 itlist
  enter_term
  (map (\th. (rand(concl th),NEG_REWRITE_HCONV th)) neg_rewrites)
  nil_term_net;;

let mk_RLCONV_nets thl =
let pos_rewrites,neg_rewrites = mk_RL_imp_rewrites thl in
 itlist
  enter_term
  (map (\th. (rand (rator (concl th)),POS_REWRITE_HCONV th)) pos_rewrites)
  nil_term_net,
 itlist
  enter_term
  (map (\th. (rand(concl th),NEG_REWRITE_HCONV th)) neg_rewrites)
  nil_term_net;;

let mk_HCONV_nets thl =
let pos_rewrites,neg_rewrites = mk_HALF_imp_rewrites thl in
 itlist
  enter_term
  (map (\th. (rand (rator (concl th)),POS_REWRITE_HCONV th)) pos_rewrites)
  nil_term_net,
 itlist
  enter_term
  (map (\th. (rand(concl th),NEG_REWRITE_HCONV th)) neg_rewrites)
  nil_term_net;;

let basic_SYM_rewrites = map (\x. CONV_RULE (ONCE_DEPTH_CONV SYM_CONV) x) basic_rewrites;;

let basic_hconv_nets = mk_HCONV_nets basic_rewrites
and basic_LRconv_nets = mk_LRCONV_nets basic_rewrites
and basic_RLconv_nets = mk_RLCONV_nets basic_SYM_rewrites
and nil_term_nets = nil_term_net, nil_term_net;;

letrec FIRST_HCONV h_cnvl t = ((hd h_cnvl) t)?(FIRST_HCONV (tl h_cnvl) t);;

let REWRITES_HCONV (posnet,negnet) sng tm =
  if sng then FIRST_HCONV (lookup_term posnet tm) tm
  else FIRST_HCONV (lookup_term negnet tm) tm;;

let GEN_REWRITE_HCONV mk_nets TERM_WALK_HCONV (basic_pos_net,basic_neg_net) thml =
let a,b = mk_nets thml in
TERM_WALK_HCONV (REWRITES_HCONV (merge_term_nets a basic_pos_net,
                                 merge_term_nets b basic_neg_net));;

let REWRITE_HCONV = GEN_REWRITE_HCONV mk_HCONV_nets TOP_DEPTH_HCONV basic_hconv_nets 
and PURE_REWRITE_HCONV = GEN_REWRITE_HCONV mk_HCONV_nets TOP_DEPTH_HCONV nil_term_nets
and ONCE_REWRITE_HCONV = GEN_REWRITE_HCONV mk_HCONV_nets ONCE_DEPTH_HCONV basic_hconv_nets
and PURE_ONCE_REWRITE_HCONV = GEN_REWRITE_HCONV mk_HCONV_nets ONCE_DEPTH_HCONV nil_term_nets
and REWRITE_LRCONV = GEN_REWRITE_HCONV mk_LRCONV_nets TOP_DEPTH_HCONV basic_LRconv_nets 
and PURE_REWRITE_LRCONV = GEN_REWRITE_HCONV mk_LRCONV_nets TOP_DEPTH_HCONV nil_term_nets
and ONCE_REWRITE_LRCONV = GEN_REWRITE_HCONV mk_LRCONV_nets ONCE_DEPTH_HCONV basic_LRconv_nets
and PURE_ONCE_REWRITE_LRCONV = GEN_REWRITE_HCONV mk_LRCONV_nets ONCE_DEPTH_HCONV nil_term_nets
and REWRITE_RLCONV = GEN_REWRITE_HCONV mk_RLCONV_nets TOP_DEPTH_HCONV basic_RLconv_nets 
and PURE_REWRITE_RLCONV = GEN_REWRITE_HCONV mk_RLCONV_nets TOP_DEPTH_HCONV nil_term_nets
and ONCE_REWRITE_RLCONV = GEN_REWRITE_HCONV mk_RLCONV_nets ONCE_DEPTH_HCONV basic_RLconv_nets
and PURE_ONCE_REWRITE_RLCONV = GEN_REWRITE_HCONV mk_RLCONV_nets ONCE_DEPTH_HCONV nil_term_nets;;

let HCONV_TAC h_cnv (gl, g) = 
let thm = h_cnv false g in
if rand (rator (concl thm)) = "T"
then ([],\prf. MP thm TRUTH)
else MATCH_MP_TAC thm (gl, g);;

let HCONV_RULE h_cnv thm =
let thm' = h_cnv true (concl thm) in
MP thm' thm;;

%

These rewriting tactics all fail if no rewriting can be done.  This allows
easy failure-driven flow control.  If non-failing versions are required,
things like HALF_REWRITE_TAC [...] ORELSE ALL_TAC can be used.

%

let HALF_ONCE_REWRITE_TAC = HCONV_TAC o ONCE_REWRITE_HCONV
and HALF_REWRITE_TAC = HCONV_TAC o REWRITE_HCONV 
and HALF_PURE_ONCE_REWRITE_TAC = HCONV_TAC o PURE_ONCE_REWRITE_HCONV
and HALF_PURE_REWRITE_TAC = HCONV_TAC o PURE_REWRITE_HCONV
and HALF_ONCE_REWRITE_RULE = HCONV_RULE o ONCE_REWRITE_HCONV
and HALF_REWRITE_RULE =  HCONV_RULE o REWRITE_HCONV
and HALF_PURE_ONCE_REWRITE_RULE = HCONV_RULE o PURE_ONCE_REWRITE_HCONV
and HALF_PURE_REWRITE_RULE =  HCONV_RULE o PURE_REWRITE_HCONV
and LR_ONCE_REWRITE_TAC = HCONV_TAC o ONCE_REWRITE_LRCONV
and LR_REWRITE_TAC = HCONV_TAC o REWRITE_LRCONV 
and LR_PURE_ONCE_REWRITE_TAC = HCONV_TAC o PURE_ONCE_REWRITE_LRCONV
and LR_PURE_REWRITE_TAC = HCONV_TAC o PURE_REWRITE_LRCONV
and LR_ONCE_REWRITE_RULE = HCONV_RULE o ONCE_REWRITE_LRCONV
and LR_REWRITE_RULE =  HCONV_RULE o REWRITE_LRCONV
and LR_PURE_ONCE_REWRITE_RULE = HCONV_RULE o PURE_ONCE_REWRITE_LRCONV
and LR_PURE_REWRITE_RULE =  HCONV_RULE o PURE_REWRITE_LRCONV
and RL_ONCE_REWRITE_TAC = HCONV_TAC o ONCE_REWRITE_RLCONV
and RL_REWRITE_TAC = HCONV_TAC o REWRITE_RLCONV 
and RL_PURE_ONCE_REWRITE_TAC = HCONV_TAC o PURE_ONCE_REWRITE_RLCONV
and RL_PURE_REWRITE_TAC = HCONV_TAC o PURE_REWRITE_RLCONV
and RL_ONCE_REWRITE_RULE = HCONV_RULE o ONCE_REWRITE_RLCONV
and RL_REWRITE_RULE =  HCONV_RULE o REWRITE_RLCONV
and RL_PURE_ONCE_REWRITE_RULE = HCONV_RULE o PURE_ONCE_REWRITE_RLCONV
and RL_PURE_REWRITE_RULE =  HCONV_RULE o PURE_REWRITE_RLCONV;;

let HALF_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. HALF_ONCE_REWRITE_TAC (thml@asl))
and HALF_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. HALF_REWRITE_TAC (thml@asl))
and HALF_PURE_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. HALF_PURE_ONCE_REWRITE_TAC (thml@asl))
and HALF_PURE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. HALF_PURE_REWRITE_TAC (thml@asl))
and LR_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. LR_ONCE_REWRITE_TAC (thml@asl))
and LR_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. LR_REWRITE_TAC (thml@asl))
and LR_PURE_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. LR_PURE_ONCE_REWRITE_TAC (thml@asl))
and LR_PURE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. LR_PURE_REWRITE_TAC (thml@asl))
and RL_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. RL_ONCE_REWRITE_TAC (thml@asl))
and RL_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. RL_REWRITE_TAC (thml@asl))
and RL_PURE_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. RL_PURE_ONCE_REWRITE_TAC (thml@asl))
and RL_PURE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. RL_PURE_REWRITE_TAC (thml@asl));;

(THENHC,
HALF_THEN,
HALF_THENTRY,
ALL_HCONV,
NO_HCONV,
HALF_TRY_BOTH,
REPEATHC,
CONJ1_HCONV,
CONJ2_HCONV,
DISJ1_HCONV,
DISJ2_HCONV,
IMP1_HCONV,
IMP2_HCONV,
COND1_HCONV,
COND2_HCONV,
FORALL_HCONV,
EXISTS_HCONV,
NEG_HCONV,
SUBTERMS_HCONV,
TOP_DOWN_HCONV,
BOTTOM_UP_HCONV,
ONCE_DEPTH_HCONV,
HALF_ONCE_OR_MORE,
TOP_DEPTH_HCONV,
REWRITE_HCONV,
PURE_REWRITE_HCONV,
ONCE_REWRITE_HCONV,
PURE_ONCE_REWRITE_HCONV,
REWRITE_LRCONV,
PURE_REWRITE_LRCONV,
ONCE_REWRITE_LRCONV,
PURE_ONCE_REWRITE_LRCONV,
REWRITE_RLCONV,
PURE_REWRITE_RLCONV,
ONCE_REWRITE_RLCONV,
PURE_ONCE_REWRITE_RLCONV,
HCONV_TAC,
HCONV_RULE,
HALF_ONCE_REWRITE_TAC,
HALF_REWRITE_TAC,
HALF_PURE_ONCE_REWRITE_TAC,
HALF_PURE_REWRITE_TAC,
HALF_ONCE_REWRITE_RULE,
HALF_REWRITE_RULE,
HALF_PURE_ONCE_REWRITE_RULE,
HALF_PURE_REWRITE_RULE,
LR_ONCE_REWRITE_TAC,
LR_REWRITE_TAC,
LR_PURE_ONCE_REWRITE_TAC,
LR_PURE_REWRITE_TAC,
LR_ONCE_REWRITE_RULE,
LR_REWRITE_RULE,
LR_PURE_ONCE_REWRITE_RULE,
LR_PURE_REWRITE_RULE,
RL_ONCE_REWRITE_TAC,
RL_REWRITE_TAC,
RL_PURE_ONCE_REWRITE_TAC,
RL_PURE_REWRITE_TAC,
RL_ONCE_REWRITE_RULE,
RL_REWRITE_RULE,
RL_PURE_ONCE_REWRITE_RULE,
RL_PURE_REWRITE_RULE,
HALF_ONCE_ASM_REWRITE_TAC,
HALF_ASM_REWRITE_TAC,
HALF_PURE_ONCE_ASM_REWRITE_TAC,
HALF_PURE_ASM_REWRITE_TAC,
LR_ONCE_ASM_REWRITE_TAC,
LR_ASM_REWRITE_TAC,
LR_PURE_ONCE_ASM_REWRITE_TAC,
LR_PURE_ASM_REWRITE_TAC,
RL_ONCE_ASM_REWRITE_TAC,
RL_ASM_REWRITE_TAC,
RL_PURE_ONCE_ASM_REWRITE_TAC,
RL_PURE_ASM_REWRITE_TAC);;

end_section half;;

let (THENHC,
HALF_THEN,
HALF_THENTRY,
ALL_HCONV,
NO_HCONV,
HALF_TRY_BOTH,
REPEATHC,
CONJ1_HCONV,
CONJ2_HCONV,
DISJ1_HCONV,
DISJ2_HCONV,
IMP1_HCONV,
IMP2_HCONV,
COND1_HCONV,
COND2_HCONV,
FORALL_HCONV,
EXISTS_HCONV,
NEG_HCONV,
SUBTERMS_HCONV,
TOP_DOWN_HCONV,
BOTTOM_UP_HCONV,
ONCE_DEPTH_HCONV,
HALF_ONCE_OR_MORE,
TOP_DEPTH_HCONV,
REWRITE_HCONV,
PURE_REWRITE_HCONV,
ONCE_REWRITE_HCONV,
PURE_ONCE_REWRITE_HCONV,
REWRITE_LRCONV,
PURE_REWRITE_LRCONV,
ONCE_REWRITE_LRCONV,
PURE_ONCE_REWRITE_LRCONV,
REWRITE_RLCONV,
PURE_REWRITE_RLCONV,
ONCE_REWRITE_RLCONV,
PURE_ONCE_REWRITE_RLCONV,
HCONV_TAC,
HCONV_RULE,
HALF_ONCE_REWRITE_TAC,
HALF_REWRITE_TAC,
HALF_PURE_ONCE_REWRITE_TAC,
HALF_PURE_REWRITE_TAC,
HALF_ONCE_REWRITE_RULE,
HALF_REWRITE_RULE,
HALF_PURE_ONCE_REWRITE_RULE,
HALF_PURE_REWRITE_RULE,
LR_ONCE_REWRITE_TAC,
LR_REWRITE_TAC,
LR_PURE_ONCE_REWRITE_TAC,
LR_PURE_REWRITE_TAC,
LR_ONCE_REWRITE_RULE,
LR_REWRITE_RULE,
LR_PURE_ONCE_REWRITE_RULE,
LR_PURE_REWRITE_RULE,
RL_ONCE_REWRITE_TAC,
RL_REWRITE_TAC,
RL_PURE_ONCE_REWRITE_TAC,
RL_PURE_REWRITE_TAC,
RL_ONCE_REWRITE_RULE,
RL_REWRITE_RULE,
RL_PURE_ONCE_REWRITE_RULE,
RL_PURE_REWRITE_RULE,
HALF_ONCE_ASM_REWRITE_TAC,
HALF_ASM_REWRITE_TAC,
HALF_PURE_ONCE_ASM_REWRITE_TAC,
HALF_PURE_ASM_REWRITE_TAC,
LR_ONCE_ASM_REWRITE_TAC,
LR_ASM_REWRITE_TAC,
LR_PURE_ONCE_ASM_REWRITE_TAC,
LR_PURE_ASM_REWRITE_TAC,
RL_ONCE_ASM_REWRITE_TAC,
RL_ASM_REWRITE_TAC,
RL_PURE_ONCE_ASM_REWRITE_TAC,
RL_PURE_ASM_REWRITE_TAC) = it;;


let DRAW_IMP_RULE thm =
  let thm' = SPEC_ALL thm in
  let a = rand (rator (concl thm')) in
  GEN_ALL (DISCH a (CONJ (ASSUME a) (MP thm' (ASSUME a))));;