/usr/share/hol88-2.02.19940316/contrib/rewriting/rew.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | %
Author: R. A. Fleming
Affiliation: Hewlett Packard Laboratories, Bristol
Address: Hewlett Packard Laboratories,
Filton Road,
Stoke Gifford
Bristol BS12 6QZ
U.K.
Tel: +44 272 799910
Fax: +44 272 890554
Email: ..!mcvax!ukc!hplb!raf
raf@hplb.lb.hp.co.uk
File: Rewriting
Date: 28/11/90
This file provides an alternative set of rewriting tools. It is faster
than the old rewriting tools (but marginally slower than the tools in the
Dec 1990 release of HOL). The difference is in functionality.
* Laws are only instantiated by specialisation of universally quantified
variables. (The standard rewrite does an implicit generalisation of
all the laws.) This gives an extra degree of control over how rewriting
is done.
* Difficulties over clashes of bound variables in the term being rewritten
with free variables in the laws are overcome.
To illustrate the first point:
Suppose we have the goal
"x+(a+y)=0"
SEL_REWRITE_TAC [SPEC "a:num" ADD_SYM]
results in the goal
"x+(y+a)=0"
(rather than diverging which REWRITE_TAC [SPEC "a:num" ADD_SYM] would do).
To illustrate the second point:
Suppose we have a goal
"!x. f x = 1+1"
[ "1+1 = 2" ]
[ "f x = x" ]
The ASM_REWRITE_TAC [] fails to do anything, because it rewrites "f x" to
"x" when dealing with the term "f x = 1 + 1". This results in failure due
to a clash with the universal quantifier "x" which throws the baby out with
the bathwater, i.e. throwing away the legitimate rewrite of 1+1 to 2 as
well.
Also
"!x. f u = x+1"
["u = x+1"]
fails when rewriting with ASM_REWRITE_TAC []. This is again due to clashes
of the free variable "x" in the law with the bound variable "x" of the term
when the rewrite is attempted. The rewrites in this file rewrite this to:
"!x'. f (x+1) = x'+1"
["u = x+1"]
In the interests of speed, some compromise has been made on what the
results look like. Some bound variables are rewritten to new variants,
even when no laws are used which forces this to happen. E.g.
"!x y y. u"
["u = x"]
will rewrite (using a "PURE" rewrite) not to "!x' y y. x" but "!x' y y'. x"
with the second occurence of "y" being unexpectedly primed. Also, in the
first example above, the result of the rewrite is "!x'. f x' = 2", even
though there is no occurence of "x" in the resultant term, rather than the
expected "!x. f x = 2". (This is because rewriting of bound variables is
done if even the mere possibility of a clash with free variables in the
laws is detected.)
%
% Do a conversion c1 and then try doing a conversion c2. It only fails %
% if c1 fails. %
ml_curried_infix `THENTRYC`;;
let c1 THENTRYC c2 = \t.
let thm = c1 t
in ((TRANS thm (c2 (rand (concl thm)))) ? thm);;
% The failing version of REPEATC. %
letrec TRYREPEATC c t =
let thm = c t
in ((TRANS thm (TRYREPEATC c (rand (concl thm))))?thm);;
% Do a conversion as often as possible but at least once: %
let ONCE_OR_MOREC c = c THENTRYC (TRYREPEATC c);;
% let ONCE_OR_MOREC c = c THENC (REPEATC c);; %
% Try doing conversion conv and then conversion conv'. If one conversion %
% fails it just does the other. It fails only when both conversions fail. %
let TRYBOTHC conv conv' = \t.
(let thm1 = conv t
in ((TRANS thm1 (conv' (rand (concl thm1)))) ? thm1))
? (conv' t);;
%
A new version of ALPHA_CONV is provided below. This is because
ALPHA_CONV "x':num" "\x y y. x+y" =
|- (\x y y'. x + y') = (\x' y y'. x' + y')
rather than
|- (\x y y. x + y) = (\x' y y'. x' + y')
which, even though it does unnecessary priming on the rhs, at least keeps
the lhs the same as the argument term.
%
let SEL_ALPHA_CONV x t =
let thm = BETA_CONV (mk_comb(t,x)) in
let thm' = BETA_CONV (mk_comb((mk_abs(x,rhs (concl thm)),x))) in
EXT (GEN x (TRANS thm (SYM thm')));;
%
The fr parameter is the list of free variables in the laws used for
rewriting.
%
%----------------------------------------------------------------------------%
% Relic "term_frees" replaced by "frees" [JRH 92.11.11] %
%----------------------------------------------------------------------------%
letrec SEL_ONCE_DEPTH_CONV fr conv = \t.
let SEL_SUBCONV t =
if is_var t or is_const t then fail
else if is_comb t then
let f,a = dest_comb t in
((let f_thm = SEL_ONCE_DEPTH_CONV fr conv f
in ((MK_COMB (f_thm, SEL_ONCE_DEPTH_CONV fr conv a))
? AP_THM f_thm a))
? AP_TERM f (SEL_ONCE_DEPTH_CONV fr conv a))
else let x,b = dest_abs t in
if mem x fr then
let newvar = variant (fr@(frees b)) x in
let thm = SEL_ALPHA_CONV newvar t in
let b' = snd (dest_abs (rhs (concl thm))) in
TRANS thm (ABS newvar (SEL_ONCE_DEPTH_CONV fr conv b'))
else ABS x (SEL_ONCE_DEPTH_CONV fr conv b) in
(conv ORELSEC SEL_SUBCONV) t;;
letrec SEL_TOP_DEPTH_CONV fr conv = \t.
let SEL_SUBCONV t =
if is_var t or is_const t then fail
else if is_comb t then
let f,a = dest_comb t in
((let f_thm = SEL_TOP_DEPTH_CONV fr conv f
in ((MK_COMB (f_thm, SEL_TOP_DEPTH_CONV fr conv a))
? AP_THM f_thm a))
? AP_TERM f (SEL_TOP_DEPTH_CONV fr conv a))
else let x,b = dest_abs t in
if mem x fr then
let newvar = variant (fr@(frees b)) x in
let thm = SEL_ALPHA_CONV newvar t in
let b' = snd (dest_abs (rhs (concl thm))) in
TRANS thm (ABS newvar (SEL_TOP_DEPTH_CONV fr conv b'))
else ABS x (SEL_TOP_DEPTH_CONV fr conv b) in
letrec aux t = (SEL_SUBCONV
THENTRYC
((conv THENTRYC (TRYREPEATC conv))
THENTRYC
aux)) t
in (TRYBOTHC (conv THENTRYC (TRYREPEATC conv)) aux) t;;
%
The f parameter represents free variables in the original rewriting laws.
If a match is found, the substitution is checked to ensure that a
substitution of free variables does not occur.
%
let SEL_rewrite_CONV f th =
let pat = fst (dest_eq(concl th)) in
let matchfn = \t.
let u = match pat t in
if exists (\v.exists (\x. snd x = v) (fst u)) f then fail else u in
\tm. INST_TY_TERM (matchfn tm) th;;
letrec SEL_mk_rewrites th =
(let f = frees (concl th) in
let th = GSPEC th in
let t = concl th in
if is_eq t
then [f,th]
if is_conj t
then map (\x,y.f,y) (SEL_mk_rewrites(CONJUNCT1 th)
@SEL_mk_rewrites(CONJUNCT2 th))
%----------------------------------------------------------------------------%
% Following lines commented out [JRH 92.11.14] %
% if is_iff t %
% then [f, GSPEC (IFF_EQ_RULE th)] %
%----------------------------------------------------------------------------%
if is_neg t
then [f, GSPEC (MP(SPEC(dest_neg t)NOT_F) th)]
else [f, GSPEC (EQT_INTRO th)]
) ? failwith `SEL_mk_rewrites`;;
let SEL_mk_rewritesl thl = flat (map SEL_mk_rewrites thl);;
let SEL_mk_frees_conv_net thl =
let f_th_pairs = SEL_mk_rewritesl thl in
(flat (map fst f_th_pairs),
(itlist
enter_term
(map (\f,th. (lhs(concl th),SEL_rewrite_CONV f th)) f_th_pairs)
nil_term_net));;
%----------------------------------------------------------------------------%
% REWR_CONV removed & definition of REWRITES_CONV reinstated [JRH 92.11.14] %
%----------------------------------------------------------------------------%
let GEN_REWRITE_CONV rewrite_fun basic_rewrites =
let REWRITES_CONV net tm = FIRST_CONV (lookup_term net tm) tm in
let f1,basic_net = SEL_mk_frees_conv_net basic_rewrites in
\thl.
let f2,thl_net = SEL_mk_frees_conv_net thl in
rewrite_fun (f1@f2) (REWRITES_CONV(merge_term_nets thl_net basic_net));;
let SEL_PURE_REWRITE_CONV = GEN_REWRITE_CONV SEL_TOP_DEPTH_CONV []
and SEL_REWRITE_CONV = GEN_REWRITE_CONV SEL_TOP_DEPTH_CONV basic_rewrites
and SEL_PURE_ONCE_REWRITE_CONV = GEN_REWRITE_CONV SEL_ONCE_DEPTH_CONV []
and SEL_ONCE_REWRITE_CONV = GEN_REWRITE_CONV SEL_ONCE_DEPTH_CONV basic_rewrites;;
% A collection of go-faster versions of standard rewrites: %
let SEL_REWRITE_TAC thl = CONV_TAC (SEL_REWRITE_CONV thl)
and SEL_ONCE_REWRITE_TAC thl = CONV_TAC (SEL_ONCE_REWRITE_CONV thl)
and SEL_PURE_REWRITE_TAC thl = CONV_TAC (SEL_PURE_REWRITE_CONV thl)
and SEL_PURE_ONCE_REWRITE_TAC thl = CONV_TAC (SEL_PURE_ONCE_REWRITE_CONV thl);;
let SEL_PURE_ASM_REWRITE_TAC thl =
ASSUM_LIST (\asl. SEL_PURE_REWRITE_TAC (asl @ thl))
and SEL_ASM_REWRITE_TAC thl =
ASSUM_LIST (\asl. SEL_REWRITE_TAC (asl @ thl))
and SEL_ONCE_ASM_REWRITE_TAC thl =
ASSUM_LIST (\asl. SEL_ONCE_REWRITE_TAC (asl @ thl))
and SEL_PURE_ONCE_ASM_REWRITE_TAC thl =
ASSUM_LIST (\asl. SEL_PURE_ONCE_REWRITE_TAC (asl @ thl))
and SEL_FILTER_PURE_ASM_REWRITE_TAC f thl =
ASSUM_LIST (\asl. SEL_PURE_REWRITE_TAC ((filter (f o concl) asl) @ thl))
and SEL_FILTER_ASM_REWRITE_TAC f thl =
ASSUM_LIST (\asl. SEL_REWRITE_TAC ((filter (f o concl) asl) @ thl))
and SEL_FILTER_ONCE_ASM_REWRITE_TAC f thl =
ASSUM_LIST (\asl. SEL_ONCE_REWRITE_TAC ((filter (f o concl) asl) @ thl))
and SEL_FITLER_PURE_ONCE_ASM_REWRITE_TAC f thl =
ASSUM_LIST (\asl. SEL_PURE_ONCE_REWRITE_TAC ((filter (f o concl) asl) @ thl));;
let SEL_REWRITE_RULE thml = CONV_RULE (SEL_REWRITE_CONV thml)
and SEL_PURE_REWRITE_RULE thml = CONV_RULE (SEL_PURE_REWRITE_CONV thml)
and SEL_ONCE_REWRITE_RULE thml = CONV_RULE (SEL_ONCE_REWRITE_CONV thml)
and SEL_PURE_ONCE_REWRITE_RULE thml =
CONV_RULE (SEL_PURE_ONCE_REWRITE_CONV thml);;
|