This file is indexed.

/usr/share/hol88-2.02.19940316/Library/arith/sup-inf.ml is in hol88-library-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
%****************************************************************************%
% FILE          : sup-inf.ml                                                 %
% DESCRIPTION   : SUP-INF method for deciding a subset of Presburger         %
%                 arithmetic (R.E.Shostak, JACM Vol.24 No.4 Pages 529-543)   %
%                                                                            %
% READS FILES   : <none>                                                     %
% WRITES FILES  : <none>                                                     %
%                                                                            %
% AUTHOR        : R.J.Boulton                                                %
% DATE          : 4th March 1991                                             %
%                                                                            %
% LAST MODIFIED : R.J.Boulton                                                %
% DATE          : 2nd July 1992                                              %
%****************************************************************************%

%============================================================================%
% SUP-INF algorithm                                                          %
%============================================================================%

%----------------------------------------------------------------------------%
% Datatype for representing the bounds of a normalised expression            %
%----------------------------------------------------------------------------%

rectype bound = Bound of rat # (string # rat) list
              | Max_bound of bound list
              | Min_bound of bound list
              | Pos_inf
              | Neg_inf;;

%----------------------------------------------------------------------------%
% Datatype for representing the bounds of an non-normalised expression       %
%----------------------------------------------------------------------------%

rectype internal_bound = Ibound of bound
                       | Mult_ibound of rat # internal_bound
                       | Plus_ibound of internal_bound # internal_bound
                       | Max_ibound of internal_bound list
                       | Min_ibound of internal_bound list;;

%----------------------------------------------------------------------------%
% solve_ineqs :                                                              %
%    (int # (string # int) list) list ->                                     %
%    string ->                                                               %
%    ((rat # (string # rat) list) list # (rat # (string # rat) list) list)   %
%----------------------------------------------------------------------------%

letrec solve_ineqs ineqs var =
   if (null ineqs)
   then ([],[])
   else let (const,bind) = hd ineqs
        and (restl,restr) = solve_ineqs (tl ineqs) var
        in  (let i = snd (assoc var bind)
             in  let const' = Rat (const,(-i))
                 and bind' = map (I # (\n. Rat (n,(-i))))
                                (filter (\(name,_) . not (name = var)) bind)
             in  if (i < 0)
                 then (((const',bind').restl),restr)
                 else (restl,((const',bind').restr)))
          ? (restl,restr);;

%----------------------------------------------------------------------------%
% UPPER : (int # (string # int) list) list -> string -> bound                %
%----------------------------------------------------------------------------%

let UPPER s x =
   let uppers = fst (solve_ineqs s x)
   in  if (null uppers)
       then Pos_inf
       else if (null (tl uppers))
            then Bound (hd uppers)
            else Min_bound (map Bound uppers);;

%----------------------------------------------------------------------------%
% LOWER : (int # (string # int) list) list -> string -> bound                %
%----------------------------------------------------------------------------%

let LOWER s x =
   let lowers = snd (solve_ineqs s x)
   in  if (null lowers)
       then Neg_inf
       else if (null (tl lowers))
            then Bound (hd lowers)
            else Max_bound (map Bound lowers);;

%----------------------------------------------------------------------------%
% SIMP_mult : rat -> bound -> bound                                          %
%----------------------------------------------------------------------------%

letrec SIMP_mult r b =
   case b
   of (Bound (const,bind)) .
         (Bound (rat_mult r const,map (I # (rat_mult r)) bind))
    | (Max_bound bl) .
         (if ((Numerator r) < 0)
          then (Min_bound (map (SIMP_mult r) bl))
          else (Max_bound (map (SIMP_mult r) bl)))
    | (Min_bound bl) .
         (if ((Numerator r) < 0)
          then (Max_bound (map (SIMP_mult r) bl))
          else (Min_bound (map (SIMP_mult r) bl)))
    | Pos_inf . (if ((Numerator r) < 0) then Neg_inf else Pos_inf)
    | Neg_inf . (if ((Numerator r) < 0) then Pos_inf else Neg_inf);;

%----------------------------------------------------------------------------%
% sum_bindings :                                                             %
%    (string # rat) list -> (string # rat) list -> (string # rat) list       %
%----------------------------------------------------------------------------%

letrec sum_bindings bind1 bind2 =
   if (null bind1) then bind2
   if (null bind2) then bind1
   else (let (name1,coeff1) = hd bind1
         and (name2,coeff2) = hd bind2
         in  if (name1 = name2) then
                (let coeff = rat_plus coeff1 coeff2
                 and bind = sum_bindings (tl bind1) (tl bind2)
                 in  if ((Numerator coeff) = 0)
                     then bind
                     else (name1,coeff).bind)
             if (string_less name1 name2) then
                (name1,coeff1).(sum_bindings (tl bind1) bind2)
             else (name2,coeff2).(sum_bindings bind1 (tl bind2)));;

%----------------------------------------------------------------------------%
% SIMP_plus : bound -> bound -> bound                                        %
%----------------------------------------------------------------------------%

letrec SIMP_plus b1 b2 =
   (case (b1,b2)
    of (Bound (const1,bind1),Bound (const2,bind2)) .
          (Bound (rat_plus const1 const2,sum_bindings bind1 bind2))
     | (Bound _,Max_bound bl) . (Max_bound (map (SIMP_plus b1) bl))
     | (Bound _,Min_bound bl) . (Min_bound (map (SIMP_plus b1) bl))
     | (Bound _,Pos_inf) . Pos_inf
     | (Bound _,Neg_inf) . Neg_inf
     | (Max_bound bl,_) . (Max_bound (map (\b. SIMP_plus b b2) bl))
     | (Min_bound bl,_) . (Min_bound (map (\b. SIMP_plus b b2) bl))
     | (Pos_inf,Pos_inf) . Pos_inf
     | (Pos_inf,Neg_inf) . fail
     | (Pos_inf,_) . (SIMP_plus b2 b1)
     | (Neg_inf,Neg_inf) . Neg_inf
     | (Neg_inf,Pos_inf) . fail
     | (Neg_inf,_) . (SIMP_plus b2 b1)
   ) ? failwith `SIMP_plus`;;

%----------------------------------------------------------------------------%
% SIMP : internal_bound -> bound                                             %
%----------------------------------------------------------------------------%

letrec SIMP ib =
   case ib
   of (Ibound b) . b
    | (Mult_ibound (r,ib')) . (SIMP_mult r (SIMP ib'))
    | (Plus_ibound (ib1,ib2)) . (SIMP_plus (SIMP ib1) (SIMP ib2))
    | (Max_ibound ibl) . (Max_bound (map SIMP ibl))
    | (Min_ibound ibl) . (Min_bound (map SIMP ibl));;

%----------------------------------------------------------------------------%
% SUPP : (string # bound) -> bound                                           %
% INFF : (string # bound) -> bound                                           %
%----------------------------------------------------------------------------%

letrec SUPP (x,y) =
   case y
   of (Bound (_,[])) . y
    | Pos_inf . y
    | Neg_inf . y
    | (Min_bound bl) . (Min_bound (map (\y. SUPP (x,y)) bl))
    | (Bound (const,bind)) .
         (let b = snd (assoc x bind) ? rat_zero
          and bind' = filter (\p. not (fst p = x)) bind
          in  if ((null bind') & (const = rat_zero) & (b = rat_one))
              then Pos_inf
              else let b' = rat_minus rat_one b
                   in  if (Numerator b' < 0) then Pos_inf
                       if (Numerator b' > 0) then
                          (Bound (rat_div const b',
                                  map (I # (\r. rat_div r b')) bind'))
                       else if (not (null bind')) then Pos_inf
                            if (Numerator const < 0) then Neg_inf
                            else Pos_inf)
    | (_) . failwith `SUPP`;;

letrec INFF (x,y) =
   case y
   of (Bound (_,[])) . y
    | Pos_inf . y
    | Neg_inf . y
    | (Max_bound bl) . (Max_bound (map (\y. INFF (x,y)) bl))
    | (Bound (const,bind)) .
         (let b = snd (assoc x bind) ? rat_zero
          and bind' = filter (\p. not (fst p = x)) bind
          in  if ((null bind') & (const = rat_zero) & (b = rat_one))
              then Neg_inf
              else let b' = rat_minus rat_one b
                   in  if (Numerator b' < 0) then Neg_inf
                       if (Numerator b' > 0) then
                          (Bound (rat_div const b',
                                  map (I # (\r. rat_div r b')) bind'))
                       else if (not (null bind')) then Neg_inf
                            if (Numerator const > 0) then Pos_inf
                            else Neg_inf)
    | (_) . failwith `INFF`;;

%----------------------------------------------------------------------------%
% occurs_in_bound : string -> bound -> bool                                  %
%----------------------------------------------------------------------------%

letrec occurs_in_bound v b =
   case b
   of (Bound (_,bind)) . (mem v (map fst bind))
    | (Max_bound bl) .
         (itlist (\x y. x or y) (map (occurs_in_bound v) bl) false)
    | (Min_bound bl) .
         (itlist (\x y. x or y) (map (occurs_in_bound v) bl) false)
    | (_) . false;;

%----------------------------------------------------------------------------%
% occurs_in_ibound : string -> internal_bound -> bool                        %
%----------------------------------------------------------------------------%

letrec occurs_in_ibound v ib =
   case ib
   of (Ibound b) . (occurs_in_bound v b)
    | (Mult_ibound (_,ib')) . (occurs_in_ibound v ib')
    | (Plus_ibound (ib1,ib2)) .
         ((occurs_in_ibound v ib1) or (occurs_in_ibound v ib2))
    | (Max_ibound ibl) .
         (itlist (\x y. x or y) (map (occurs_in_ibound v) ibl) false)
    | (Min_ibound ibl) .
         (itlist (\x y. x or y) (map (occurs_in_ibound v) ibl) false);;

%----------------------------------------------------------------------------%
% SUP : (int # (string # int) list) list ->                                  %
%       (bound # (string list)) ->                                           %
%       internal_bound                                                       %
% INF : (int # (string # int) list) list ->                                  %
%       (bound # (string list)) ->                                           %
%       internal_bound                                                       %
%----------------------------------------------------------------------------%

letrec SUP s (J,H) =
   case J
   of (Bound (_,[])) . (Ibound J)
    | Pos_inf . (Ibound J)
    | Neg_inf . (Ibound J)
    | (Min_bound bl) . (Min_ibound (map (\j. SUP s (j,H)) bl))
    | (Bound (const,bind)) .
         (let (rv.bind') = bind
          in  let (v,r) = rv
          in  if ((const = rat_zero) & (null bind'))
              then (if (r = rat_one) then
                       (if (mem v H)
                        then Ibound J
                        else let Q = UPPER s v
                             in  let Z = SUP s (Q,union H [v])
                             in  Ibound (SUPP (v,SIMP Z)))
                    if (Numerator r < 0)
                    then (Mult_ibound
                           (r,INF s (Bound (rat_zero,[v,rat_one]),H)))
                    else (Mult_ibound
                           (r,SUP s (Bound (rat_zero,[v,rat_one]),H)))
                   )
              else let B' = SUP s (Bound (const,bind'),union H [v])
                   and rvb = Bound (rat_zero,[rv])
                   in  if (occurs_in_ibound v B')
                       then let J' = SIMP (Plus_ibound (Ibound rvb,B'))
                            in  SUP s (J',H)
                       else Plus_ibound (SUP s (rvb,H),B'))
    | (_) . failwith `SUP`

and INF s (J,H) =
   case J
   of (Bound (_,[])) . (Ibound J)
    | Pos_inf . (Ibound J)
    | Neg_inf . (Ibound J)
    | (Max_bound bl) . (Max_ibound (map (\j. INF s (j,H)) bl))
    | (Bound (const,bind)) .
         (let (rv.bind') = bind
          in  let (v,r) = rv
          in  if ((const = rat_zero) & (null bind'))
              then (if (r = rat_one) then
                       (if (mem v H)
                        then Ibound J
                        else let Q = LOWER s v
                             in  let Z = INF s (Q,union H [v])
                             in  Ibound (INFF (v,SIMP Z)))
                    if (Numerator r < 0)
                    then (Mult_ibound
                           (r,SUP s (Bound (rat_zero,[v,rat_one]),H)))
                    else (Mult_ibound
                           (r,INF s (Bound (rat_zero,[v,rat_one]),H)))
                   )
              else let B' = INF s (Bound (const,bind'),union H [v])
                   and rvb = Bound (rat_zero,[rv])
                   in  if (occurs_in_ibound v B')
                       then let J' = SIMP (Plus_ibound (Ibound rvb,B'))
                            in  INF s (J',H)
                       else Plus_ibound (INF s (rvb,H),B'))
    | (_) . failwith `INF`;;

%----------------------------------------------------------------------------%
% eval_max_bound : bound list -> bound                                       %
%----------------------------------------------------------------------------%

letrec eval_max_bound bl =
   if (null bl) then failwith `eval_max_bound`
   if (null (tl bl)) then (hd bl)
   else let b = hd bl
        and max = eval_max_bound (tl bl)
        in  case (b,max)
            of (Pos_inf,_) . Pos_inf
             | (_,Pos_inf) . Pos_inf
             | (Neg_inf,_) . max
             | (_,Neg_inf) . b
             | (Bound (r1,[]),Bound (r2,[])) .
                  (if (Numerator (rat_minus r1 r2) < 0) then max else b)
             | (_) . failwith `eval_max_bound`;;

%----------------------------------------------------------------------------%
% eval_min_bound : bound list -> bound                                       %
%----------------------------------------------------------------------------%

letrec eval_min_bound bl =
   if (null bl) then failwith `eval_min_bound`
   if (null (tl bl)) then (hd bl)
   else let b = hd bl
        and min = eval_min_bound (tl bl)
        in  case (b,min)
            of (Pos_inf,_) . min
             | (_,Pos_inf) . b
             | (_,Neg_inf) . Neg_inf
             | (Neg_inf,_) . Neg_inf
             | (Bound (r1,[]),Bound (r2,[])) .
                  (if (Numerator (rat_minus r1 r2) < 0) then b else min)
             | (_) . failwith `eval_min_bound`;;

%----------------------------------------------------------------------------%
% eval_bound : bound -> bound                                                %
%----------------------------------------------------------------------------%

letrec eval_bound b =
   case b
   of (Bound (_,[])) . b
    | (Max_bound bl) . (eval_max_bound (map eval_bound bl))
    | (Min_bound bl) . (eval_min_bound (map eval_bound bl))
    | Pos_inf . b
    | Neg_inf . b;;

%----------------------------------------------------------------------------%
% SUP_INF :                                                                  %
%    (int # (string # int) list) list -> (string # bound # bound) list       %
%----------------------------------------------------------------------------%

let SUP_INF set =
   let vars_of_coeffs coeffsl = setify (flat (map ((map fst) o snd) coeffsl))
   in
   let vars = vars_of_coeffs set
   and make_bound v = Bound (rat_zero,[v,rat_one])
   and eval = eval_bound o SIMP
   in  map (\v. let b = make_bound v
                in  (v,eval (INF set (b,[])),eval (SUP set (b,[])))) vars;;