This file is indexed.

/usr/share/hol88-2.02.19940316/Library/pair/both1.ml is in hol88-library-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
% --------------------------------------------------------------------- %
% 		Copyright (c) Jim Grundy 1992				%
%               All rights reserved                                     %
%									%
% Jim Grundy, hereafter referred to as `the Author', retains the	%
% copyright and all other legal rights to the Software contained in	%
% this file, hereafter referred to as `the Software'.			%
% 									%
% The Software is made available free of charge on an `as is' basis.	%
% No guarantee, either express or implied, of maintenance, reliability	%
% or suitability for any purpose is made by the Author.			%
% 									%
% The user is granted the right to make personal or internal use	%
% of the Software provided that both:					%
% 1. The Software is not used for commercial gain.			%
% 2. The user shall not hold the Author liable for any consequences	%
%    arising from use of the Software.					%
% 									%
% The user is granted the right to further distribute the Software	%
% provided that both:							%
% 1. The Software and this statement of rights is not modified.		%
% 2. The Software does not form part or the whole of a system 		%
%    distributed for commercial gain.					%
% 									%
% The user is granted the right to modify the Software for personal or	%
% internal use provided that all of the following conditions are	%
% observed:								%
% 1. The user does not distribute the modified software. 		%
% 2. The modified software is not used for commercial gain.		%
% 3. The Author retains all rights to the modified software.		%
%									%
% Anyone seeking a licence to use this software for commercial purposes	%
% is invited to contact the Author.					%
% --------------------------------------------------------------------- %
% CONTENTS: functions which are common to paried universal and		%
%		existentail quantifications.				%
% --------------------------------------------------------------------- %
%$Id: both1.ml,v 3.1 1993/12/07 14:42:10 jg Exp $%

% ------------------------------------------------------------------------- %
% PFORALL_THM = |- !f. (!x y. f x y) = (!(x,y). f x y)                      %
% ------------------------------------------------------------------------- %

let PFORALL_THM =
    prove
    (
	"!f. (!(x:*) (y:**). f x y) = (!(x:*,y:**). f x y)"
    ,
	GEN_TAC THEN
	EQ_TAC THENL
	[
	    DISCH_TAC THEN
	    (REWRITE_TAC [FORALL_DEF]) THEN
	    BETA_TAC THEN
	    (ASM_REWRITE_TAC []) THEN
	    (CONV_TAC (RAND_CONV (PALPHA_CONV "(x:*,y:**)"))) THEN
	    REFL_TAC
	;
	    (CONV_TAC (RATOR_CONV (RAND_CONV (GEN_PALPHA_CONV "z:*#**")))) THEN
	    DISCH_TAC THEN
	    (CONV_TAC (RAND_CONV (ABS_CONV (RAND_CONV (ABS_CONV
		(RATOR_CONV (RAND_CONV (\tm. (SYM (SPEC_ALL FST)))))))))) THEN
	    (CONV_TAC (RAND_CONV (ABS_CONV (RAND_CONV (ABS_CONV
		(RAND_CONV (\tm. (SYM (SPEC_ALL SND)))))))))    THEN
	     (ASM_REWRITE_TAC [])
	]
    );;

% ------------------------------------------------------------------------- %
% PEXISTS_THM = |- !f. (?x y. f x y) = (?(x,y). f x y)                      %
% ------------------------------------------------------------------------- %

let PEXISTS_THM =
    prove
    (
	"!f. (?(x:*) (y:**). f x y) = (?(x:*,y:**). f x y)"
    ,
	GEN_TAC THEN
	EQ_TAC THENL
	[
	    (CONV_TAC LEFT_IMP_EXISTS_CONV) THEN
	    GEN_TAC THEN
	    (CONV_TAC LEFT_IMP_EXISTS_CONV) THEN
	    GEN_TAC THEN
	    DISCH_TAC THEN
	    (CONV_TAC (GEN_PALPHA_CONV "a:*#**")) THEN
	    (EXISTS_TAC "(x:*,y:**)") THEN
	    (ASM_REWRITE_TAC [FST; SND]) 
	;
	    (CONV_TAC (RATOR_CONV (RAND_CONV (GEN_PALPHA_CONV "a:*#**")))) THEN
	    (CONV_TAC LEFT_IMP_EXISTS_CONV) THEN
	    GEN_TAC THEN
	    DISCH_TAC THEN
	    (EXISTS_TAC "FST (a:*#**)") THEN
	    (EXISTS_TAC "SND (a:*#**)") THEN
	    (ASM_REWRITE_TAC [])
	]
    );;

% ------------------------------------------------------------------------- %
% CURRY_FORALL_CONV "!(x,y).t" = (|- (!(x,y).t) = (!x y.t))                 %
% ------------------------------------------------------------------------- %

let CURRY_FORALL_CONV tm = 
    (let (xy,bod) = dest_pforall tm in
    let (x,y) = dest_pair xy in
    let result = list_mk_pforall ([x;y],bod) in
    let f = rand (rand tm) in
    let th1 = RAND_CONV (PABS_CONV (UNPBETA_CONV xy)) tm in
    let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV CURRY_CONV))) th1 in
    let th3 = (SYM (ISPEC f PFORALL_THM)) in
    let th4 = CONV_RULE (RATOR_CONV (RAND_CONV (GEN_PALPHA_CONV xy))) th3 in
    let th5 = CONV_RULE (RAND_CONV (GEN_PALPHA_CONV x)) (th2 TRANS th4) in
    let th6 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV
			    (GEN_PALPHA_CONV y)))) th5 in
    let th7 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV (PABS_CONV
			    (RATOR_CONV PBETA_CONV)))))) th6 in
    let th8 =
	CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV (PABS_CONV
		    PBETA_CONV))))) th7
    in
        th8 TRANS (REFL result)
    )? failwith `CURRY_FORALL_CONV` ;;

% ------------------------------------------------------------------------- %
% CURRY_EXISTS_CONV "?(x,y).t" = (|- (?(x,y).t) = (?x y.t))                 %
% ------------------------------------------------------------------------- %

let CURRY_EXISTS_CONV tm = 
    (let (xy,bod) = dest_pexists tm in
    let (x,y) = dest_pair xy in
    let result = list_mk_pexists ([x;y],bod) in
    let f = rand (rand tm) in
    let th1 = RAND_CONV (PABS_CONV (UNPBETA_CONV xy)) tm in
    let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV CURRY_CONV))) th1 in
    let th3 = (SYM (ISPEC f PEXISTS_THM)) in
    let th4 = CONV_RULE (RATOR_CONV (RAND_CONV (GEN_PALPHA_CONV xy))) th3 in
    let th5 = CONV_RULE (RAND_CONV (GEN_PALPHA_CONV x)) (th2 TRANS th4) in
    let th6 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV
			    (GEN_PALPHA_CONV y)))) th5 in
    let th7 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV (PABS_CONV
			    (RATOR_CONV PBETA_CONV)))))) th6 in
    let th8 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV (PABS_CONV
		    PBETA_CONV))))) th7
    in 
	th8 TRANS (REFL result)
    )? failwith `CURRY_EXISTS_CONV` ;;

% ------------------------------------------------------------------------- %
% UNCURRY_FORALL_CONV "!x y.t" = (|- (!x y.t) = (!(x,y).t))                 %
% ------------------------------------------------------------------------- %

let UNCURRY_FORALL_CONV tm =
    (let (x,(y,bod)) = (I # dest_pforall) (dest_pforall tm) in
    let xy = mk_pair(x,y) in
    let result = mk_pforall (xy,bod) in
    let th1 = (RAND_CONV (PABS_CONV (RAND_CONV (PABS_CONV
		    (UNPBETA_CONV xy))))) tm in
    let f = rand (rator (pbody (rand (pbody (rand (rand (concl th1))))))) in
    let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV (PABS_CONV
			    CURRY_CONV))))) th1 in
    let th3 = ISPEC f PFORALL_THM in
    let th4 = CONV_RULE (RATOR_CONV (RAND_CONV (GEN_PALPHA_CONV x))) th3 in
    let th5 = CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV
		(GEN_PALPHA_CONV y))))) th4 in
    let th6 = CONV_RULE (RAND_CONV (GEN_PALPHA_CONV xy)) (th2 TRANS th5) in
    let th7 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV
			    PBETA_CONV)))) th6 in
    let th8 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV PBETA_CONV))) th7
    in
	th8 TRANS (REFL result)
    ) ? failwith `UNCURRY_FORALL_CONV`;;

% ------------------------------------------------------------------------- %
% UNCURRY_EXISTS_CONV "?x y.t" = (|- (?x y.t) = (?(x,y).t))                 %
% ------------------------------------------------------------------------- %

let UNCURRY_EXISTS_CONV tm =
    (let (x,(y,bod)) = (I # dest_pexists) (dest_pexists tm) in
    let xy = mk_pair(x,y) in
    let result = mk_pexists (xy,bod) in
    let th1 = (RAND_CONV (PABS_CONV (RAND_CONV (PABS_CONV
		    (UNPBETA_CONV xy))))) tm in
    let f = rand (rator (pbody (rand (pbody (rand (rand (concl th1))))))) in
    let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV (PABS_CONV
			    CURRY_CONV))))) th1 in
    let th3 = ISPEC f PEXISTS_THM in
    let th4 = CONV_RULE (RATOR_CONV (RAND_CONV (GEN_PALPHA_CONV x))) th3 in
    let th5 = CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV
		(GEN_PALPHA_CONV y))))) th4 in
    let th6 = CONV_RULE (RAND_CONV (GEN_PALPHA_CONV xy)) (th2 TRANS th5) in
    let th7 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV
			    PBETA_CONV)))) th6 in
    let th8 = CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV PBETA_CONV))) th7
    in
	th8 TRANS (REFL result)
    ) ? failwith `UNCURRY_EXISTS_CONV`;;