/usr/share/hol88-2.02.19940316/Library/pair/both2.ml is in hol88-library-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | % --------------------------------------------------------------------- %
% Copyright (c) Jim Grundy 1992 %
% All rights reserved %
% %
% Jim Grundy, hereafter referred to as `the Author', retains the %
% copyright and all other legal rights to the Software contained in %
% this file, hereafter referred to as `the Software'. %
% %
% The Software is made available free of charge on an `as is' basis. %
% No guarantee, either express or implied, of maintenance, reliability %
% or suitability for any purpose is made by the Author. %
% %
% The user is granted the right to make personal or internal use %
% of the Software provided that both: %
% 1. The Software is not used for commercial gain. %
% 2. The user shall not hold the Author liable for any consequences %
% arising from use of the Software. %
% %
% The user is granted the right to further distribute the Software %
% provided that both: %
% 1. The Software and this statement of rights is not modified. %
% 2. The Software does not form part or the whole of a system %
% distributed for commercial gain. %
% %
% The user is granted the right to modify the Software for personal or %
% internal use provided that all of the following conditions are %
% observed: %
% 1. The user does not distribute the modified software. %
% 2. The modified software is not used for commercial gain. %
% 3. The Author retains all rights to the modified software. %
% %
% Anyone seeking a licence to use this software for commercial purposes %
% is invited to contact the Author. %
% --------------------------------------------------------------------- %
% CONTENTS: Functions which are common to both paried universal and %
% existential quantifications and which rely on more %
% primitive functions from all.ml and exi.ml. %
% --------------------------------------------------------------------- %
%$Id: both2.ml,v 3.1 1993/12/07 14:42:10 jg Exp $%
% ------------------------------------------------------------------------- %
% Paired stiping tactics, same as basic ones, but they use PGEN_TAC %
% and PCHOOSE_THEN rather than GEN_TAC and CHOOSE_THEN %
% ------------------------------------------------------------------------- %
let PSTRIP_THM_THEN =
FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; PCHOOSE_THEN];;
let PSTRIP_ASSUME_TAC =
(REPEAT_TCL PSTRIP_THM_THEN) CHECK_ASSUME_TAC;;
let PSTRUCT_CASES_TAC =
REPEAT_TCL PSTRIP_THM_THEN
(\th. SUBST1_TAC th ORELSE ASSUME_TAC th);;
let PSTRIP_GOAL_THEN ttac = FIRST [PGEN_TAC; CONJ_TAC; DISCH_THEN ttac];;
let FILTER_PSTRIP_THEN ttac tm =
FIRST [
FILTER_PGEN_TAC tm;
FILTER_DISCH_THEN ttac tm;
CONJ_TAC ];;
let PSTRIP_TAC = PSTRIP_GOAL_THEN PSTRIP_ASSUME_TAC;;
let FILTER_PSTRIP_TAC = FILTER_PSTRIP_THEN PSTRIP_ASSUME_TAC;;
% ------------------------------------------------------------------------- %
% A |- !p. (f p) = (g p) %
% ------------------------ PEXT %
% A |- f = g %
% ------------------------------------------------------------------------- %
let PEXT th =
(let (p,_) = dest_pforall (concl th) in
let p' = pvariant (thm_frees th) p in
let th1 = PSPEC p' th in
let th2 = PABS p' th1 in
let th3 = (CONV_RULE (RATOR_CONV (RAND_CONV PETA_CONV))) th2 in
(CONV_RULE (RAND_CONV PETA_CONV)) th3
) ? failwith `PEXT`;;
% ------------------------------------------------------------------------- %
% P_FUN_EQ_CONV "p" "f = g" = |- (f = g) = (!p. (f p) = (g p)) %
% ------------------------------------------------------------------------- %
let P_FUN_EQ_CONV =
let gpty = ":*" in
let grange = ":**" in
let gfty = ":*->**" in
let gf = genvar gfty in
let gg = genvar gfty in
let gp = genvar gpty in
let imp1 = DISCH_ALL (GEN gp (AP_THM (ASSUME (mk_eq(gf,gg))) gp)) in
let imp2 =
DISCH_ALL
(EXT (ASSUME (mk_forall(gp, mk_eq(mk_comb(gf,gp),mk_comb(gg,gp))))))
in
let ext_thm = (IMP_ANTISYM_RULE imp1 imp2) in
\p tm.
let (f,g) = dest_eq tm in
let fty = type_of f
and pty = type_of p in
let gfinst = mk_var(fst (dest_var gf), fty)
and gginst = mk_var(fst (dest_var gg), fty) in
let range = hd (tl(snd(dest_type fty))) in
let th =
INST_TY_TERM
([(f,gfinst);(g,gginst)],
[(pty,gpty);(range,grange)])
ext_thm in
(CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV p)))) th ;;
% ------------------------------------------------------------------------- %
% A |- !p. t = u %
% ------------------------ MK_PABS %
% A |- (\p. t) = (\p. u) %
% ------------------------------------------------------------------------- %
let MK_PABS th =
(let (p,_) = dest_pforall (concl th) in
let th1 = (CONV_RULE (RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
(UNPBETA_CONV p)))))) th in
let th2 = (CONV_RULE (RAND_CONV (PABS_CONV (RAND_CONV
(UNPBETA_CONV p))))) th1 in
let th3 = PEXT th2 in
let th4 = (CONV_RULE (RATOR_CONV (RAND_CONV (PALPHA_CONV p)))) th3 in
(CONV_RULE (RAND_CONV (PALPHA_CONV p))) th4
) ? failwith `MK_PABS`;;
% ------------------------------------------------------------------------- %
% A |- !p. t p = u %
% ------------------ HALF_MK_PABS %
% A |- t = (\p. u) %
% ------------------------------------------------------------------------- %
let HALF_MK_PABS th =
(let (p,_) = dest_pforall (concl th) in
let th1 = (CONV_RULE (RAND_CONV (PABS_CONV (RAND_CONV
(UNPBETA_CONV p))))) th in
let th2 = PEXT th1 in
(CONV_RULE (RAND_CONV (PALPHA_CONV p))) th2
) ? failwith `HALF_MK_PABS` ;;
% ------------------------------------------------------------------------- %
% A |- !p. t = u %
% ------------------------ MK_PFORALL %
% A |- (!p. t) = (!p. u) %
% ------------------------------------------------------------------------- %
let MK_PFORALL th =
(let (p,_) = dest_pforall (concl th) in
AP_TERM
(mk_const
(`!`, mk_type(`fun`, [mk_type(`fun`, [type_of p; bool_ty]); bool_ty])))
(MK_PABS th)) ? failwith `MK_PFORALL` ;;
% ------------------------------------------------------------------------- %
% A |- !p. t = u %
% ------------------------ MK_PEXISTS %
% A |- (?p. t) = (?p. u) %
% ------------------------------------------------------------------------- %
let MK_PEXISTS th =
(let (p,_) = dest_pforall (concl th) in
AP_TERM
(mk_const
(`?`, mk_type(`fun`, [mk_type(`fun`, [type_of p; bool_ty]); bool_ty])))
(MK_PABS th)) ? failwith `MK_PEXISTS` ;;
% ------------------------------------------------------------------------- %
% A |- !p. t = u %
% ------------------------ MK_PSELECT %
% A |- (@p. t) = (@p. u) %
% ------------------------------------------------------------------------- %
let MK_PEXISTS th =
(let (p,_) = dest_pforall (concl th) in
let pty = type_of p in
AP_TERM
(mk_const
(`@`, mk_type(`fun`, [mk_type(`fun`, [pty; bool_ty]); pty])))
(MK_PABS th)) ? failwith `MK_PSELECT` ;;
% ------------------------------------------------------------------------- %
% A |- t = u %
% ------------------------ PFORALL_EQ "p" %
% A |- (!p. t) = (!p. u) %
% ------------------------------------------------------------------------- %
let PFORALL_EQ p th =
(let pty = type_of p in
AP_TERM
(mk_const
(`!`, mk_type(`fun`, [mk_type(`fun`, [pty; bool_ty ]); bool_ty])))
(PABS p th)) ? failwith `PFORALL_EQ` ;;
% ------------------------------------------------------------------------- %
% A |- t = u %
% ------------------------ PEXISTS_EQ "p" %
% A |- (?p. t) = (?p. u) %
% ------------------------------------------------------------------------- %
let PEXISTS_EQ p th =
(let pty = type_of p in
AP_TERM
(mk_const
(`?`, mk_type(`fun`, [mk_type(`fun`, [pty; bool_ty ]); bool_ty])))
(PABS p th)) ? failwith `PEXISTS_EQ` ;;
% ------------------------------------------------------------------------- %
% A |- t = u %
% ------------------------ PSELECT_EQ "p" %
% A |- (@p. t) = (@p. u) %
% ------------------------------------------------------------------------- %
let PSELECT_EQ p th =
(let pty = type_of p in
AP_TERM
(mk_const
(`@`, mk_type(`fun`, [mk_type(`fun`, [pty; bool_ty ]); pty])))
(PABS p th)) ? failwith `PSELECT_EQ` ;;
% ------------------------------------------------------------------------- %
% A |- t = u %
% ---------------------------------------- LIST_MK_PFORALL [p1;...pn] %
% A |- (!p1 ... pn. t) = (!p1 ... pn. u) %
% ------------------------------------------------------------------------- %
let LIST_MK_PFORALL = itlist PFORALL_EQ ;;
% ------------------------------------------------------------------------- %
% A |- t = u %
% ---------------------------------------- LIST_MK_PEXISTS [p1;...pn] %
% A |- (?p1 ... pn. t) = (?p1 ... pn. u) %
% ------------------------------------------------------------------------- %
let LIST_MK_PEXISTS = itlist PEXISTS_EQ ;;
% ------------------------------------------------------------------------- %
% A |- P ==> Q %
% -------------------------- EXISTS_IMP "p" %
% A |- (?p. P) ==> (?p. Q) %
% ------------------------------------------------------------------------- %
let PEXISTS_IMP p th =
(let (a,c) = dest_imp (concl th) in
let th1 = PEXISTS (mk_pexists(p,c),p) (UNDISCH th) in
let asm = mk_pexists(p,a) in
let th2 = DISCH asm (PCHOOSE (p, ASSUME asm) th1) in
(CONV_RULE (RAND_CONV (GEN_PALPHA_CONV p))) th2
) ? failwith `PEXISTS_IMP`;;
% ------------------------------------------------------------------------- %
% SWAP_PFORALL_CONV "!p q. t" = (|- (!p q. t) = (!q p. t)) %
% ------------------------------------------------------------------------- %
let SWAP_PFORALL_CONV pqt =
(let (p,qt) = dest_pforall pqt in
let (q,t) = dest_pforall qt in
let p' = genlike p in
let q' = genlike q in
let th1 = GEN_PALPHA_CONV p' pqt in
let th2 = CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (GEN_PALPHA_CONV q')))) th1 in
let th3 = CONV_RULE (RAND_CONV (GEN_PALPHA_CONV q)) th2 in
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (GEN_PALPHA_CONV p)))) th3
) ? failwith `SWAP_PFORALL_CONV`;;
% ------------------------------------------------------------------------- %
% SWAP_PEXISTS_CONV "?p q. t" = (|- (?p q. t) = (?q p. t)) %
% ------------------------------------------------------------------------- %
let SWAP_PEXISTS_CONV pqt =
(let (p,qt) = dest_pexists pqt in
let (q,t) = dest_pexists qt in
let p' = genlike p in
let q' = genlike q in
let th1 = GEN_PALPHA_CONV p' pqt in
let th2 = CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (GEN_PALPHA_CONV q')))) th1 in
let th3 = CONV_RULE (RAND_CONV (GEN_PALPHA_CONV q)) th2 in
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (GEN_PALPHA_CONV p)))) th3
) ? failwith `SWAP_PEXISTS_CONV`;;
% --------------------------------------------------------------------- %
% PART_PMATCH : just like PART_MATCH but doesn't mind leading paird q.s %
% --------------------------------------------------------------------- %
let PART_PMATCH partfn th =
let pth = GPSPEC (GSPEC (GEN_ALL th)) in
let pat = partfn (concl pth) in
let matchfn = match pat in
\tm. INST_TY_TERM (matchfn tm) pth;;
% --------------------------------------------------------------------- %
% A ?- !v1...vi. t' %
% ================== MATCH_MP_TAC (A' |- !x1...xn. s ==> !y1...tm. t) %
% A ?- ?z1...zp. s' %
% where z1, ..., zp are (type instances of) those variables among %
% x1, ..., xn that do not occur free in t. %
% --------------------------------------------------------------------- %
let PMATCH_MP_TAC : thm_tactic =
let efn p (tm,th) = let ntm = mk_pexists(p,tm) in
(ntm, PCHOOSE (p, ASSUME ntm) th)
in
\thm.
let (tps,(ant,(cps,con))) =
((I # ((I # strip_forall) o dest_imp)) o strip_pforall o concl) thm
? failwith `MATCH_MP_TAC: not an implication` in
let th1 = PSPECL cps (UNDISCH (PSPECL tps thm)) in
let eps = filter (\p. not (occs_in p con)) tps in
let th2 = uncurry DISCH (itlist efn eps (ant,th1)) in
\(A,g).
let (gps,gl) = strip_pforall g in
let ins = match con gl ? failwith `PMATCH_MP_TAC: no match` in
let ith = INST_TY_TERM ins th2 in
let newg = fst(dest_imp(concl ith)) in
let gth = PGENL gps (UNDISCH ith) ?
failwith `PMATCH_MP_TAC: generalized pair(s)` in
([(A,newg)], \[th]. PROVE_HYP th gth);;
% --------------------------------------------------------------------- %
% A1 |- !x1..xn. t1 ==> t2 A2 |- t1' %
% -------------------------------------- PMATCH_MP %
% A1 u A2 |- !xa..xk. t2' %
% --------------------------------------------------------------------- %
let PMATCH_MP =
letrec variants as vs =
if null vs then
[]
else
let (h.t) = vs in
let h' = variant (as@(filter (\e. not (e = h)) t)) h in
(h',h).(variants (h'.as) t) in
let frev_assoc e2 l = (fst (rev_assoc e2 l)) ? e2
in
\ith.
let t = (fst o dest_imp o snd o strip_pforall o concl) ith
? failwith `PMATCH_MP: not an implication` in
\th.
(let (B,t') = dest_thm th in
let ty_inst = snd (match t t') in
let ith_ = INST_TYPE ty_inst ith in
let (A_, forall_ps_t_imp_u_) = dest_thm ith_ in
let (ps_,t_imp_u_) = strip_pforall forall_ps_t_imp_u_ in
let (t_,u_) = dest_imp (t_imp_u_) in
let pvs = freesl ps_ in
let A_vs = freesl A_ in
let B_vs = freesl B in
let tm_inst = fst (match t_ t') in
let (match_vs, unmatch_vs) = partition (C free_in t_) (frees u_) in
let rename = subtract unmatch_vs (subtract A_vs pvs) in
let new_vs = freesl (map (C frev_assoc tm_inst) match_vs) in
let renaming = variants (new_vs@A_vs@B_vs) rename in
let (specs,insts) = partition (C mem (freesl pvs) o snd)
(renaming@tm_inst) in
let spec_list = map (subst specs) ps_ in
let mp_th = MP (PSPECL spec_list (INST insts ith_)) th in
let gen_ps = (filter (\p. null (subtract (rip_pair p) rename)) ps_) in
let qs = map (subst renaming) gen_ps
in
PGENL qs mp_th
) ? failwith `PMATCH_MP: can't instantiate theorem`;;
|