/usr/share/hol88-2.02.19940316/Library/pair/exi.ml is in hol88-library-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | % --------------------------------------------------------------------- %
% Copyright (c) Jim Grundy 1992 %
% All rights reserved %
% %
% Jim Grundy, hereafter referred to as `the Author', retains the %
% copyright and all other legal rights to the Software contained in %
% this file, hereafter referred to as `the Software'. %
% %
% The Software is made available free of charge on an `as is' basis. %
% No guarantee, either express or implied, of maintenance, reliability %
% or suitability for any purpose is made by the Author. %
% %
% The user is granted the right to make personal or internal use %
% of the Software provided that both: %
% 1. The Software is not used for commercial gain. %
% 2. The user shall not hold the Author liable for any consequences %
% arising from use of the Software. %
% %
% The user is granted the right to further distribute the Software %
% provided that both: %
% 1. The Software and this statement of rights is not modified. %
% 2. The Software does not form part or the whole of a system %
% distributed for commercial gain. %
% %
% The user is granted the right to modify the Software for personal or %
% internal use provided that all of the following conditions are %
% observed: %
% 1. The user does not distribute the modified software. %
% 2. The modified software is not used for commercial gain. %
% 3. The Author retains all rights to the modified software. %
% %
% Anyone seeking a licence to use this software for commercial purposes %
% is invited to contact the Author. %
% --------------------------------------------------------------------- %
% CONTENTS: functions for paired existential quantifications. %
% --------------------------------------------------------------------- %
%$Id: exi.ml,v 3.2 1994/01/28 02:56:50 jug Exp $%
% ------------------------------------------------------------------------- %
% PEXISTS_CONV "(?p. t[p])" = (|- (?p. t[p]) = (t [@p. t[p]]) %
% ------------------------------------------------------------------------- %
let PEXISTS_CONV =
let EXISTS_THM =
let f = "f:*->bool" in
let th = AP_THM EXISTS_DEF f in
GEN f ((CONV_RULE (RAND_CONV BETA_CONV)) th) in
(\tm.
let g = mk_pabs (dest_pexists tm) in
let th1 = ISPEC g EXISTS_THM in
let th2 = PBETA_CONV (rhs (concl th1)) in
th1 TRANS th2
) ? failwith `PEXISTS_CONV` ;;
% ------------------------------------------------------------------------- %
% A |- ?p. t[p] %
% ------------------ PSELECT_RULE %
% A |- t[@p .t[p]] %
% ------------------------------------------------------------------------- %
let PSELECT_RULE = CONV_RULE PEXISTS_CONV ;;
% ------------------------------------------------------------------------- %
% PSELECT_CONV "t [@p. t[p]]" = (|- (t [@p. t[p]]) = (?p. t[p])) %
% ------------------------------------------------------------------------- %
let PSELECT_CONV tm =
(let right t =
((is_pselect t) &
paconv tm (rhs (concl (PBETA_CONV (mk_comb ((rand t), t))))))
in
let exi = mk_pexists (dest_pselect (find_term right tm)) in
let th1 = SYM (PEXISTS_CONV exi) in
let th2 = PALPHA tm (lhs(concl th1)) in
th2 TRANS th1
) ? failwith `PSELECT_CONV` ;;
% ------------------------------------------------------------------------- %
% A |- t[@p .t[p]] %
% ------------------ PEXISTS_RULE %
% A |- ?p. t[p] %
% ------------------------------------------------------------------------- %
let PEXISTS_RULE = CONV_RULE PSELECT_CONV ;;
% ------------------------------------------------------------------------- %
% A |- P t %
% -------------- PSELECT_INTRO %
% A |- P($@ P) %
% ------------------------------------------------------------------------- %
let PSELECT_INTRO = SELECT_INTRO ;;
% ------------------------------------------------------------------------- %
% A1 |- f($@ f) , A2, f p |- t %
% -------------------------------- PSELECT_ELIM th1 ("p", th2) [p not free] %
% A1 u A2 |- t %
% ------------------------------------------------------------------------- %
let PSELECT_ELIM th1 (v,th2) =
(let (f,sf) = dest_comb (concl th1) in
let t1 = MP (PSPEC sf (PGEN v (DISCH (mk_comb(f,v)) th2))) th1 in
let t2 = ALPHA (concl t1) (concl th2) in
EQ_MP t2 t1
) ? failwith `PSELECT_ELIM` ;;
% ------------------------------------------------------------------------- %
% A |- t[q] %
% ----------------- PEXISTS ("?p. t[p]", "q") %
% A |- ?p. t[p] %
% ------------------------------------------------------------------------- %
let PEXISTS (fm,tm) th =
(let (p,b) = dest_pexists fm in
let th1 = PBETA_CONV (mk_comb(mk_pabs(p,b),tm)) in
let th2 = EQ_MP (SYM th1) th in
let th3 = PSELECT_INTRO th2 in
let th4 = AP_THM
(INST_TYPE [(type_of p, mk_vartype `*`)] EXISTS_DEF)
(mk_pabs (p, b)) in
let th5 = TRANS th4 (BETA_CONV(snd(dest_eq(concl th4)))) in
EQ_MP (SYM th5) th3
) ? failwith `PEXISTS` ;;
% ------------------------------------------------------------------------- %
% A1 |- ?p. t[p] , A2, t[v] |- u %
% ---------------------------------- PCHOOSE (v,th1) th2 [v not free] %
% A1 u A2 |- u %
% ------------------------------------------------------------------------- %
let PCHOOSE =
let f = "f:*->bool" in
let t1 = AP_THM EXISTS_DEF f in
let t2 = GEN f ((CONV_RULE (RAND_CONV BETA_CONV)) t1) in
\(v,th1) th2.
(
let p = rand (concl th1) in
let bet = PBETA_CONV (mk_comb(p,v)) in
if not(mem (rhs (concl bet)) (hyp th2)) then
failwith `theorems not in the correct form`
else
let th1' = EQ_MP (ISPEC p t2) th1 in
let u1 = UNDISCH (fst (EQ_IMP_RULE bet)) in
let th2' = PROVE_HYP u1 th2 in
PSELECT_ELIM th1' (v,th2')
) ?\s failwith (`PCHOOSE: `^s);;
let P_PCHOOSE_THEN v ttac pth :tactic =
let (p,b) = dest_pexists (concl pth) ? failwith `P_PCHOOSE_THEN` in
\(asl,w).
let th =
itlist
ADD_ASSUM
(hyp pth)
(ASSUME
(rhs (concl (PBETA_CONV (mk_comb(mk_pabs(p,b), v))))))
in
let (gl,prf) = ttac th (asl,w) in
(gl, (PCHOOSE (v, pth)) o prf) ;;
let PCHOOSE_THEN ttac pth :tactic =
let (p,b) = dest_pexists (concl pth) ? failwith `CHOOSE_THEN` in
\(asl,w).
let q = pvariant ((thm_frees pth) @ (freesl (w.asl))) p in
let th =
itlist
ADD_ASSUM
(hyp pth)
(ASSUME
(rhs
(concl
(PAIRED_BETA_CONV (mk_comb(mk_pabs(p,b), q))))))
in
let (gl,prf) = ttac th (asl,w) in
(gl, (PCHOOSE (q, pth)) o prf) ;;
let P_PCHOOSE_TAC p = P_PCHOOSE_THEN p ASSUME_TAC ;;
let PCHOOSE_TAC = PCHOOSE_THEN ASSUME_TAC ;;
% ------------------------------------------------------------------------- %
% A ?- ?p. t[p] %
% =============== PEXISTS_TAC "u" %
% A ?- t[u] %
% ------------------------------------------------------------------------- %
let PEXISTS_TAC v :tactic (a, t) =
(let (p,b) = dest_pexists t in
([a, rhs (concl (PBETA_CONV (mk_comb((mk_pabs (p,b)),v))))],
\[th]. PEXISTS (t,v) th)
) ? failwith `PEXISTS_TAC` ;;
% ------------------------------------------------------------------------- %
% |- ?!p. t[p] %
% -------------- PEXISTENCE %
% |- ?p. t[p] %
% ------------------------------------------------------------------------- %
let PEXISTENCE th =
(let (p,b) = dest_pabs (rand (concl th)) in
let th1 =
AP_THM
(INST_TYPE [(type_of p, mk_vartype `*`)] EXISTS_UNIQUE_DEF)
(mk_pabs(p,b)) in
let th2 = EQ_MP th1 th in
let th3 = CONV_RULE BETA_CONV th2 in
CONJUNCT1 th3
) ? failwith `PEXISTENCE` ;;
% ------------------------------------------------------------------------- %
% PEXISTS_UNIQUE_CONV "?!p. t[p]" = %
% (|- (?!p. t[p]) = (?p. t[p] /\ !p p'. t[p] /\ t[p'] ==> (p='p))) %
% ------------------------------------------------------------------------- %
let PEXISTS_UNIQUE_CONV tm =
(let (p,b) = dest_pabs (rand tm) in
let p' = pvariant (p.(frees tm)) p in
let th1 =
AP_THM
(INST_TYPE [(type_of p, mk_vartype `*`)] EXISTS_UNIQUE_DEF)
(mk_pabs(p,b)) in
let th2 = CONV_RULE (RAND_CONV BETA_CONV) th1 in
let th3 = CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV (ABS_CONV
(GEN_PALPHA_CONV p'))))) th2 in
let th4 = CONV_RULE (RAND_CONV (RAND_CONV (GEN_PALPHA_CONV p))) th3 in
let th5 = CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV (PABS_CONV
(RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
(RATOR_CONV (RAND_CONV PBETA_CONV)))))))))) th4 in
CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV (PABS_CONV
(RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
(RAND_CONV PBETA_CONV))))))))) th5
) ? failwith `PEXISTS_UNIQUE_CONV` ;;
% ------------------------------------------------------------------------- %
% P_PSKOLEM_CONV : introduce a skolem function. %
% %
% |- (!x1...xn. ?y. tm[x1,...,xn,y]) %
% = %
% (?f. !x1...xn. tm[x1,..,xn,f x1 ... xn] %
% %
% The first argument is the function f. %
% ------------------------------------------------------------------------- %
begin_section skolemsec ;;
let BABY_P_PSKOLEM_CONV f =
if (not(is_pvar f)) then
failwith `P_SKOLEM_CONV: first argument not a variable`
else
\tm.
(
let (xs,(y,P)) = (I # dest_exists) (strip_pforall tm) in
let fx = list_mk_comb(f,xs) ?
failwith `function variable has the wrong type` in
if (free_in f tm) then
failwith `skolem function free in the input term`
else
let pat =
mk_exists(f,(list_mk_pforall(xs,subst [(fx,y)] P))) in
let fn = list_mk_pabs(xs,mk_select(y,P)) in
let bth = SYM(LIST_PBETA_CONV (list_mk_comb(fn,xs))) in
let thm1 =
SUBST [bth,y] P (SELECT_RULE (PSPECL xs (ASSUME tm))) in
let imp1 = DISCH tm (EXISTS (pat,fn) (PGENL xs thm1)) in
let thm2 = PSPECL xs (ASSUME (snd(dest_exists pat))) in
let thm3 = PGENL xs (EXISTS (mk_exists(y,P),fx) thm2) in
let imp2 = DISCH pat (CHOOSE (f,ASSUME pat) thm3) in
IMP_ANTISYM_RULE imp1 imp2
);;
letrec P_PSKOLEM_CONV f =
if (not (is_pvar f)) then
failwith `P_SKOLEM_CONV: first argument not a variable pair`
else
\tm.
(
let (xs,(y,P)) = (I # dest_pexists) (strip_pforall tm) ?
failwith `expecting "!x1...xn. ?y.tm"` in
let FORALL_CONV =
(end_itlist
(curry $o)
(map (K (RAND_CONV o PABS_CONV)) xs)
)? failwith `expecting "!x1...xn. ?y.tm"`in
if is_var f then
if is_var y then
BABY_P_PSKOLEM_CONV f tm
else % is_pair y %
let y' = genvar (type_of y) in
let tha1 =
(FORALL_CONV (RAND_CONV (PALPHA_CONV y'))) tm
in
CONV_RULE (RAND_CONV (BABY_P_PSKOLEM_CONV f)) tha1
else % is_par f %
let (f1,f2) = dest_pair f in
let thb1 =
if is_var y then
let (y1',y2') =
(genvar # genvar) (dest_prod (type_of y)) ?
failwith `existential variable not of pair type`
in
(FORALL_CONV
(RAND_CONV
(PALPHA_CONV (mk_pair(y1',y2')))))
tm
else
REFL tm in
let thb2 =
CONV_RULE
(RAND_CONV (FORALL_CONV CURRY_EXISTS_CONV))
thb1 in
let thb3 = CONV_RULE (RAND_CONV (P_PSKOLEM_CONV f1)) thb2 in
let thb4 =
CONV_RULE
(RAND_CONV
(RAND_CONV (PABS_CONV (P_PSKOLEM_CONV f2))))
thb3 in
CONV_RULE (RAND_CONV UNCURRY_EXISTS_CONV) thb4
) ?\st failwith `P_PSKOLEM_CONV: ` ^st;;
P_PSKOLEM_CONV;;
end_section skolemsec;;
let P_PSKOLEM_CONV = it;;
% ------------------------------------------------------------------------- %
% PSKOLEM_CONV : introduce a skolem function. %
% %
% |- (!x1...xn. ?y. tm[x1,...,xn,y]) %
% = %
% (?y'. !x1...xn. tm[x1,..,xn,f x1 ... xn] %
% %
% Where y' is a primed variant of y not free in the input term. %
% ------------------------------------------------------------------------- %
let PSKOLEM_CONV =
letrec mkfn tm tyl =
if is_var tm then
let (n,t) = dest_var tm in
mk_var(n, itlist (\ty1 ty2. mk_type(`fun`,[ty1;ty2])) tyl t)
else
let (p1,p2) = dest_pair tm in
mk_pair(mkfn p1 tyl, mkfn p2 tyl)
in
\tm.
(
let (xs,(y,P)) = (I # dest_pexists) (strip_pforall tm) in
let f = mkfn y (map type_of xs) in
let f' = pvariant (frees tm) f in
P_PSKOLEM_CONV f' tm
) ? failwith `PSKOLEM_CONV: expecting "!x1...xn. ?y.tm"`;;
|