This file is indexed.

/usr/share/hol88-2.02.19940316/Library/reduce/arithconv.ml is in hol88-library-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
%******************************************************************************
** LIBRARY:     reduce (part II)                                             **
**                                                                           **
** DESCRIPTION: Conversions to reduce arithmetic constant expressions        **
**                                                                           **
** AUTHOR:      John Harrison                                                **
**              University of Cambridge Computer Laboratory                  **
**              New Museums Site                                             **
**              Pembroke Street                                              **
**              Cambridge CB2 3QG                                            **
**              England.                                                     **
**                                                                           **
**              jrh@cl.cam.ac.uk                                             **
**                                                                           **
** DATE:        18th May 1991                                                **
******************************************************************************%

%-----------------------------------------------------------------------%
% dest_op - Split application down spine, checking head operator        %
%-----------------------------------------------------------------------%

let dest_op op tm = snd ((assert (curry $= op) # I) (strip_comb tm));;

%-----------------------------------------------------------------------%
% term_of_int - Convert ML integer to object level numeric constant     %
%-----------------------------------------------------------------------%

let term_of_int =
  let ty = ":num" in
  \n. mk_const(string_of_int n, ty);;

%-----------------------------------------------------------------------%
% int_of_term - Convert object level numeric constant to ML integer     %
%-----------------------------------------------------------------------%

let int_of_term =
  int_of_string o fst o dest_const;;

%-----------------------------------------------------------------------%
% provelt x y = |- [x] < [y], if true, else undefined.                  %
%-----------------------------------------------------------------------%

let provelt =
  let ltstep = PROVE("!x. (z = SUC y) ==> (x < y) ==> (x < z)",
                     GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
                     MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_SUC`))
  and ltbase  = PROVE("(y = SUC x) ==> (x < y)",
                     DISCH_THEN SUBST1_TAC THEN
                     MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_SUC_REFL`))
  and bistep = PROVE("(SUC x < SUC y) = (x < y)",
                     MATCH_ACCEPT_TAC (theorem `arithmetic` `LESS_MONO_EQ`))
  and bibase = PROVE("!x. 0 < (SUC x)",
                     MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_0`))
  and ltop = "$<" and eqop = "$=:bool->bool->bool" and rhs = "x < y"
  and xv = "x:num" and yv = "y:num" and zv = "z:num" and Lo = "$< 0" in
  \x y. let xn = term_of_int x and yn = term_of_int y in
        if 4*(y - x) < 5*x then
          let x' = x + 1 in let xn' = term_of_int x' in
          let step = SPEC xn ltstep in
          letref z,zn,zn',th = x',xn',xn', MP (INST [(xn,xv);(xn',yv)] ltbase)
                                                  (num_CONV xn') in
          while z < y do
            (zn':=term_of_int(z:=z+1);
             th := MP (MP (INST [(zn,yv); (zn',zv)] step) (num_CONV zn')) th;
             zn:=zn');
          th
        else
         let lhs = mk_comb(mk_comb(ltop,xn),yn) in
         let pat = mk_comb(mk_comb(eqop,lhs),rhs) in
         letref w, z, wn, zn, th = x, y, xn, yn, REFL lhs in
         while w > 0 do
          (th :=
           let tran = TRANS (SUBST [(num_CONV wn,xv); (num_CONV zn,yv)] pat th)
           in tran (INST[((wn:=term_of_int(w:=w-1)),xv);
                         ((zn:=term_of_int(z:=z-1)),yv)] bistep));
         EQ_MP (SYM (TRANS th (AP_TERM Lo (num_CONV zn))))
               (SPEC (term_of_int(z-1)) bibase);;

%-----------------------------------------------------------------------%
% NEQ_CONV "[x] = [y]" = |- ([x] = [y]) = [x=y -> T | F]                %
%-----------------------------------------------------------------------%

let NEQ_CONV =
  let eq1 = PROVE
    ("(x < y) ==> ((x = y) = F)",
     ONCE_REWRITE_TAC[] THEN
     MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_NOT_EQ`))
  and eq2 = PROVE
    ("(y < x) ==> ((x = y) = F)",
     ONCE_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
     MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_NOT_EQ`))
  and neqop = "=:num->num->bool" and xv = "x:num" and yv = "y:num" in
  \tm. (let [xn;yn] = dest_op neqop tm in
        let x = int_of_term xn and y = int_of_term yn in
        if x = y then EQT_INTRO (REFL xn) else
        if x < y then MP (INST [(xn,xv);(yn,yv)] eq1)
                         (provelt x y)
        else MP (INST [(xn,xv);(yn,yv)] eq2)
                (provelt y x))
       ? failwith `NEQ_CONV`;;

%-----------------------------------------------------------------------%
% LT_CONV "[x] < [y]" = |- ([x] < [y]) = [x<y -> T | F]                 %
%-----------------------------------------------------------------------%

let LT_CONV =
  let lt1 = PROVE("!x. (x < x) = F",
                  REWRITE_TAC[theorem `prim_rec` `LESS_REFL`])
  and lt2 = PROVE("(y < x) ==> ((x < y) = F)",
                  PURE_ONCE_REWRITE_TAC[EQ_CLAUSES] THEN REPEAT DISCH_TAC THEN
                  IMP_RES_TAC (theorem `arithmetic` `LESS_ANTISYM`))
  and ltop = "$<" and xv = "x:num" and yv = "y:num" in
  \tm. (let [xn;yn] = dest_op ltop tm in
        let x = int_of_term xn and y = int_of_term yn in
        if x < y then EQT_INTRO (provelt x y) else
        if x = y then SPEC xn lt1
        else MP (INST [(xn,xv);(yn,yv)] lt2)
                (provelt y x))
       ? failwith `LT_CONV`;;

%-----------------------------------------------------------------------%
% GT_CONV "[x] > [y]" = |- ([x] > [y]) = [x>y -> T | F]                 %
%-----------------------------------------------------------------------%

let GT_CONV =
  let gt1 = PROVE("!x. (x > x) = F",
                  REWRITE_TAC[theorem `prim_rec` `LESS_REFL`;
                              definition `arithmetic` `GREATER`])
  and gt2 = PROVE("(x < y) ==> ((x > y) = F)",
                  PURE_REWRITE_TAC
                   [EQ_CLAUSES; definition `arithmetic` `GREATER`]
                  THEN REPEAT DISCH_TAC THEN
                  IMP_RES_TAC (theorem `arithmetic` `LESS_ANTISYM`))
  and gt3 = PROVE("(y < x) ==> ((x > y) = T)",
                  DISCH_THEN (SUBST1_TAC o SYM o EQT_INTRO) THEN
                  MATCH_ACCEPT_TAC (definition `arithmetic` `GREATER`))
  and gtop = "$>" and xv = "x:num" and yv = "y:num" in
  \tm. (let [xn;yn] = dest_op gtop tm in
        let x = int_of_term xn and y = int_of_term yn in
        if x = y then SPEC xn gt1 else
        if x < y then MP (INST [(xn,xv);(yn,yv)] gt2)
                         (provelt x y)
        else MP (INST [(xn,xv); (yn,yv)] gt3)
                (provelt y x))
       ? failwith `GT_CONV`;;

%-----------------------------------------------------------------------%
% LE_CONV "[x] <= [y]" = |- ([x]<=> [y]) = [x<=y -> T | F]              %
%-----------------------------------------------------------------------%

let LE_CONV =
  let le1 = PROVE("!x. (x <= x) = T",
                  REWRITE_TAC[theorem `arithmetic` `LESS_EQ_REFL`])
  and le2 = PROVE("(x < y) ==> ((x <= y) = T)",
                  DISCH_THEN (ACCEPT_TAC o EQT_INTRO o MATCH_MP
                   (theorem `arithmetic` `LESS_IMP_LESS_OR_EQ`)))
  and le3 = PROVE("(y < x) ==> ((x <= y) = F)",
                  PURE_ONCE_REWRITE_TAC[EQ_CLAUSES] THEN
                  REPEAT DISCH_TAC THEN
                  IMP_RES_TAC (theorem `arithmetic` `LESS_EQ_ANTISYM`))
  and leop = "$<=" and xv = "x:num" and yv = "y:num" in
  \tm. (let [xn;yn] = dest_op leop tm in
        let x = int_of_term xn and y = int_of_term yn in
        if x = y then SPEC xn le1 else
        if x < y then MP (INST [(xn,xv);(yn,yv)] le2)
                         (provelt x y)
        else MP (INST [(xn,xv);(yn,yv)] le3)
                (provelt y x))
       ? failwith `LE_CONV`;;

%-----------------------------------------------------------------------%
% GE_CONV "[x] >= [y]" = |- ([x] >= [y]) = [x>=y -> T | F]              %
%-----------------------------------------------------------------------%

let GE_CONV =
  let ge1 = PROVE("!x. (x >= x) = T",
                  REWRITE_TAC[definition `arithmetic` `GREATER_OR_EQ`])
  and ge2 = PROVE("(y < x) ==> ((x >= y) = T)",
                  DISCH_TAC THEN
                  ASM_REWRITE_TAC[definition `arithmetic` `GREATER_OR_EQ`;
                                  definition `arithmetic` `GREATER`])
  and ge3 = PROVE("(x < y) ==> ((x >= y) = F)",
                  PURE_REWRITE_TAC (EQ_CLAUSES. (map (definition `arithmetic`)
                   [`GREATER_OR_EQ`; `GREATER`])) THEN
                  PURE_ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
                  REPEAT STRIP_TAC THEN IMP_RES_TAC (PURE_REWRITE_RULE
                   [definition `arithmetic` `LESS_OR_EQ`]
                   (theorem `arithmetic` `LESS_EQ_ANTISYM`)))
  and geop = "$>=" and xv = "x:num" and yv = "y:num" in
  \tm. (let [xn;yn] = dest_op geop tm in
        let x = int_of_term xn and y = int_of_term yn in
        if x = y then SPEC xn ge1 else
        if x < y then MP (INST [(xn,xv);(yn,yv)] ge3)
                         (provelt x y)
        else MP (INST [(xn,xv);(yn,yv)] ge2)
                (provelt y x))
       ? failwith `GE_CONV`;;

%-----------------------------------------------------------------------%
% SUC_CONV "SUC [x]" = |- SUC [x] = [x+1]                               %
%-----------------------------------------------------------------------%

let SUC_CONV =
  let sucop = "SUC" in
  \tm. (let [xn] = dest_op sucop tm in
        SYM (num_CONV (term_of_int (1 + (int_of_term xn)))))
       ? failwith `SUC_CONV`;;

%-----------------------------------------------------------------------%
% PRE_CONV "PRE [n]" = |- PRE [n] = [n-1]                               %
%-----------------------------------------------------------------------%

let PRE_CONV =
  let preop = "PRE" and zero = "0" and xv = "x:num" and yv = "y:num"
  and spree = PROVE("(x = SUC y) ==> (PRE x = y)",
               DISCH_TAC THEN ASM_REWRITE_TAC[theorem `prim_rec` `PRE`])
  and szero = PROVE("PRE 0 = 0",REWRITE_TAC[theorem `prim_rec` `PRE`]) in
  \tm. (let [xn] = dest_op preop tm in
        if xn = zero then szero
        else MP (INST[(xn,xv);(term_of_int((int_of_term xn) - 1),yv)] spree)
                (num_CONV xn))
       ? failwith `PRE_CONV`;;

%-----------------------------------------------------------------------%
% SBC_CONV "[x] - [y]" = |- ([x] - [y]) = [x - y]                       %
%-----------------------------------------------------------------------%

let SBC_CONV =
  let subm = PROVE("(x < y) ==> (x - y = 0)",
                   PURE_ONCE_REWRITE_TAC[theorem `arithmetic` `SUB_EQ_0`]
                   THEN MATCH_ACCEPT_TAC
                   (theorem `arithmetic` `LESS_IMP_LESS_OR_EQ`))
  and step = PROVE("(SUC x) - (SUC y) = x - y",
                   MATCH_ACCEPT_TAC (theorem `arithmetic` `SUB_MONO_EQ`))
  and base1 = PROVE("!x. x - 0 = x",
                    REWRITE_TAC[theorem `arithmetic` `SUB_0`])
  and base2 = PROVE("!x. x - x = 0",
                    MATCH_ACCEPT_TAC(theorem `arithmetic` `SUB_EQUAL_0`))
  and less0 = PROVE("!x. 0 < SUC x",
                    REWRITE_TAC[theorem `prim_rec` `LESS_0`])
  and swap = PROVE("(x - z = y) ==> (0 < y) ==> (x - y = z)",
    let [sub_less_0; sub_sub; less_imp_less_or_eq; add_sym; add_sub] =
      map (theorem `arithmetic`)
      [`SUB_LESS_0`; `SUB_SUB`; `LESS_IMP_LESS_OR_EQ`; `ADD_SYM`; `ADD_SUB`] in
    DISCH_THEN (SUBST1_TAC o SYM) THEN PURE_ONCE_REWRITE_TAC
     [SYM (SPEC_ALL sub_less_0)] THEN DISCH_THEN (SUBST1_TAC o SPEC "x:num" o
    MATCH_MP sub_sub o MATCH_MP less_imp_less_or_eq) THEN PURE_ONCE_REWRITE_TAC
     [add_sym] THEN PURE_ONCE_REWRITE_TAC[add_sub] THEN REFL_TAC)
  and lop = "$< 0" and minusop = "$-" and eqop = "$=:num->num->bool"
  and rhs = "x - y" and xv = "x:num" and yv = "y:num" and zv = "z:num" in
  let sprove x y =
    let xn = term_of_int x and yn = term_of_int y in
    let lhs = mk_comb(mk_comb(minusop,xn),yn) in
    let pat = mk_comb(mk_comb(eqop,lhs),rhs) in
    letref w, z, wn, zn, th = x, y, xn, yn, REFL lhs in
    while (z > 0) do
     (th :=
       let tran = TRANS (SUBST [(num_CONV wn,xv); (num_CONV zn,yv)] pat th) in
       tran (INST [((wn := term_of_int(w:=w-1)),xv);
                   ((zn := term_of_int(z:=z-1)),yv)] step));
    TRANS th (SPEC wn base1) in
  \tm. (let [xn;yn] = dest_op minusop tm in
        let x = int_of_term xn and y = int_of_term yn in
        if x < y then MP (INST[(xn,xv);(yn,yv)] subm)
                         (provelt x y) else
        if y = 0 then SPEC xn base1 else
        if x = y then SPEC xn base2 else
        if y < (x - y) then sprove x y
        else
          let z = x - y in let zn = term_of_int z in
          MP (MP
               (INST[(xn,xv);(yn,yv);(zn,zv)] swap)
               (sprove x z))
             (EQ_MP (AP_TERM lop (SYM (num_CONV yn)))
                    (SPEC (term_of_int (y-1)) less0)))
       ? failwith `SBC_CONV`;;

%-----------------------------------------------------------------------%
% ADD_CONV "[x] + [y]" = |- [x] + [y] = [x+y]                           %
%-----------------------------------------------------------------------%

let ADD_CONV =
  let subadd = PROVE
    ("(z - y = x) ==> 0 < x ==> (x + y = z)",
     DISCH_THEN (SUBST1_TAC o SYM) THEN
     PURE_ONCE_REWRITE_TAC[SYM (SPEC_ALL (theorem `arithmetic` `SUB_LESS_0`))]
     THEN DISCH_THEN (SUBST1_TAC o MATCH_MP (theorem `arithmetic` `SUB_ADD`) o
     MATCH_MP (theorem `arithmetic` `LESS_IMP_LESS_OR_EQ`)) THEN REFL_TAC)
  and [raz; laz] = CONJUNCTS(PROVE("(!x. x + 0 = x) /\ (!y. 0 + y = y)",
    REWRITE_TAC[definition `arithmetic` `ADD`; theorem `arithmetic` `ADD_0`]))
  and lo = PROVE("!n. 0 < SUC n",MATCH_ACCEPT_TAC(theorem `prim_rec` `LESS_0`))
  and plusop = "$+" and minusop = "$-" and lop = "$< 0"
  and xv = "x:num" and yv = "y:num" and zv = "z:num" in
  \tm. (let [xn;yn] = dest_op plusop tm in
        let x = int_of_term xn and y = int_of_term yn in
        if x = 0 then SPEC yn laz else
        if y = 0 then SPEC xn raz else
        let zn = term_of_int(x + y) in
        let p1 = SBC_CONV (mk_comb(mk_comb(minusop,zn),yn))
        and p2 = EQ_MP (AP_TERM lop (SYM (num_CONV xn)))
                       (SPEC (term_of_int (int_of_term xn - 1)) lo)
        and chain = INST[(xn,xv); (yn,yv); (zn,zv)] subadd in
        MP (MP chain p1) p2)
       ? failwith `ADD_CONV`;;

%-----------------------------------------------------------------------%
% MUL_CONV "[x] * [y]" = |- [x] * [y] = [x*y]                           %
%-----------------------------------------------------------------------%

let MUL_CONV =
  let [mbase; mstep; mzero] = CONJUNCTS (PROVE
   ("(!y. 0 * y = 0) /\ (!y x. (SUC x) * y = (x * y) + y) /\ (!n. n * 0 = 0)",
    REWRITE_TAC[definition `arithmetic` `MULT`;
                theorem `arithmetic` `MULT_0`]))
  and msym = PROVE("!m n. m * n = n * m",
    MATCH_ACCEPT_TAC (theorem `arithmetic` `MULT_SYM`))
  and multop = "$*" and xv = "x:num" and pv = "p:num" and zero = "0"
  and plusop = "$+" and eqop = "=:num->num->bool" in
  let mulpr x y =
    let xn = term_of_int x and yn = term_of_int y in
    let step = SPEC yn mstep in
      let pat = mk_comb(mk_comb(eqop,(mk_comb(mk_comb(multop,xv),yn))),
                        mk_comb(mk_comb(plusop,pv),yn)) in
      letref w, wn, p, th = 0, zero, 0, SPEC yn mbase in
      while w < x do
        (th := TRANS
                 (let st = SPEC wn step in
                  SUBST [(SYM (num_CONV(wn:=term_of_int(w:=w+1))),xv);
                         (th,pv)] pat st)
                 (ADD_CONV (mk_comb(mk_comb(plusop,(term_of_int p)),yn)));
         p := p + y);
      th in
  \tm. (let [xn;yn] = dest_op multop tm in
        let x = int_of_term xn and y = int_of_term yn in
        if x = 0 then SPEC yn mbase else
        if y = 0 then SPEC xn mzero else
        if x < y then mulpr x y
        else TRANS (SPECL [xn;yn] msym) (mulpr y x))
       ? failwith `MUL_CONV`;;

%-----------------------------------------------------------------------%
% EXP_CONV "[x] EXP [y]" = |- [x] EXP [y] = [x**y]                      %
%-----------------------------------------------------------------------%

let EXP_CONV =
  let [ebase; estep] = CONJUNCTS (PROVE
    ("(!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n))",
     REWRITE_TAC[definition `arithmetic` `EXP`]))
  and expop = "EXP" and multop = "$*" and zero = "0" and ev = "e:num"
  and eqop = "$=:num->num->bool" and yv = "y:num" in
  \tm. (let [xn;yn] = dest_op expop tm in
        let x = int_of_term xn and y = int_of_term yn
        and step = SPEC xn estep in
        let pat = mk_comb(mk_comb(eqop,mk_comb(mk_comb(expop,xn),yv)),
                          mk_comb(mk_comb(multop,xn),ev)) in
        letref z, zn, e, th = 0, zero, 1, SPEC xn ebase in
        while z < y do
         (th := TRANS
                  (let st = SPEC zn step in
                   SUBST [(SYM (num_CONV(zn:=term_of_int(z:=z+1))),yv);
                          (th,ev)] pat st)
                  (MUL_CONV (mk_comb(mk_comb(multop,xn),term_of_int e)));
          e := x * e);
        th)
       ? failwith `EXP_CONV`;;

%-----------------------------------------------------------------------%
% DIV_CONV "[x] DIV [y]" = |- [x] DIV [y] = [x div y]                   %
%-----------------------------------------------------------------------%

let DIV_CONV =
 let divt = PROVE("(q * y = p) ==> (p + r = x) ==> (r < y) ==> (x DIV y = q)",
   REPEAT DISCH_TAC THEN MATCH_MP_TAC (theorem `arithmetic` `DIV_UNIQUE`) THEN
   EXISTS_TAC "r:num" THEN ASM_REWRITE_TAC[])
 and divop = "$DIV" and multop = "$*" and plusop = "$+"
 and xv,yv,pv,qv,rv = "x:num","y:num","p:num","q:num","r:num" in
  \tm. (let [xn;yn] = dest_op divop tm in
        let x = int_of_term xn and y = int_of_term yn in
        let q = x / y in
        let p = q * y in
        let r = x - p in
        let pn = term_of_int p and qn = term_of_int q and rn = term_of_int r in
        let p1 = MUL_CONV (mk_comb(mk_comb(multop,qn),yn))
        and p2 = ADD_CONV (mk_comb(mk_comb(plusop,pn),rn))
        and p3 = provelt r y
        and chain = INST[(xn,xv); (yn,yv); (pn,pv); (qn,qv); (rn,rv)] divt
        in MP (MP (MP chain p1) p2) p3)
       ? failwith `DIV_CONV`;;

%-----------------------------------------------------------------------%
% MOD_CONV "[x] MOD [y]" = |- [x] MOD [y] = [x mod y]                   %
%-----------------------------------------------------------------------%

let MOD_CONV =
 let modt = PROVE("(q * y = p) ==> (p + r = x) ==> (r < y) ==> (x MOD y = r)",
   REPEAT DISCH_TAC THEN MATCH_MP_TAC (theorem `arithmetic` `MOD_UNIQUE`) THEN
   EXISTS_TAC "q:num" THEN ASM_REWRITE_TAC[])
 and modop = "$MOD" and multop = "$*" and plusop = "$+"
 and xv,yv,pv,qv,rv = "x:num","y:num","p:num","q:num","r:num" in
  \tm. (let [xn;yn] = dest_op modop tm in
        let x = int_of_term xn and y = int_of_term yn in
        let q = x / y in
        let p = q * y in
        let r = x - p in
        let pn = term_of_int p and qn = term_of_int q and rn = term_of_int r in
        let p1 = MUL_CONV (mk_comb(mk_comb(multop,qn),yn))
        and p2 = ADD_CONV (mk_comb(mk_comb(plusop,pn),rn))
        and p3 = provelt r y
        and chain = INST[(xn,xv); (yn,yv); (pn,pv); (qn,qv); (rn,rv)] modt
        in MP (MP (MP chain p1) p2) p3)
       ? failwith `MOD_CONV`;;