/usr/share/hol88-2.02.19940316/Library/reduce/arithconv.ml is in hol88-library-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | %******************************************************************************
** LIBRARY: reduce (part II) **
** **
** DESCRIPTION: Conversions to reduce arithmetic constant expressions **
** **
** AUTHOR: John Harrison **
** University of Cambridge Computer Laboratory **
** New Museums Site **
** Pembroke Street **
** Cambridge CB2 3QG **
** England. **
** **
** jrh@cl.cam.ac.uk **
** **
** DATE: 18th May 1991 **
******************************************************************************%
%-----------------------------------------------------------------------%
% dest_op - Split application down spine, checking head operator %
%-----------------------------------------------------------------------%
let dest_op op tm = snd ((assert (curry $= op) # I) (strip_comb tm));;
%-----------------------------------------------------------------------%
% term_of_int - Convert ML integer to object level numeric constant %
%-----------------------------------------------------------------------%
let term_of_int =
let ty = ":num" in
\n. mk_const(string_of_int n, ty);;
%-----------------------------------------------------------------------%
% int_of_term - Convert object level numeric constant to ML integer %
%-----------------------------------------------------------------------%
let int_of_term =
int_of_string o fst o dest_const;;
%-----------------------------------------------------------------------%
% provelt x y = |- [x] < [y], if true, else undefined. %
%-----------------------------------------------------------------------%
let provelt =
let ltstep = PROVE("!x. (z = SUC y) ==> (x < y) ==> (x < z)",
GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_SUC`))
and ltbase = PROVE("(y = SUC x) ==> (x < y)",
DISCH_THEN SUBST1_TAC THEN
MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_SUC_REFL`))
and bistep = PROVE("(SUC x < SUC y) = (x < y)",
MATCH_ACCEPT_TAC (theorem `arithmetic` `LESS_MONO_EQ`))
and bibase = PROVE("!x. 0 < (SUC x)",
MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_0`))
and ltop = "$<" and eqop = "$=:bool->bool->bool" and rhs = "x < y"
and xv = "x:num" and yv = "y:num" and zv = "z:num" and Lo = "$< 0" in
\x y. let xn = term_of_int x and yn = term_of_int y in
if 4*(y - x) < 5*x then
let x' = x + 1 in let xn' = term_of_int x' in
let step = SPEC xn ltstep in
letref z,zn,zn',th = x',xn',xn', MP (INST [(xn,xv);(xn',yv)] ltbase)
(num_CONV xn') in
while z < y do
(zn':=term_of_int(z:=z+1);
th := MP (MP (INST [(zn,yv); (zn',zv)] step) (num_CONV zn')) th;
zn:=zn');
th
else
let lhs = mk_comb(mk_comb(ltop,xn),yn) in
let pat = mk_comb(mk_comb(eqop,lhs),rhs) in
letref w, z, wn, zn, th = x, y, xn, yn, REFL lhs in
while w > 0 do
(th :=
let tran = TRANS (SUBST [(num_CONV wn,xv); (num_CONV zn,yv)] pat th)
in tran (INST[((wn:=term_of_int(w:=w-1)),xv);
((zn:=term_of_int(z:=z-1)),yv)] bistep));
EQ_MP (SYM (TRANS th (AP_TERM Lo (num_CONV zn))))
(SPEC (term_of_int(z-1)) bibase);;
%-----------------------------------------------------------------------%
% NEQ_CONV "[x] = [y]" = |- ([x] = [y]) = [x=y -> T | F] %
%-----------------------------------------------------------------------%
let NEQ_CONV =
let eq1 = PROVE
("(x < y) ==> ((x = y) = F)",
ONCE_REWRITE_TAC[] THEN
MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_NOT_EQ`))
and eq2 = PROVE
("(y < x) ==> ((x = y) = F)",
ONCE_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
MATCH_ACCEPT_TAC (theorem `prim_rec` `LESS_NOT_EQ`))
and neqop = "=:num->num->bool" and xv = "x:num" and yv = "y:num" in
\tm. (let [xn;yn] = dest_op neqop tm in
let x = int_of_term xn and y = int_of_term yn in
if x = y then EQT_INTRO (REFL xn) else
if x < y then MP (INST [(xn,xv);(yn,yv)] eq1)
(provelt x y)
else MP (INST [(xn,xv);(yn,yv)] eq2)
(provelt y x))
? failwith `NEQ_CONV`;;
%-----------------------------------------------------------------------%
% LT_CONV "[x] < [y]" = |- ([x] < [y]) = [x<y -> T | F] %
%-----------------------------------------------------------------------%
let LT_CONV =
let lt1 = PROVE("!x. (x < x) = F",
REWRITE_TAC[theorem `prim_rec` `LESS_REFL`])
and lt2 = PROVE("(y < x) ==> ((x < y) = F)",
PURE_ONCE_REWRITE_TAC[EQ_CLAUSES] THEN REPEAT DISCH_TAC THEN
IMP_RES_TAC (theorem `arithmetic` `LESS_ANTISYM`))
and ltop = "$<" and xv = "x:num" and yv = "y:num" in
\tm. (let [xn;yn] = dest_op ltop tm in
let x = int_of_term xn and y = int_of_term yn in
if x < y then EQT_INTRO (provelt x y) else
if x = y then SPEC xn lt1
else MP (INST [(xn,xv);(yn,yv)] lt2)
(provelt y x))
? failwith `LT_CONV`;;
%-----------------------------------------------------------------------%
% GT_CONV "[x] > [y]" = |- ([x] > [y]) = [x>y -> T | F] %
%-----------------------------------------------------------------------%
let GT_CONV =
let gt1 = PROVE("!x. (x > x) = F",
REWRITE_TAC[theorem `prim_rec` `LESS_REFL`;
definition `arithmetic` `GREATER`])
and gt2 = PROVE("(x < y) ==> ((x > y) = F)",
PURE_REWRITE_TAC
[EQ_CLAUSES; definition `arithmetic` `GREATER`]
THEN REPEAT DISCH_TAC THEN
IMP_RES_TAC (theorem `arithmetic` `LESS_ANTISYM`))
and gt3 = PROVE("(y < x) ==> ((x > y) = T)",
DISCH_THEN (SUBST1_TAC o SYM o EQT_INTRO) THEN
MATCH_ACCEPT_TAC (definition `arithmetic` `GREATER`))
and gtop = "$>" and xv = "x:num" and yv = "y:num" in
\tm. (let [xn;yn] = dest_op gtop tm in
let x = int_of_term xn and y = int_of_term yn in
if x = y then SPEC xn gt1 else
if x < y then MP (INST [(xn,xv);(yn,yv)] gt2)
(provelt x y)
else MP (INST [(xn,xv); (yn,yv)] gt3)
(provelt y x))
? failwith `GT_CONV`;;
%-----------------------------------------------------------------------%
% LE_CONV "[x] <= [y]" = |- ([x]<=> [y]) = [x<=y -> T | F] %
%-----------------------------------------------------------------------%
let LE_CONV =
let le1 = PROVE("!x. (x <= x) = T",
REWRITE_TAC[theorem `arithmetic` `LESS_EQ_REFL`])
and le2 = PROVE("(x < y) ==> ((x <= y) = T)",
DISCH_THEN (ACCEPT_TAC o EQT_INTRO o MATCH_MP
(theorem `arithmetic` `LESS_IMP_LESS_OR_EQ`)))
and le3 = PROVE("(y < x) ==> ((x <= y) = F)",
PURE_ONCE_REWRITE_TAC[EQ_CLAUSES] THEN
REPEAT DISCH_TAC THEN
IMP_RES_TAC (theorem `arithmetic` `LESS_EQ_ANTISYM`))
and leop = "$<=" and xv = "x:num" and yv = "y:num" in
\tm. (let [xn;yn] = dest_op leop tm in
let x = int_of_term xn and y = int_of_term yn in
if x = y then SPEC xn le1 else
if x < y then MP (INST [(xn,xv);(yn,yv)] le2)
(provelt x y)
else MP (INST [(xn,xv);(yn,yv)] le3)
(provelt y x))
? failwith `LE_CONV`;;
%-----------------------------------------------------------------------%
% GE_CONV "[x] >= [y]" = |- ([x] >= [y]) = [x>=y -> T | F] %
%-----------------------------------------------------------------------%
let GE_CONV =
let ge1 = PROVE("!x. (x >= x) = T",
REWRITE_TAC[definition `arithmetic` `GREATER_OR_EQ`])
and ge2 = PROVE("(y < x) ==> ((x >= y) = T)",
DISCH_TAC THEN
ASM_REWRITE_TAC[definition `arithmetic` `GREATER_OR_EQ`;
definition `arithmetic` `GREATER`])
and ge3 = PROVE("(x < y) ==> ((x >= y) = F)",
PURE_REWRITE_TAC (EQ_CLAUSES. (map (definition `arithmetic`)
[`GREATER_OR_EQ`; `GREATER`])) THEN
PURE_ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
REPEAT STRIP_TAC THEN IMP_RES_TAC (PURE_REWRITE_RULE
[definition `arithmetic` `LESS_OR_EQ`]
(theorem `arithmetic` `LESS_EQ_ANTISYM`)))
and geop = "$>=" and xv = "x:num" and yv = "y:num" in
\tm. (let [xn;yn] = dest_op geop tm in
let x = int_of_term xn and y = int_of_term yn in
if x = y then SPEC xn ge1 else
if x < y then MP (INST [(xn,xv);(yn,yv)] ge3)
(provelt x y)
else MP (INST [(xn,xv);(yn,yv)] ge2)
(provelt y x))
? failwith `GE_CONV`;;
%-----------------------------------------------------------------------%
% SUC_CONV "SUC [x]" = |- SUC [x] = [x+1] %
%-----------------------------------------------------------------------%
let SUC_CONV =
let sucop = "SUC" in
\tm. (let [xn] = dest_op sucop tm in
SYM (num_CONV (term_of_int (1 + (int_of_term xn)))))
? failwith `SUC_CONV`;;
%-----------------------------------------------------------------------%
% PRE_CONV "PRE [n]" = |- PRE [n] = [n-1] %
%-----------------------------------------------------------------------%
let PRE_CONV =
let preop = "PRE" and zero = "0" and xv = "x:num" and yv = "y:num"
and spree = PROVE("(x = SUC y) ==> (PRE x = y)",
DISCH_TAC THEN ASM_REWRITE_TAC[theorem `prim_rec` `PRE`])
and szero = PROVE("PRE 0 = 0",REWRITE_TAC[theorem `prim_rec` `PRE`]) in
\tm. (let [xn] = dest_op preop tm in
if xn = zero then szero
else MP (INST[(xn,xv);(term_of_int((int_of_term xn) - 1),yv)] spree)
(num_CONV xn))
? failwith `PRE_CONV`;;
%-----------------------------------------------------------------------%
% SBC_CONV "[x] - [y]" = |- ([x] - [y]) = [x - y] %
%-----------------------------------------------------------------------%
let SBC_CONV =
let subm = PROVE("(x < y) ==> (x - y = 0)",
PURE_ONCE_REWRITE_TAC[theorem `arithmetic` `SUB_EQ_0`]
THEN MATCH_ACCEPT_TAC
(theorem `arithmetic` `LESS_IMP_LESS_OR_EQ`))
and step = PROVE("(SUC x) - (SUC y) = x - y",
MATCH_ACCEPT_TAC (theorem `arithmetic` `SUB_MONO_EQ`))
and base1 = PROVE("!x. x - 0 = x",
REWRITE_TAC[theorem `arithmetic` `SUB_0`])
and base2 = PROVE("!x. x - x = 0",
MATCH_ACCEPT_TAC(theorem `arithmetic` `SUB_EQUAL_0`))
and less0 = PROVE("!x. 0 < SUC x",
REWRITE_TAC[theorem `prim_rec` `LESS_0`])
and swap = PROVE("(x - z = y) ==> (0 < y) ==> (x - y = z)",
let [sub_less_0; sub_sub; less_imp_less_or_eq; add_sym; add_sub] =
map (theorem `arithmetic`)
[`SUB_LESS_0`; `SUB_SUB`; `LESS_IMP_LESS_OR_EQ`; `ADD_SYM`; `ADD_SUB`] in
DISCH_THEN (SUBST1_TAC o SYM) THEN PURE_ONCE_REWRITE_TAC
[SYM (SPEC_ALL sub_less_0)] THEN DISCH_THEN (SUBST1_TAC o SPEC "x:num" o
MATCH_MP sub_sub o MATCH_MP less_imp_less_or_eq) THEN PURE_ONCE_REWRITE_TAC
[add_sym] THEN PURE_ONCE_REWRITE_TAC[add_sub] THEN REFL_TAC)
and lop = "$< 0" and minusop = "$-" and eqop = "$=:num->num->bool"
and rhs = "x - y" and xv = "x:num" and yv = "y:num" and zv = "z:num" in
let sprove x y =
let xn = term_of_int x and yn = term_of_int y in
let lhs = mk_comb(mk_comb(minusop,xn),yn) in
let pat = mk_comb(mk_comb(eqop,lhs),rhs) in
letref w, z, wn, zn, th = x, y, xn, yn, REFL lhs in
while (z > 0) do
(th :=
let tran = TRANS (SUBST [(num_CONV wn,xv); (num_CONV zn,yv)] pat th) in
tran (INST [((wn := term_of_int(w:=w-1)),xv);
((zn := term_of_int(z:=z-1)),yv)] step));
TRANS th (SPEC wn base1) in
\tm. (let [xn;yn] = dest_op minusop tm in
let x = int_of_term xn and y = int_of_term yn in
if x < y then MP (INST[(xn,xv);(yn,yv)] subm)
(provelt x y) else
if y = 0 then SPEC xn base1 else
if x = y then SPEC xn base2 else
if y < (x - y) then sprove x y
else
let z = x - y in let zn = term_of_int z in
MP (MP
(INST[(xn,xv);(yn,yv);(zn,zv)] swap)
(sprove x z))
(EQ_MP (AP_TERM lop (SYM (num_CONV yn)))
(SPEC (term_of_int (y-1)) less0)))
? failwith `SBC_CONV`;;
%-----------------------------------------------------------------------%
% ADD_CONV "[x] + [y]" = |- [x] + [y] = [x+y] %
%-----------------------------------------------------------------------%
let ADD_CONV =
let subadd = PROVE
("(z - y = x) ==> 0 < x ==> (x + y = z)",
DISCH_THEN (SUBST1_TAC o SYM) THEN
PURE_ONCE_REWRITE_TAC[SYM (SPEC_ALL (theorem `arithmetic` `SUB_LESS_0`))]
THEN DISCH_THEN (SUBST1_TAC o MATCH_MP (theorem `arithmetic` `SUB_ADD`) o
MATCH_MP (theorem `arithmetic` `LESS_IMP_LESS_OR_EQ`)) THEN REFL_TAC)
and [raz; laz] = CONJUNCTS(PROVE("(!x. x + 0 = x) /\ (!y. 0 + y = y)",
REWRITE_TAC[definition `arithmetic` `ADD`; theorem `arithmetic` `ADD_0`]))
and lo = PROVE("!n. 0 < SUC n",MATCH_ACCEPT_TAC(theorem `prim_rec` `LESS_0`))
and plusop = "$+" and minusop = "$-" and lop = "$< 0"
and xv = "x:num" and yv = "y:num" and zv = "z:num" in
\tm. (let [xn;yn] = dest_op plusop tm in
let x = int_of_term xn and y = int_of_term yn in
if x = 0 then SPEC yn laz else
if y = 0 then SPEC xn raz else
let zn = term_of_int(x + y) in
let p1 = SBC_CONV (mk_comb(mk_comb(minusop,zn),yn))
and p2 = EQ_MP (AP_TERM lop (SYM (num_CONV xn)))
(SPEC (term_of_int (int_of_term xn - 1)) lo)
and chain = INST[(xn,xv); (yn,yv); (zn,zv)] subadd in
MP (MP chain p1) p2)
? failwith `ADD_CONV`;;
%-----------------------------------------------------------------------%
% MUL_CONV "[x] * [y]" = |- [x] * [y] = [x*y] %
%-----------------------------------------------------------------------%
let MUL_CONV =
let [mbase; mstep; mzero] = CONJUNCTS (PROVE
("(!y. 0 * y = 0) /\ (!y x. (SUC x) * y = (x * y) + y) /\ (!n. n * 0 = 0)",
REWRITE_TAC[definition `arithmetic` `MULT`;
theorem `arithmetic` `MULT_0`]))
and msym = PROVE("!m n. m * n = n * m",
MATCH_ACCEPT_TAC (theorem `arithmetic` `MULT_SYM`))
and multop = "$*" and xv = "x:num" and pv = "p:num" and zero = "0"
and plusop = "$+" and eqop = "=:num->num->bool" in
let mulpr x y =
let xn = term_of_int x and yn = term_of_int y in
let step = SPEC yn mstep in
let pat = mk_comb(mk_comb(eqop,(mk_comb(mk_comb(multop,xv),yn))),
mk_comb(mk_comb(plusop,pv),yn)) in
letref w, wn, p, th = 0, zero, 0, SPEC yn mbase in
while w < x do
(th := TRANS
(let st = SPEC wn step in
SUBST [(SYM (num_CONV(wn:=term_of_int(w:=w+1))),xv);
(th,pv)] pat st)
(ADD_CONV (mk_comb(mk_comb(plusop,(term_of_int p)),yn)));
p := p + y);
th in
\tm. (let [xn;yn] = dest_op multop tm in
let x = int_of_term xn and y = int_of_term yn in
if x = 0 then SPEC yn mbase else
if y = 0 then SPEC xn mzero else
if x < y then mulpr x y
else TRANS (SPECL [xn;yn] msym) (mulpr y x))
? failwith `MUL_CONV`;;
%-----------------------------------------------------------------------%
% EXP_CONV "[x] EXP [y]" = |- [x] EXP [y] = [x**y] %
%-----------------------------------------------------------------------%
let EXP_CONV =
let [ebase; estep] = CONJUNCTS (PROVE
("(!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n))",
REWRITE_TAC[definition `arithmetic` `EXP`]))
and expop = "EXP" and multop = "$*" and zero = "0" and ev = "e:num"
and eqop = "$=:num->num->bool" and yv = "y:num" in
\tm. (let [xn;yn] = dest_op expop tm in
let x = int_of_term xn and y = int_of_term yn
and step = SPEC xn estep in
let pat = mk_comb(mk_comb(eqop,mk_comb(mk_comb(expop,xn),yv)),
mk_comb(mk_comb(multop,xn),ev)) in
letref z, zn, e, th = 0, zero, 1, SPEC xn ebase in
while z < y do
(th := TRANS
(let st = SPEC zn step in
SUBST [(SYM (num_CONV(zn:=term_of_int(z:=z+1))),yv);
(th,ev)] pat st)
(MUL_CONV (mk_comb(mk_comb(multop,xn),term_of_int e)));
e := x * e);
th)
? failwith `EXP_CONV`;;
%-----------------------------------------------------------------------%
% DIV_CONV "[x] DIV [y]" = |- [x] DIV [y] = [x div y] %
%-----------------------------------------------------------------------%
let DIV_CONV =
let divt = PROVE("(q * y = p) ==> (p + r = x) ==> (r < y) ==> (x DIV y = q)",
REPEAT DISCH_TAC THEN MATCH_MP_TAC (theorem `arithmetic` `DIV_UNIQUE`) THEN
EXISTS_TAC "r:num" THEN ASM_REWRITE_TAC[])
and divop = "$DIV" and multop = "$*" and plusop = "$+"
and xv,yv,pv,qv,rv = "x:num","y:num","p:num","q:num","r:num" in
\tm. (let [xn;yn] = dest_op divop tm in
let x = int_of_term xn and y = int_of_term yn in
let q = x / y in
let p = q * y in
let r = x - p in
let pn = term_of_int p and qn = term_of_int q and rn = term_of_int r in
let p1 = MUL_CONV (mk_comb(mk_comb(multop,qn),yn))
and p2 = ADD_CONV (mk_comb(mk_comb(plusop,pn),rn))
and p3 = provelt r y
and chain = INST[(xn,xv); (yn,yv); (pn,pv); (qn,qv); (rn,rv)] divt
in MP (MP (MP chain p1) p2) p3)
? failwith `DIV_CONV`;;
%-----------------------------------------------------------------------%
% MOD_CONV "[x] MOD [y]" = |- [x] MOD [y] = [x mod y] %
%-----------------------------------------------------------------------%
let MOD_CONV =
let modt = PROVE("(q * y = p) ==> (p + r = x) ==> (r < y) ==> (x MOD y = r)",
REPEAT DISCH_TAC THEN MATCH_MP_TAC (theorem `arithmetic` `MOD_UNIQUE`) THEN
EXISTS_TAC "q:num" THEN ASM_REWRITE_TAC[])
and modop = "$MOD" and multop = "$*" and plusop = "$+"
and xv,yv,pv,qv,rv = "x:num","y:num","p:num","q:num","r:num" in
\tm. (let [xn;yn] = dest_op modop tm in
let x = int_of_term xn and y = int_of_term yn in
let q = x / y in
let p = q * y in
let r = x - p in
let pn = term_of_int p and qn = term_of_int q and rn = term_of_int r in
let p1 = MUL_CONV (mk_comb(mk_comb(multop,qn),yn))
and p2 = ADD_CONV (mk_comb(mk_comb(plusop,pn),rn))
and p3 = provelt r y
and chain = INST[(xn,xv); (yn,yv); (pn,pv); (qn,qv); (rn,rv)] modt
in MP (MP (MP chain p1) p2) p3)
? failwith `MOD_CONV`;;
|