/usr/share/hol88-2.02.19940316/Library/reduce/boolconv.ml is in hol88-library-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | %******************************************************************************
** LIBRARY: reduce (Part I) **
** **
** DESCRIPTION: Conversions for reducing boolean expressions. **
** **
** AUTHOR: John Harrison **
** University of Cambridge Computer Laboratory **
** New Museums Site **
** Pembroke Street **
** Cambridge CB2 3QG **
** England. **
** **
** jrh@cl.cam.ac.uk **
** **
** DATE: 18th May 1991 **
******************************************************************************%
%-----------------------------------------------------------------------%
% dest_op - Split application down spine, checking head operator %
%-----------------------------------------------------------------------%
let dest_op op tm = snd ((assert (curry $= op) # I) (strip_comb tm));;
%-----------------------------------------------------------------------%
% NOT_CONV "~F" = |- ~F = T %
% NOT_CONV "~T" = |- ~T = F %
% NOT_CONV "~~t" = |- ~~t = t %
%-----------------------------------------------------------------------%
let NOT_CONV =
let [c1;c2;c3] = CONJUNCTS
(PROVE("(~T = F) /\ (~F = T) /\ (!t. ~~t = t)",
REWRITE_TAC[NOT_CLAUSES]))
and T = "T" and F = "F" and notop = "$~" in
\tm. (let [xn] = dest_op notop tm in
if xn = T then c1 else
if xn = F then c2
else let [xn] = dest_op notop xn in
SPEC xn c3)
? failwith `NOT_CONV`;;
%-----------------------------------------------------------------------%
% AND_CONV "T /\ t" = |- T /\ t = t %
% AND_CONV "t /\ T" = |- t /\ T = t %
% AND_CONV "F /\ t" = |- F /\ t = F %
% AND_CONV "t /\ F" = |- t /\ F = F %
% AND_CONV "t /\ t" = |- t /\ t = t %
%-----------------------------------------------------------------------%
let AND_CONV =
let [c1;c2;c3;c4;c5] = CONJUNCTS
(PROVE("(!t. T /\ t = t) /\ (!t. t /\ T = t) /\ (!t. F /\ t = F) /\
(!t. t /\ F = F) /\ (!t. t /\ t = t)",REWRITE_TAC[AND_CLAUSES]))
and T = "T" and F = "F" and andop = "$/\" and zv = "z:bool"
and beqop = "=:bool->bool->bool" in
\tm. (let [xn;yn] = dest_op andop tm in
if xn = T then SPEC yn c1 else
if yn = T then SPEC xn c2 else
if xn = F then SPEC yn c3 else
if yn = F then SPEC xn c4 else
if xn = yn then SPEC xn c5 else
if aconv xn yn then
SUBST [(ALPHA xn yn,zv)]
(mk_comb(mk_comb(beqop,mk_comb(mk_comb(andop,xn),zv)),xn))
(SPEC xn c5)
else fail)
? failwith `AND_CONV`;;
%-----------------------------------------------------------------------%
% OR_CONV "T \/ t" = |- T \/ t = T %
% OR_CONV "t \/ T" = |- t \/ T = T %
% OR_CONV "F \/ t" = |- F \/ t = t %
% OR_CONV "t \/ F" = |- t \/ F = t %
% OR_CONV "t \/ t" = |- t \/ t = t %
%-----------------------------------------------------------------------%
let OR_CONV =
let [c1;c2;c3;c4;c5] = CONJUNCTS
(PROVE("(!t. T \/ t = T) /\ (!t. t \/ T = T) /\ (!t. F \/ t = t) /\
(!t. t \/ F = t) /\ (!t. t \/ t = t)",REWRITE_TAC[OR_CLAUSES]))
and T = "T" and F = "F" and orop = "$\/" and zv = "z:bool"
and beqop = "=:bool->bool->bool" in
\tm. (let [xn;yn] = dest_op orop tm in
if xn = T then SPEC yn c1 else
if yn = T then SPEC xn c2 else
if xn = F then SPEC yn c3 else
if yn = F then SPEC xn c4 else
if xn = yn then SPEC xn c5 else
if aconv xn yn then
SUBST [(ALPHA xn yn,zv)]
(mk_comb(mk_comb(beqop,mk_comb(mk_comb(orop,xn),zv)),xn))
(SPEC xn c5)
else fail)
? failwith `OR_CONV`;;
%-----------------------------------------------------------------------%
% IMP_CONV "T ==> t" = |- T ==> t = t %
% IMP_CONV "t ==> T" = |- t ==> T = T %
% IMP_CONV "F ==> t" = |- F ==> t = T %
% IMP_CONV "t ==> F" = |- t ==> F = ~t %
% IMP_CONV "t ==> t" = |- t ==> t = T %
%-----------------------------------------------------------------------%
let IMP_CONV =
let [c1;c2;c3;c4;c5] = CONJUNCTS
(PROVE("(!t. (T ==> t) = t) /\ (!t. (t ==> T) = T) /\
(!t. (F ==> t) = T) /\ (!t. (t ==> F) = ~t) /\
(!t. (t ==> t) = T)",REWRITE_TAC[IMP_CLAUSES]))
and T = "T" and F = "F" and impop = "$==>" and zv = "z:bool"
and beqop = "=:bool->bool->bool" in
\tm. (let [xn;yn] = dest_op impop tm in
if xn = T then SPEC yn c1 else
if yn = T then SPEC xn c2 else
if xn = F then SPEC yn c3 else
if yn = F then SPEC xn c4 else
if xn = yn then SPEC xn c5 else
if aconv xn yn then
SUBST [(ALPHA xn yn,zv)]
(mk_comb(mk_comb(beqop,mk_comb(mk_comb(impop,xn),zv)),T))
(SPEC xn c5)
else fail)
? failwith `IMP_CONV`;;
%-----------------------------------------------------------------------%
% BEQ_CONV "T = t" = |- T = t = t %
% BEQ_CONV "t = T" = |- t = T = t %
% BEQ_CONV "F = t" = |- F = t = ~t %
% BEQ_CONV "t = F" = |- t = F = ~t %
% BEQ_CONV "t = t" = |- t = t = T %
%-----------------------------------------------------------------------%
let BEQ_CONV =
let [c1;c2;c3;c4;c5] = CONJUNCTS
(PROVE("(!t. (T = t) = t) /\ (!t. (t = T) = t) /\ (!t. (F = t) = ~t) /\
(!t. (t = F) = ~t) /\ (!t:bool. (t = t) = T)",
REWRITE_TAC[EQ_CLAUSES]))
and T = "T" and F = "F"
and beqop = "$=:bool->bool->bool" and zv = "z:bool" in
\tm. (let [xn;yn] = dest_op beqop tm in
if xn = T then SPEC yn c1 else
if yn = T then SPEC xn c2 else
if xn = F then SPEC yn c3 else
if yn = F then SPEC xn c4 else
if xn = yn then SPEC xn c5 else
if aconv xn yn then EQT_INTRO (ALPHA xn yn)
else fail)
? failwith `BEQ_CONV`;;
%-----------------------------------------------------------------------%
% COND_CONV "F => t1 | t2" = |- (T => t1 | t2) = t2 %
% COND_CONV "T => t1 | t2" = |- (T => t1 | t2) = t1 %
% COND_CONV "b => t | t = |- (b => t | t) = t %
%-----------------------------------------------------------------------%
let COND_CONV =
let [c1;c2;c3] = CONJUNCTS
(PROVE("(!t1 t2. (T => t1 | t2) = (t1:*)) /\
(!t1 t2. (F => t1 | t2) = (t2:*)) /\
(!b t. (b => t | t) = (t:*))",
REWRITE_TAC[COND_CLAUSES; COND_ID]))
and T = "T" and F = "F" and ty = ":*" in
\tm. (let (b,t1,t2) = dest_cond tm in
if b = T then SPECL[t1;t2] (INST_TYPE[(type_of t1,ty)] c1) else
if b = F then SPECL[t1;t2] (INST_TYPE[(type_of t1,ty)] c2) else
if t1 = t2 then SPECL[b;t1] (INST_TYPE[(type_of t1,ty)] c3) else
if aconv t1 t2 then
TRANS (AP_TERM (rator tm) (ALPHA t2 t1))
(SPECL [b; t1] (INST_TYPE [(type_of t1,ty)] c3))
else fail)
? failwith `COND_CONV`;;
|