This file is indexed.

/usr/share/hol88-2.02.19940316/Library/sets/gspec.ml is in hol88-library-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
% ===================================================================== %
% FILE		: gspec.ml						%
% DESCRIPTION   : Generalized set specification : {tm[xi...xn] | P}	%
%								        %
% REWRITTEN     : T Melham						%
% DATE		: 90.07.30						%
% ===================================================================== %

begin_section SET_SPEC_CONV;; 

% --------------------------------------------------------------------- %
% Local function: dest_tuple "t1,t2,...,tn" = [t1;t2;...;tnm]		%
% --------------------------------------------------------------------- %

letrec dest_tuple tm = 
       (let (x,y) = dest_pair tm in x.dest_tuple y) ? [tm];;

% --------------------------------------------------------------------- %
% Local function: MK_PAIR						%
%									%
% A call to:								%
% 									%
%     MK_PAIR "[x1;x2;...;xn]" "v:(ty1 # ty2 # ... # tyn)"		%
%									%
% returns:								%
%									%
%     |- v = FST v, FST(SND v), ..., SND(SND...(SND v))			%
% --------------------------------------------------------------------- %

letrec MK_PAIR vs v = 
       if (null (tl vs)) then (REFL v) else
       let vty = type_of v in
       let _,[ty1;ty2] = dest_type vty in
       let inst = SYM(SPEC v (INST_TYPE [ty1,":*";ty2,":**"] PAIR)) in 
       let FST,SND = dest_pair(rhs(concl inst)) in
       let thm = MK_PAIR (tl vs) SND and gv = genvar ty2 in
           SUBST [thm,gv] (mk_eq(v,mk_pair(FST,gv))) inst;;

% --------------------------------------------------------------------- %
% Local function: EXISTS_TUPLE_CONV					%
%									%
% A call to:								%
% 									%
%  EXISTS_TUPLE_CONV ["x1";...;"xn"] "?v. tm' = (\(x1,...,xn). tm) v	%  
%									%
% returns:								%
%									%
%  |- (?v. tm' = (\(x1,...,xn). tm) v ) = ?x1...xn. tm' = tm		%
% --------------------------------------------------------------------- %

let EXISTS_TUPLE_CONV =
    let EX (v,tm) th = EXISTS (mk_exists(v,subst [v,tm] (concl th)),tm) th and
        CH tm th = CHOOSE (tm,ASSUME (mk_exists(tm,hd(hyp th)))) th in
    let conv = RAND_CONV (BETA_CONV ORELSEC PAIRED_BETA_CONV) in
    \vs tm. let tup = end_itlist (curry mk_pair) vs in
            let v,body = dest_exists tm in
            let tupeq = MK_PAIR vs v in
            let asm1 = SUBST [tupeq,v] body (ASSUME body) in
            let comp = dest_tuple (rand(concl tupeq)) in
            let thm1 = itlist2 EX (vs,comp) asm1 in
            let imp1 = DISCH tm (CHOOSE (v,ASSUME tm) thm1) in
            let asm2 = ASSUME (subst [tup,v] body) in
            let thm2 = itlist CH vs (EXISTS (tm,tup) asm2) in
            let imp2 = DISCH (hd(hyp thm2)) thm2 in 
            let eq = IMP_ANTISYM_RULE imp1 imp2 in
	    let beta = conv (snd(strip_exists(rhs(concl eq)))) in
	        TRANS eq (itlist EXISTS_EQ vs beta);;

% --------------------------------------------------------------------- %
% Local function: PAIR_EQ_CONV.						%
%									%
% A call to PAIR_EQ_CONV "?x1...xn. a,b = c,T" returns:			%
%									%
%    |- (?x1...xn. a,T = b,c) = (?x1...xn. (a = b) /\ c)		%
% --------------------------------------------------------------------- %

let PAIR_EQ_CONV = 
    let EQT = el 1 (CONJUNCTS (SPEC "c:bool" EQ_CLAUSES)) in
    let PEQ = let inst = INST_TYPE [":bool",":**"] PAIR_EQ in
              let spec = SPECL ["a:*";"T";"b:*";"c:bool"] inst in
	          GENL ["a:*";"b:*";"c:bool"] (SUBS [EQT] spec) in
    \tm. let vs,body = strip_exists tm in
         let (a,T),(b,c) = (dest_pair # dest_pair) (dest_eq body) in
         let th = SPEC c (SPEC b (SPEC a (INST_TYPE [type_of a,":*"] PEQ))) in
	     itlist EXISTS_EQ vs th;;

% --------------------------------------------------------------------- %
% Local function: ELIM_EXISTS_CONV.					%
%									%
% ELIM_EXISTS_CONV "?x. (x = tm) /\ P[x]" returns:			%
%									%
%   |- (?x. x = tm /\ P[x]) = P[tm/x]					%
% --------------------------------------------------------------------- %

let ELIM_EXISTS_CONV tm = 
    let x,eq,body = (I # dest_conj)(dest_exists tm) in
    let asm1,asm2 = (SYM # I) (CONJ_PAIR (ASSUME (mk_conj(eq,body)))) in
    let imp1 = DISCH tm (CHOOSE(x,ASSUME tm) (SUBST [asm1,x] body asm2)) in
    let r = lhs eq in 
    let asm = subst [r,x] body in
    let imp2 = DISCH asm (EXISTS (tm,r) (CONJ (REFL r) (ASSUME asm))) in
        IMP_ANTISYM_RULE imp1 imp2;;


% --------------------------------------------------------------------- %
% Local function: PROVE_EXISTS.						%
%									%
% PROVE_EXISTS "?x. tm" (x not free in tm) returns:			%
%									%
%   |- ?x.tm = tm							%
% --------------------------------------------------------------------- %

let PROVE_EXISTS tm = 
    let x,body = dest_exists tm in
    let v = genvar (type_of x) in
    let imp1 = DISCH tm (CHOOSE (v,ASSUME tm) (ASSUME body)) in
    let imp2 = DISCH body (EXISTS (tm,v) (ASSUME body)) in
        IMP_ANTISYM_RULE imp1 imp2;;

% --------------------------------------------------------------------- %
% Internal function: list_variant					%
%									%
% makes variants of the variables in l2 such that they are all not in	%
% l1 and are all different.						%
% --------------------------------------------------------------------- %
letrec list_variant l1 l2 = 
       if (null l2) then [] else
           (let v = variant l1 (hd l2) in
	     (v.list_variant (v.l1) (tl l2)));;

% --------------------------------------------------------------------- %
% SET_SPEC_CONV: implements the axiom of specification for generalized	%
% set specifications.							%
%									%
% There are two cases:							%
%									%
%   1) SET_SPEC_CONV "t IN {v | p[v]}"    (v a variable, t a term)	%
% 									%
%      returns:								%
%									%
%      |- t IN {v | p[v]} = p[t/v]					%
%									%
%									%
%   2) SET_SPEC_CONV "t IN {tm[x1;...;xn] | p[x1;...xn]}"		%
%									%
%      returns:								%
%									%
%      |- t IN {tm[x1;...;xn] | p[x1;...xn]} 				%
%	     =								%
%         ?x1...xn. t = tm[x1;...;xn] /\ p[x1;...xn]			%
%									%
% Note that {t[x1,...,xm] | p[x1,...,xn]} means:			%
%									%
%   GGSPEC (\(x1,...,xn). (t[x1,...,xn], p[x1,...,xn]))			%
% --------------------------------------------------------------------- %


let SET_SPEC_CONV = 
    let check name = assert \tm.fst(dest_const tm) = name in
    let GSPEC = let th = theorem `sets` `GSPECIFICATION` in
    		let vs = fst(strip_forall(concl th)) in
		     GENL (rev vs) (SPECL vs th) in
    let RAconv = RAND_CONV o ABS_CONV in
    let conv = RAND_CONV(RAconv(RAND_CONV BETA_CONV)) in
    let conv2 = RAND_CONV (PAIR_EQ_CONV THENC PROVE_EXISTS) in
    letrec mktup tm = 
       (let x,(xs,res) = (I # mktup) (dest_abs(rand tm)) in ((x.xs),res)) ? 
       (let x,res =  (I # (fst o dest_pair)) (dest_abs tm) in [x],res) in
    \tm. (let _,[v;set] = (check `IN` # I) (strip_comb tm) in
          let _,f = (check `GSPEC` # I ) (dest_comb set) in
          let vty = type_of v and _,[uty;_] = dest_type(type_of f) in
	  let inst = SPEC v (INST_TYPE [vty,":*";uty,":**"] GSPEC) in
	  let vs,res = mktup f in 
	  if (forall ($not o (C free_in res)) vs) then
     	     let spec = CONV_RULE conv (SPEC f inst) in
     	     let thm1 = CONV_RULE conv2 spec in thm1 else
	  if (is_var res) then
	     let spec = CONV_RULE conv (SPEC f inst) in
	     let thm1 = CONV_RULE (RAND_CONV PAIR_EQ_CONV) spec in
	         TRANS thm1 (ELIM_EXISTS_CONV (rhs(concl thm1))) else
	  let spec = SPEC f inst in
	  let nvs = list_variant (frees v) vs in
	  let thm = EXISTS_TUPLE_CONV nvs (rhs(concl spec)) in
              TRANS spec (CONV_RULE (RAND_CONV PAIR_EQ_CONV) thm)) ? 
	  failwith `SET_SPEC_CONV`;;

% --------------------------------------------------------------------- %
% Bind SET_SPEC_CONV to "it".						%
% --------------------------------------------------------------------- %
SET_SPEC_CONV;;

end_section SET_SPEC_CONV;; 

% --------------------------------------------------------------------- %
% Save exported value of SET_SPEC_CONV.					%
% --------------------------------------------------------------------- %

let SET_SPEC_CONV = it;;