/usr/share/hol88-2.02.19940316/Library/sets/gspec.ml is in hol88-library-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | % ===================================================================== %
% FILE : gspec.ml %
% DESCRIPTION : Generalized set specification : {tm[xi...xn] | P} %
% %
% REWRITTEN : T Melham %
% DATE : 90.07.30 %
% ===================================================================== %
begin_section SET_SPEC_CONV;;
% --------------------------------------------------------------------- %
% Local function: dest_tuple "t1,t2,...,tn" = [t1;t2;...;tnm] %
% --------------------------------------------------------------------- %
letrec dest_tuple tm =
(let (x,y) = dest_pair tm in x.dest_tuple y) ? [tm];;
% --------------------------------------------------------------------- %
% Local function: MK_PAIR %
% %
% A call to: %
% %
% MK_PAIR "[x1;x2;...;xn]" "v:(ty1 # ty2 # ... # tyn)" %
% %
% returns: %
% %
% |- v = FST v, FST(SND v), ..., SND(SND...(SND v)) %
% --------------------------------------------------------------------- %
letrec MK_PAIR vs v =
if (null (tl vs)) then (REFL v) else
let vty = type_of v in
let _,[ty1;ty2] = dest_type vty in
let inst = SYM(SPEC v (INST_TYPE [ty1,":*";ty2,":**"] PAIR)) in
let FST,SND = dest_pair(rhs(concl inst)) in
let thm = MK_PAIR (tl vs) SND and gv = genvar ty2 in
SUBST [thm,gv] (mk_eq(v,mk_pair(FST,gv))) inst;;
% --------------------------------------------------------------------- %
% Local function: EXISTS_TUPLE_CONV %
% %
% A call to: %
% %
% EXISTS_TUPLE_CONV ["x1";...;"xn"] "?v. tm' = (\(x1,...,xn). tm) v %
% %
% returns: %
% %
% |- (?v. tm' = (\(x1,...,xn). tm) v ) = ?x1...xn. tm' = tm %
% --------------------------------------------------------------------- %
let EXISTS_TUPLE_CONV =
let EX (v,tm) th = EXISTS (mk_exists(v,subst [v,tm] (concl th)),tm) th and
CH tm th = CHOOSE (tm,ASSUME (mk_exists(tm,hd(hyp th)))) th in
let conv = RAND_CONV (BETA_CONV ORELSEC PAIRED_BETA_CONV) in
\vs tm. let tup = end_itlist (curry mk_pair) vs in
let v,body = dest_exists tm in
let tupeq = MK_PAIR vs v in
let asm1 = SUBST [tupeq,v] body (ASSUME body) in
let comp = dest_tuple (rand(concl tupeq)) in
let thm1 = itlist2 EX (vs,comp) asm1 in
let imp1 = DISCH tm (CHOOSE (v,ASSUME tm) thm1) in
let asm2 = ASSUME (subst [tup,v] body) in
let thm2 = itlist CH vs (EXISTS (tm,tup) asm2) in
let imp2 = DISCH (hd(hyp thm2)) thm2 in
let eq = IMP_ANTISYM_RULE imp1 imp2 in
let beta = conv (snd(strip_exists(rhs(concl eq)))) in
TRANS eq (itlist EXISTS_EQ vs beta);;
% --------------------------------------------------------------------- %
% Local function: PAIR_EQ_CONV. %
% %
% A call to PAIR_EQ_CONV "?x1...xn. a,b = c,T" returns: %
% %
% |- (?x1...xn. a,T = b,c) = (?x1...xn. (a = b) /\ c) %
% --------------------------------------------------------------------- %
let PAIR_EQ_CONV =
let EQT = el 1 (CONJUNCTS (SPEC "c:bool" EQ_CLAUSES)) in
let PEQ = let inst = INST_TYPE [":bool",":**"] PAIR_EQ in
let spec = SPECL ["a:*";"T";"b:*";"c:bool"] inst in
GENL ["a:*";"b:*";"c:bool"] (SUBS [EQT] spec) in
\tm. let vs,body = strip_exists tm in
let (a,T),(b,c) = (dest_pair # dest_pair) (dest_eq body) in
let th = SPEC c (SPEC b (SPEC a (INST_TYPE [type_of a,":*"] PEQ))) in
itlist EXISTS_EQ vs th;;
% --------------------------------------------------------------------- %
% Local function: ELIM_EXISTS_CONV. %
% %
% ELIM_EXISTS_CONV "?x. (x = tm) /\ P[x]" returns: %
% %
% |- (?x. x = tm /\ P[x]) = P[tm/x] %
% --------------------------------------------------------------------- %
let ELIM_EXISTS_CONV tm =
let x,eq,body = (I # dest_conj)(dest_exists tm) in
let asm1,asm2 = (SYM # I) (CONJ_PAIR (ASSUME (mk_conj(eq,body)))) in
let imp1 = DISCH tm (CHOOSE(x,ASSUME tm) (SUBST [asm1,x] body asm2)) in
let r = lhs eq in
let asm = subst [r,x] body in
let imp2 = DISCH asm (EXISTS (tm,r) (CONJ (REFL r) (ASSUME asm))) in
IMP_ANTISYM_RULE imp1 imp2;;
% --------------------------------------------------------------------- %
% Local function: PROVE_EXISTS. %
% %
% PROVE_EXISTS "?x. tm" (x not free in tm) returns: %
% %
% |- ?x.tm = tm %
% --------------------------------------------------------------------- %
let PROVE_EXISTS tm =
let x,body = dest_exists tm in
let v = genvar (type_of x) in
let imp1 = DISCH tm (CHOOSE (v,ASSUME tm) (ASSUME body)) in
let imp2 = DISCH body (EXISTS (tm,v) (ASSUME body)) in
IMP_ANTISYM_RULE imp1 imp2;;
% --------------------------------------------------------------------- %
% Internal function: list_variant %
% %
% makes variants of the variables in l2 such that they are all not in %
% l1 and are all different. %
% --------------------------------------------------------------------- %
letrec list_variant l1 l2 =
if (null l2) then [] else
(let v = variant l1 (hd l2) in
(v.list_variant (v.l1) (tl l2)));;
% --------------------------------------------------------------------- %
% SET_SPEC_CONV: implements the axiom of specification for generalized %
% set specifications. %
% %
% There are two cases: %
% %
% 1) SET_SPEC_CONV "t IN {v | p[v]}" (v a variable, t a term) %
% %
% returns: %
% %
% |- t IN {v | p[v]} = p[t/v] %
% %
% %
% 2) SET_SPEC_CONV "t IN {tm[x1;...;xn] | p[x1;...xn]}" %
% %
% returns: %
% %
% |- t IN {tm[x1;...;xn] | p[x1;...xn]} %
% = %
% ?x1...xn. t = tm[x1;...;xn] /\ p[x1;...xn] %
% %
% Note that {t[x1,...,xm] | p[x1,...,xn]} means: %
% %
% GGSPEC (\(x1,...,xn). (t[x1,...,xn], p[x1,...,xn])) %
% --------------------------------------------------------------------- %
let SET_SPEC_CONV =
let check name = assert \tm.fst(dest_const tm) = name in
let GSPEC = let th = theorem `sets` `GSPECIFICATION` in
let vs = fst(strip_forall(concl th)) in
GENL (rev vs) (SPECL vs th) in
let RAconv = RAND_CONV o ABS_CONV in
let conv = RAND_CONV(RAconv(RAND_CONV BETA_CONV)) in
let conv2 = RAND_CONV (PAIR_EQ_CONV THENC PROVE_EXISTS) in
letrec mktup tm =
(let x,(xs,res) = (I # mktup) (dest_abs(rand tm)) in ((x.xs),res)) ?
(let x,res = (I # (fst o dest_pair)) (dest_abs tm) in [x],res) in
\tm. (let _,[v;set] = (check `IN` # I) (strip_comb tm) in
let _,f = (check `GSPEC` # I ) (dest_comb set) in
let vty = type_of v and _,[uty;_] = dest_type(type_of f) in
let inst = SPEC v (INST_TYPE [vty,":*";uty,":**"] GSPEC) in
let vs,res = mktup f in
if (forall ($not o (C free_in res)) vs) then
let spec = CONV_RULE conv (SPEC f inst) in
let thm1 = CONV_RULE conv2 spec in thm1 else
if (is_var res) then
let spec = CONV_RULE conv (SPEC f inst) in
let thm1 = CONV_RULE (RAND_CONV PAIR_EQ_CONV) spec in
TRANS thm1 (ELIM_EXISTS_CONV (rhs(concl thm1))) else
let spec = SPEC f inst in
let nvs = list_variant (frees v) vs in
let thm = EXISTS_TUPLE_CONV nvs (rhs(concl spec)) in
TRANS spec (CONV_RULE (RAND_CONV PAIR_EQ_CONV) thm)) ?
failwith `SET_SPEC_CONV`;;
% --------------------------------------------------------------------- %
% Bind SET_SPEC_CONV to "it". %
% --------------------------------------------------------------------- %
SET_SPEC_CONV;;
end_section SET_SPEC_CONV;;
% --------------------------------------------------------------------- %
% Save exported value of SET_SPEC_CONV. %
% --------------------------------------------------------------------- %
let SET_SPEC_CONV = it;;
|