/usr/share/hol88-2.02.19940316/Library/trs/user.ml is in hol88-library-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | % user.ml (c) R.J.Boulton 1990 %
%----------------------------------------------------------------------------%
% Abbreviation for `find_theorems' %
let FT = find_theorems;;
% : (thmpattern -> source -> searchstep) %
% Abbreviation for `continue_search' %
let CS = continue_search;;
% : (searchstep -> searchstep) %
% Function to complete a stepwise search in one step %
% This function repeatedly attempts to continue a search, until this fails %
% because there are no more theories to search. When this happens, the list %
% of theorems found during the search is extracted and returned as result. %
letrec run_search srchstp =
% : (searchstep -> foundthm list) %
( (run_search (continue_search srchstp))
?? [`continue_search`] (show_step srchstp)
);;
% Function to perform a search in a single step %
% Given a pattern and a source, this function searches the source in one %
% step, and returns a list of theorems which match the pattern. %
let full_search thmp src = run_search (find_theorems thmp src);;
% : (thmpattern -> source -> foundthm list) %
% Function to continue a search until a match is found %
% If the found theorem list of the searchstep given is empty, the search is %
% continued. The evaluation will fail if no theorems are found before the %
% list of theories to search is exhausted. %
letrec search_until_find srchstp =
% : (searchstep -> searchstep) %
if (null o show_step) srchstp
then (search_until_find o continue_search) srchstp
else srchstp;;
% Function to continue with a search for a number of steps %
% If n is greater than zero, and the end of the search has not been reached, %
% the search is continued. %
letrec search_n_theories n srchstp =
% : (int -> searchstep -> searchstep) %
if (n < 1)
then srchstp
else case srchstp
of (Endofsearch _) . srchstp
| (Step _) . (search_n_theories (n-1) (continue_search srchstp));;
% Function to continue with a search for a number of steps, or until a %
% theorem is found. %
% If n is greater than zero, and the searchstep given does not contain any %
% theorems, the search is continued. %
letrec search_n_until_find n srchstp =
% : (int -> searchstep -> searchstep) %
if (n > 0) & ((null o show_step) srchstp)
then (search_n_until_find (n-1) (continue_search srchstp))
else srchstp;;
%----------------------------------------------------------------------------%
% Function to allow a user to set up a constructor equivalent to `Ancestors' %
% but with the a default value for the exclusion list. %
let ancestors_excluding exclusions ancestors =
% : (string list -> string list -> searchpath) %
Ancestors (ancestors,exclusions);;
% `Ancestry' is an example of the use of `ancestors_excluding' and is likely %
% to be the most useful default exclusion. %
let Ancestry = ancestors_excluding [`HOL`];;
% Function to make a `source' of the form `List ...' from a `searchstep' %
% The `foundthm list' is extracted from the `searchstep', and then `List' is %
% applied to it. %
let List_from srchstp =
% : (searchstep -> source) %
(List o show_step) srchstp;;
%----------------------------------------------------------------------------%
% Functions which can be used in place of certain `thmpattern' constructors, %
% so that the arguments can be given as the representing types of abstract %
% types rather than as the abstract types themselves. %
% `kind' and `side' are only included for consistency. %
let kind = Kind
% : (thmkind -> thmpattern) %
and thryname = Thryname o autonamepattern
% : (string -> thmpattern) %
and thmname = Thmname o autonamepattern
% : (string -> thmpattern) %
and conc = Conc o autotermpattern
% : (term -> thmpattern) %
and hypP = HypP o (map autotermpattern)
% : (term list -> thmpattern) %
and hypF = HypF o (map autotermpattern)
% : (term list -> thmpattern) %
and side = Side;;
% : (side_condition -> thmpattern) %
%----------------------------------------------------------------------------%
% `BigAnd' is an additional thmpattern constructor, useful when large %
% numbers of thmpatterns are to be ANDed together. %
letrec BigAnd thmpl =
% : (thmpattern list -> thmpattern) %
if (null thmpl)
then failwith `BigAnd -- null list prohibited`
else if (null (tl thmpl))
then (hd thmpl)
else ((hd thmpl) Andalso (BigAnd (tl thmpl)));;
% `BigOr' is an additional thmpattern constructor, useful when large %
% numbers of thmpatterns are to be ORed together. %
letrec BigOr thmpl =
% : (thmpattern list -> thmpattern) %
if (null thmpl)
then failwith `BigOr -- null list prohibited`
else if (null (tl thmpl))
then (hd thmpl)
else ((hd thmpl) Orelse (BigOr (tl thmpl)));;
%----------------------------------------------------------------------------%
|