/usr/share/hol88-2.02.19940316/Library/unwind/unwinding.ml is in hol88-library-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 | %****************************************************************************%
% FILE : unwinding.ml %
% DESCRIPTION : Rules for unfolding, unwinding, pruning, etc. %
% %
% READS FILES : <none> %
% WRITES FILES : <none> %
% %
% AUTHOR : Originally written for LCF-LSM by Mike Gordon (MJCG). %
% 21.May.1985 : Additions by Tom Melham (TFM). %
% 10.Mar.1988 : Modifications by David Shepherd (DES) of INMOS. %
% 24.Mar.1988 : Bug fixes by David Shepherd (DES). %
% 23.Apr.1990 : Modifications by Tom Melham (TFM). %
% 22.Aug.1991 : Additions and tidying-up by Richard Boulton (RJB). %
% %
% LAST MODIFIED : R.J.Boulton %
% DATE : 21st July 1992 %
%****************************************************************************%
%============================================================================%
% Tools for manipulating device implementations `by hand' %
%============================================================================%
%----------------------------------------------------------------------------%
% DEPTH_FORALL_CONV : conv -> conv %
% %
% DEPTH_FORALL_CONV conv "!x1 ... xn. body" applies conv to "body" and %
% returns a theorem of the form: %
% %
% |- (!x1 ... xn. body) = (!x1 ... xn. body') %
%----------------------------------------------------------------------------%
letrec DEPTH_FORALL_CONV conv tm =
if (is_forall tm)
then RAND_CONV (ABS_CONV (DEPTH_FORALL_CONV conv)) tm
else conv tm;;
%----------------------------------------------------------------------------%
% DEPTH_EXISTS_CONV : conv -> conv %
% %
% DEPTH_EXISTS_CONV conv "?x1 ... xn. body" applies conv to "body" and %
% returns a theorem of the form: %
% %
% |- (?x1 ... xn. body) = (?x1 ... xn. body') %
%----------------------------------------------------------------------------%
letrec DEPTH_EXISTS_CONV conv tm =
if (is_exists tm)
then RAND_CONV (ABS_CONV (DEPTH_EXISTS_CONV conv)) tm
else conv tm;;
%----------------------------------------------------------------------------%
% FLATTEN_CONJ_CONV : conv %
% %
% "t1 /\ ... /\ tn" %
% ----> %
% |- t1 /\ ... /\ tn = u1 /\ ... /\ un %
% %
% where the RHS of the equation is a flattened version of the LHS. %
%----------------------------------------------------------------------------%
let FLATTEN_CONJ_CONV t =
CONJUNCTS_CONV (t,list_mk_conj (conjuncts t));;
%============================================================================%
% Moving universal quantifiers in and out of conjunctions %
%============================================================================%
%----------------------------------------------------------------------------%
% CONJ_FORALL_ONCE_CONV : conv %
% %
% "(!x. t1) /\ ... /\ (!x. tn)" %
% ----> %
% |- (!x. t1) /\ ... /\ (!x. tn) = !x. t1 /\ ... /\ tn %
% %
% where the original term can be an arbitrary tree of /\s, not just linear. %
% The structure of the tree is retained in both sides of the equation. %
% %
% To avoid deriving incompatible theorems for IMP_ANTISYM_RULE when one or %
% more of the ti's is a conjunction, the original term is broken up as well %
% as the theorem. If this were not done, the conversion would fail in such %
% cases. %
%----------------------------------------------------------------------------%
let CONJ_FORALL_ONCE_CONV t =
letrec conj_tree_map f t th =
(let t1,t2 = dest_conj t
and th1,th2 = CONJ_PAIR th
in CONJ (conj_tree_map f t1 th1) (conj_tree_map f t2 th2)
) ? (f th)
in
(let conjs = conjuncts t
in
if (length conjs = 1) then REFL t
else
let var = case (setify (map (fst o dest_forall) conjs))
of [x] . x
| (_) . fail
in
let th = GEN var (conj_tree_map (SPEC var) t (ASSUME t))
in
let th1 = DISCH t th
and th2 = DISCH (concl th)
(conj_tree_map (GEN var) t (SPEC var (ASSUME (concl th))))
in IMP_ANTISYM_RULE th1 th2
) ? failwith `CONJ_FORALL_ONCE_CONV`;;
%----------------------------------------------------------------------------%
% FORALL_CONJ_ONCE_CONV : conv %
% %
% "!x. t1 /\ ... /\ tn" %
% ----> %
% |- !x. t1 /\ ... /\ tn = (!x. t1) /\ ... /\ (!x. tn) %
% %
% where the original term can be an arbitrary tree of /\s, not just linear. %
% The structure of the tree is retained in both sides of the equation. %
%----------------------------------------------------------------------------%
let FORALL_CONJ_ONCE_CONV t =
letrec conj_tree_map f th =
(let th1,th2 = CONJ_PAIR th
in CONJ (conj_tree_map f th1) (conj_tree_map f th2)
) ? (f th)
in
(let var = fst (dest_forall t)
in
let th = conj_tree_map (GEN var) (SPEC var (ASSUME t))
in
let th1 = DISCH t th
and th2 = DISCH (concl th)
(GEN var (conj_tree_map (SPEC var) (ASSUME (concl th))))
in IMP_ANTISYM_RULE th1 th2
) ? failwith `FORALL_CONJ_ONCE_CONV`;;
%----------------------------------------------------------------------------%
% CONJ_FORALL_CONV : conv %
% %
% "(!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)" %
% ----> %
% |- (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn) = %
% !x1 ... xm. t1 /\ ... /\ tn %
% %
% where the original term can be an arbitrary tree of /\s, not just linear. %
% The structure of the tree is retained in both sides of the equation. %
%----------------------------------------------------------------------------%
letrec CONJ_FORALL_CONV tm =
(if (length (conjuncts tm) = 1)
then fail
else (CONJ_FORALL_ONCE_CONV THENC (RAND_CONV (ABS_CONV CONJ_FORALL_CONV))) tm
) ? REFL tm;;
%----------------------------------------------------------------------------%
% FORALL_CONJ_CONV : conv %
% %
% "!x1 ... xm. t1 /\ ... /\ tn" %
% ----> %
% |- !x1 ... xm. t1 /\ ... /\ tn = %
% (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn) %
% %
% where the original term can be an arbitrary tree of /\s, not just linear. %
% The structure of the tree is retained in both sides of the equation. %
%----------------------------------------------------------------------------%
letrec FORALL_CONJ_CONV tm =
if (is_forall tm)
then (RAND_CONV (ABS_CONV FORALL_CONJ_CONV) THENC FORALL_CONJ_ONCE_CONV) tm
else REFL tm;;
%----------------------------------------------------------------------------%
% CONJ_FORALL_RIGHT_RULE : thm -> thm %
% %
% A |- !z1 ... zr. %
% t = ?y1 ... yp. (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn) %
% ------------------------------------------------------------------- %
% A |- !z1 ... zr. t = ?y1 ... yp. !x1 ... xm. t1 /\ ... /\ tn %
% %
%----------------------------------------------------------------------------%
let CONJ_FORALL_RIGHT_RULE th =
CONV_RULE
(DEPTH_FORALL_CONV (RAND_CONV (DEPTH_EXISTS_CONV CONJ_FORALL_CONV))) th
? failwith `CONJ_FORALL_RIGHT_RULE`;;
%----------------------------------------------------------------------------%
% FORALL_CONJ_RIGHT_RULE : thm -> thm %
% %
% A |- !z1 ... zr. t = ?y1 ... yp. !x1 ... xm. t1 /\ ... /\ tn %
% ------------------------------------------------------------------- %
% A |- !z1 ... zr. %
% t = ?y1 ... yp. (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn) %
% %
%----------------------------------------------------------------------------%
let FORALL_CONJ_RIGHT_RULE th =
CONV_RULE
(DEPTH_FORALL_CONV (RAND_CONV (DEPTH_EXISTS_CONV FORALL_CONJ_CONV))) th
? failwith `FORALL_CONJ_RIGHT_RULE`;;
%============================================================================%
% Rules for unfolding %
%============================================================================%
%----------------------------------------------------------------------------%
% UNFOLD_CONV : thm list -> conv %
% %
% UNFOLD_CONV thl %
% %
% "t1 /\ ... /\ tn" %
% ----> %
% B |- t1 /\ ... /\ tn = t1' /\ ... /\ tn' %
% %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the %
% theorems used for rewriting. If none of the rewrites are applicable to a %
% ti, it is unchanged. %
%----------------------------------------------------------------------------%
let UNFOLD_CONV thl =
let net = mk_conv_net thl
in
let REWRITES_CONV net = \tm. FIRST_CONV (lookup_term net tm) tm
in
let THENQC conv1 conv2 tm =
(let th1 = conv1 tm
in ((th1 TRANS (conv2 (rhs (concl th1)))) ? th1))
? (conv2 tm)
in
letrec CONJ_TREE_CONV conv tm =
if (is_conj tm)
then THENQC (RATOR_CONV (RAND_CONV (CONJ_TREE_CONV conv)))
(RAND_CONV (CONJ_TREE_CONV conv))
tm
else conv tm
in
\t. if (null thl)
then REFL t
else CONJ_TREE_CONV (REWRITES_CONV net) t ? REFL t;;
%----------------------------------------------------------------------------%
% UNFOLD_RIGHT_RULE : thm list -> thm -> thm %
% %
% UNFOLD_RIGHT_RULE thl %
% %
% A |- !z1 ... zr. t = ?y1 ... yp. t1 /\ ... /\ tn %
% -------------------------------------------------------- %
% B u A |- !z1 ... zr. t = ?y1 ... yp. t1' /\ ... /\ tn' %
% %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the %
% theorems used for rewriting. If none of the rewrites are applicable to a %
% ti, it is unchanged. %
%----------------------------------------------------------------------------%
let UNFOLD_RIGHT_RULE thl th =
CONV_RULE
(DEPTH_FORALL_CONV (RAND_CONV (DEPTH_EXISTS_CONV (UNFOLD_CONV thl))))
th
? failwith `UNFOLD_RIGHT_RULE`;;
%============================================================================%
% Rules for unwinding device implementations %
%============================================================================%
%----------------------------------------------------------------------------%
% line_var : term -> term %
% %
% line_var "!y1 ... ym. f x1 ... xn = t" ----> "f" %
%----------------------------------------------------------------------------%
let line_var tm =
(fst o strip_comb o lhs o snd o strip_forall) tm ? failwith `line_var`;;
%----------------------------------------------------------------------------%
% line_name : term -> string %
% %
% line_name "!y1 ... ym. f x1 ... xn = t" ----> `f` %
%----------------------------------------------------------------------------%
let line_name tm = (fst o dest_var o line_var) tm ? failwith `line_name`;;
%----------------------------------------------------------------------------%
% UNWIND_ONCE_CONV : (term -> bool) -> conv %
% %
% Basic conversion for parallel unwinding of equations defining wire values %
% in a standard device specification. %
% %
% USAGE: UNWIND_ONCE_CONV p tm %
% %
% DESCRIPTION: tm should be a conjunction of terms, equivalent under %
% associative-commutative reordering to: %
% %
% t1 /\ t2 /\ ... /\ tn. %
% %
% The function p:term->bool is a predicate which will be %
% used to partition the terms ti for 1 <= i <= n into two %
% disjoint sets: %
% %
% REW = {ti | p ti} and OBJ = {ti | ~p ti} %
% %
% The terms ti for which p is true are then used as a set %
% of rewrite rules (thus they should be equations) to do a %
% single top-down parallel rewrite of the remaining terms. %
% The rewritten terms take the place of the original terms %
% in the input conjunction. %
% %
% For example, if tm is: %
% %
% t1 /\ t2 /\ t3 /\ t4 %
% %
% and REW = {t1,t3} then the result is: %
% %
% |- t1 /\ t2 /\ t3 /\ t4 = t1 /\ t2' /\ t3 /\ t4' %
% %
% where ti' is ti rewritten with the equations REW. %
% %
% IMPLEMENTATION NOTE: %
% %
% The assignment: %
% %
% let pf,fn,eqns = trav p tm [] %
% %
% makes %
% %
% eqns = a list of theorems constructed by assuming each term for %
% which p is true, i.e., eqns = the list of rewrites. %
% %
% fn = a function which, when applied to a rewriting conversion %
% will reconstruct the original term in the original structure, %
% but with the subterms for which p is not true rewritten %
% using the supplied conversion. %
% %
% pf = a function which maps |- tm to [|- t1;...;|- tj] where each %
% ti is a term for which p is true. %
%----------------------------------------------------------------------------%
let UNWIND_ONCE_CONV =
let REWRITES_CONV net = \tm. FIRST_CONV (lookup_term net tm) tm
in
let AND = mk_const (`/\\`,":bool->bool->bool")
in
letrec trav p tm rl =
(let (l,r) = dest_conj tm
in
let (pf2,fn2,pf1,fn1,rew) = (I # (I # trav p l)) (trav p r rl)
in
let pf = $@ o (pf1 # pf2) o CONJ_PAIR
in (pf,(\rf. MK_COMB ((AP_TERM AND (fn1 rf)),(fn2 rf))),rew)
) ? if ((p tm) ? false)
then ((\th.[th]),(\rf. REFL tm),(ASSUME tm . rl))
else ((\th.[]),(\rf. rf tm),rl)
in
(\p tm.
let (pf,fn,eqns) = trav p tm []
in
let rconv = ONCE_DEPTH_CONV (REWRITES_CONV (mk_conv_net eqns))
in
let th = fn rconv
in
let l,r = (dest_eq (concl th))
in
let lth = ASSUME l
and rth = ASSUME r
in
let imp1 = DISCH l (EQ_MP (itlist PROVE_HYP (pf lth) th) lth)
and imp2 = DISCH r (EQ_MP (SYM (itlist PROVE_HYP (pf rth) th)) rth)
in IMP_ANTISYM_RULE imp1 imp2
) ? failwith `UNWIND_ONCE_CONV`;;
%----------------------------------------------------------------------------%
% UNWIND_CONV : (term -> bool) -> conv %
% %
% Unwind device behaviour using line equations eqnx selected by p until no %
% change. %
% %
% WARNING -- MAY LOOP! %
% %
% UNWIND_CONV p %
% %
% "t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn" %
% ----> %
% |- t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn = %
% t1' /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn' %
% %
% where ti' (for 1 <= i <= n) is ti rewritten with the equations %
% eqni (1 <= i <= m). These equations are the conjuncts for which the %
% predicate p is true. The ti terms are the conjuncts for which p is false. %
% The rewriting is repeated until no changes take place. %
%----------------------------------------------------------------------------%
letrec UNWIND_CONV p tm =
let th = UNWIND_ONCE_CONV p tm
in if lhs (concl th) = rhs (concl th)
then th
else th TRANS (UNWIND_CONV p (rhs (concl th)));;
%----------------------------------------------------------------------------%
% UNWIND_ALL_BUT_CONV : string list -> conv %
% %
% Unwind all lines (except those in the list l) as much as possible. %
% %
% WARNING -- MAY LOOP! %
% %
% UNWIND_ALL_BUT_CONV l %
% %
% "t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn" %
% ----> %
% |- t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn = %
% t1' /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn' %
% %
% where ti' (for 1 <= i <= n) is ti rewritten with the equations %
% eqni (1 <= i <= m). These equations are those conjuncts with line name not %
% in l (and which are equations). %
%----------------------------------------------------------------------------%
let UNWIND_ALL_BUT_CONV l tm =
(let line_names = subtract (mapfilter line_name (conjuncts tm)) l
in
let p line = \tm. (line_name tm) = line
in
let itfn line = \th. th TRANS (UNWIND_CONV (p line) (rhs (concl th)))
in
itlist itfn line_names (REFL tm)
) ? failwith `UNWIND_ALL_BUT_CONV`;;
%----------------------------------------------------------------------------%
% UNWIND_AUTO_CONV : conv %
% %
% "?l1 ... lm. t1 /\ ... /\ tn" %
% ----> %
% |- (?l1 ... lm. t1 /\ ... /\ tn) = (?l1 ... lm. t1' /\ ... /\ tn') %
% %
% where tj' is tj rewritten with equations selected from the ti's. The %
% function decides which equations to use by performing a loop analysis on %
% the graph representing the dependencies of the lines. By this means the %
% term can be unwound as much as possible without the risk of looping. The %
% user is left to deal with the recursive equations. %
% %
% There is some inefficiency in that certain lines may be used in unwinding %
% even though they do not appear in any RHS's. %
% %
% The algorithms used for loop analysis in this function have exponential %
% complexity in the number of lines. However, steps are taken to limit this %
% as much as possible. The internal function `next_combination' computes %
% combinations of a list, but only as they are required. This puts the %
% burden on time resources rather than space resources. The computation time %
% would be less if a complete list of combinations were computed in one go, %
% but the list generated might exhaust memory. The first argument to %
% `next_combination' is the list to find the combinations of. The second %
% argument is the reverse of the previous combination. Initially this should %
% be the empty list. The result of a call is the reverse of the next %
% combination. The function assumes that the source list is a set. %
% %
% Amongst other things, the internal function `graph_of_term' rearranges the %
% lines in the graph representation so that external lines come first. It is %
% important that the number of internal lines left unwound because of loops %
% is minimised since it is the internal lines that are existentially %
% quantified. Further manipulations by the user should be easier if any %
% loops remaining do not involve existentially quantified variables. %
% %
% The algorithm for breaking loops is: %
% %
% 1. Isolate any loops of length one. Each such loop involves only one line %
% so must be broken at that line. %
% %
% 2. Eliminate from consideration the single element loops and any other %
% loop that will be broken by the elements in those loops. %
% %
% 3. Determine those loops that consist entirely of internal lines. All %
% other loops can be broken at an external line. A minimal set of %
% internal lines that break all the exclusively internal loops is then %
% computed. This may not be the only minimal set. %
% %
% 4. Any loop broken by the minimal set of internal lines is eliminated from %
% consideration. A list of external lines appearing in these remaining %
% loops is computed. From these external lines a minimal set that breaks %
% all the remaining loops is computed. This set will only be minimal %
% relative to the choice of minimal set of internals. A different choice %
% for the latter might have produced a smaller set of external lines. %
% %
% 5. The three lists of lines computed in 1-4 are concatenated and returned. %
%----------------------------------------------------------------------------%
let UNWIND_AUTO_CONV =
let graph_of_term tm =
(let internals,t = strip_exists tm
in let (lines,rhs_frees) =
split (mapfilter ((((assert is_var) o fst o strip_comb) # frees) o
dest_eq o snd o strip_forall) (conjuncts t))
in
if (distinct lines)
then let graph = combine (lines,map (intersect lines) rhs_frees)
in let (intern,extern) = partition (\p. mem (fst p) internals) graph
in extern @ intern
else fail)
in
letrec loops_containing_line line graph chain =
(let successors =
map fst (filter (\(_,predecs). mem (hd chain) predecs) graph)
in let not_in_chain = filter (\line. not (mem line chain)) successors
in let new_chains = map (\line. line.chain) not_in_chain
in let new_loops = flat (map (loops_containing_line line graph) new_chains)
in if (mem line successors)
then (rev chain).new_loops
else new_loops)
in
letrec chop_at x l =
(if (hd l = x)
then ([],l)
else let (l1,l2) = chop_at x (tl l)
in ((hd l).l1,l2))
in
let equal_loops lp1 lp2 =
(if (set_equal lp1 lp2)
then let (before,rest) = chop_at (hd lp1) lp2
in lp1 = (rest @ before)
else false)
in
letrec distinct_loops lps =
(if (null lps)
then []
else let (h.t) = lps
in if (exists (\lp. equal_loops lp h) t)
then distinct_loops t
else h.(distinct_loops t))
in
let loops_of_graph graph =
(distinct_loops
(flat
(map (\line. loops_containing_line line graph [line]) (map fst graph))))
in
letrec list_after x l =
(if (x = hd l)
then tl l
else list_after x (tl l))
in
letrec rev_front_of l n front =
(if (n < 0) then fail
if (n = 0) then front
else rev_front_of (tl l) (n - 1) ((hd l).front))
in
letrec next_comb_at_this_level source n (h.t) =
(let l = list_after h source
in if (length l > n)
then (rev_front_of l (n + 1) []) @ t
else next_comb_at_this_level source (n + 1) t)
in
let next_combination source previous =
((next_comb_at_this_level source 0 previous) ?
(rev_front_of source ((length previous) + 1) []))
in
letrec break_all_loops lps lines previous =
(let comb = next_combination lines previous
in if (forall (\lp. not (null (intersect lp comb))) lps)
then comb
else break_all_loops lps lines comb)
in
let breaks internals graph =
(let loops = loops_of_graph graph
in let single_el_loops = filter (\l. length l = 1) loops
in let single_breaks = flat single_el_loops
in let loops' = filter (null o (intersect single_breaks)) loops
in let only_internal_loops =
filter (\l. null (subtract l internals)) loops'
in let only_internal_lines = end_itlist union only_internal_loops ? []
in let internal_breaks =
break_all_loops only_internal_loops only_internal_lines [] ? []
in let external_loops = filter (null o (intersect internal_breaks)) loops'
in let external_lines =
subtract (end_itlist union external_loops ? []) internals
in let external_breaks =
break_all_loops external_loops external_lines [] ? []
in single_breaks @ (rev internal_breaks) @ (rev external_breaks))
in
letrec conv dependencies used t =
(let vars =
map fst (filter ((\l. null (subtract l used)) o snd) dependencies)
in if (null vars)
then REFL t
else ((UNWIND_ONCE_CONV (\tm. mem (line_var tm) vars)) THENC
(conv (filter (\p. not (mem (fst p) vars)) dependencies)
(used @ vars))) t)
in
\tm.
(let internals = fst (strip_exists tm)
and graph = graph_of_term tm
in
let brks = breaks internals graph
in
let dependencies =
map (I # (\l. subtract l brks)) (filter (\p. not (mem (fst p) brks)) graph)
in
DEPTH_EXISTS_CONV (conv dependencies []) tm
) ? failwith `UNWIND_AUTO_CONV`;;
%----------------------------------------------------------------------------%
% UNWIND_ALL_BUT_RIGHT_RULE : string list -> thm -> thm %
% %
% Unwind all lines (except those in the list l) as much as possible. %
% %
% WARNING -- MAY LOOP! %
% %
% UNWIND_ALL_BUT_RIGHT_RULE l %
% %
% A |- !z1 ... zr. %
% t = %
% (?l1 ... lp. t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn) %
% --------------------------------------------------------------------- %
% A |- !z1 ... zr. %
% t = %
% (?l1 ... lp. t1' /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn') %
% %
% where ti' (for 1 <= i <= n) is ti rewritten with the equations %
% eqni (1 <= i <= m). These equations are those conjuncts with line name not %
% in l (and which are equations). %
%----------------------------------------------------------------------------%
let UNWIND_ALL_BUT_RIGHT_RULE l th =
CONV_RULE
(DEPTH_FORALL_CONV (RAND_CONV (DEPTH_EXISTS_CONV (UNWIND_ALL_BUT_CONV l))))
th
? failwith `UNWIND_ALL_BUT_RIGHT_RULE`;;
%----------------------------------------------------------------------------%
% UNWIND_AUTO_RIGHT_RULE : thm -> thm %
% %
% A |- !z1 ... zr. t = ?l1 ... lm. t1 /\ ... /\ tn %
% ---------------------------------------------------- %
% A |- !z1 ... zr. t = ?l1 ... lm. t1' /\ ... /\ tn' %
% %
% where tj' is tj rewritten with equations selected from the ti's. The %
% function decides which equations to use by performing a loop analysis on %
% the graph representing the dependencies of the lines. By this means the %
% equations can be unwound as much as possible without the risk of looping. %
% The user is left to deal with the recursive equations. %
%----------------------------------------------------------------------------%
let UNWIND_AUTO_RIGHT_RULE th =
CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV UNWIND_AUTO_CONV)) th
? failwith `UNWIND_AUTO_RIGHT_RULE`;;
%============================================================================%
% Rules for pruning %
%============================================================================%
%----------------------------------------------------------------------------%
% EXISTS_DEL1_CONV : conv %
% %
% "?x. t" %
% ----> %
% |- (?x. t) = t %
% %
% provided x is not free in t. %
% %
% Deletes one existential quantifier. %
%----------------------------------------------------------------------------%
let EXISTS_DEL1_CONV tm =
(let x,t = dest_exists tm
in
let th = ASSUME t
in
let th1 = DISCH tm (CHOOSE (x, ASSUME tm) th)
and th2 = DISCH t (EXISTS (tm,x) th)
in
IMP_ANTISYM_RULE th1 th2
) ? failwith `EXISTS_DEL1_CONV`;;
%----------------------------------------------------------------------------%
% EXISTS_DEL_CONV : conv %
% %
% "?x1 ... xn. t" %
% ----> %
% |- (?x1 ... xn. t) = t %
% %
% provided x1,...,xn are not free in t. %
% %
% Deletes existential quantifiers. The conversion fails if any of the x's %
% appear free in t. It does not perform a partial deletion; for example, if %
% x1 and x2 do not appear free in t but x3 does, the function will fail; it %
% will not return |- ?x1 ... xn. t = ?x3 ... xn. t. %
%----------------------------------------------------------------------------%
let EXISTS_DEL_CONV tm =
letrec terms_and_vars tm =
(let x,tm' = dest_exists tm
in (tm,x).(terms_and_vars tm')
) ? []
in
(let txs = terms_and_vars tm
in
let t = snd (dest_exists (fst (last txs))) ? tm
in
let th = ASSUME t
in
let th1 = DISCH tm (itlist (\(tm,x). CHOOSE (x, ASSUME tm)) txs th)
and th2 = DISCH t (itlist EXISTS txs th)
in
IMP_ANTISYM_RULE th1 th2
) ? failwith `EXISTS_DEL_CONV`;;
%----------------------------------------------------------------------------%
% EXISTS_EQN_CONV : conv %
% %
% "?l. !y1 ... ym. l x1 ... xn = t" %
% ----> %
% |- (?l. !y1 ... ym. l x1 ... xn = t) = T %
% %
% provided l is not free in t. Both m and n may be zero. %
%----------------------------------------------------------------------------%
let EXISTS_EQN_CONV t =
(let l,ys,t1,t2 = (I # ((I # dest_eq) o strip_forall)) (dest_exists t)
in
let xs = snd ((assert (curry $= l) # I) (strip_comb t1))
in
let t3 = list_mk_abs (xs,t2)
in
let th1 =
GENL ys (RIGHT_CONV_RULE LIST_BETA_CONV (REFL (list_mk_comb (t3,xs))))
in
EQT_INTRO (EXISTS (t,t3) th1)
) ? failwith `EXISTS_EQN_CONV`;;
%----------------------------------------------------------------------------%
% PRUNE_ONCE_CONV : conv %
% %
% Prunes one hidden variable. %
% %
% "?l. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp" %
% ----> %
% |- (?l. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp) = %
% (t1 /\ ... /\ ti /\ t(i+1) /\ ... /\ tp) %
% %
% where eq has the form "!y1 ... ym. l x1 ... xn = b" and l does not appear %
% free in the ti's or in b. The conversion works if eq is not present, %
% i.e. if l is not free in any of the conjuncts, but does not work if l %
% appears free in more than one of the conjuncts. Each of m, n and p may be %
% zero. %
%----------------------------------------------------------------------------%
let PRUNE_ONCE_CONV tm =
(let x,t = dest_exists tm
in
let l1,l2 = partition (free_in x) (conjuncts t)
in
if (null l1) then EXISTS_DEL1_CONV tm
else
let [eq] = l1
in
let th1 = EXISTS_EQN_CONV (mk_exists (x,eq))
in
if (null l2) then th1
else
let conj = list_mk_conj l2
in
let th2 = AP_THM (AP_TERM "$/\" th1) conj
in
let th3 = EXISTS_EQ x (CONJUNCTS_CONV (t,mk_conj(eq,conj)))
in
let th4 = RIGHT_CONV_RULE EXISTS_AND_CONV th3
in
th4 TRANS th2 TRANS (CONJUNCT1 (SPEC conj AND_CLAUSES))
) ? failwith `PRUNE_ONCE_CONV`;;
%----------------------------------------------------------------------------%
% PRUNE_ONE_CONV : string -> conv %
% %
% Prunes one hidden variable. %
% %
% PRUNE_ONE_CONV `lj` %
% %
% "?l1 ... lj ... lr. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp" %
% ----> %
% |- (?l1 ... lj ... lr. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp) = %
% (?l1 ... l(j-1) l(j+1) ... lr. %
% t1 /\ ... /\ ti /\ t(i+1) /\ ... /\ tp) %
% %
% where eq has the form "!y1 ... ym. lj x1 ... xn = b" and lj does not %
% appear free in the ti's or in b. The conversion works if eq is not %
% present, i.e. if lj is not free in any of the conjuncts, but does not work %
% if lj appears free in more than one of the conjuncts. Each of m, n and p %
% may be zero. %
% %
% If there is more than one line with the specified name (but with different %
% types), the one that appears outermost in the existential quantifications %
% is pruned. %
%----------------------------------------------------------------------------%
letrec PRUNE_ONE_CONV v tm =
(let x,tm' = dest_exists tm
in if (fst (dest_var x) = v)
then if (is_exists tm')
then (SWAP_EXISTS_CONV THENC
(RAND_CONV (ABS_CONV (PRUNE_ONE_CONV v)))) tm
else PRUNE_ONCE_CONV tm
else RAND_CONV (ABS_CONV (PRUNE_ONE_CONV v)) tm
) ? failwith `PRUNE_ONE_CONV`;;
%----------------------------------------------------------------------------%
% PRUNE_SOME_CONV : string list -> conv %
% %
% Prunes several hidden variables. %
% %
% PRUNE_SOME_CONV [`li1`;...;`lik`] %
% %
% "?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp" %
% ----> %
% |- (?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp) = %
% (?li(k+1) ... lir. t1 /\ ... /\ tp) %
% %
% where for 1 <= j <= k, each eqnij has the form: %
% %
% "!y1 ... ym. lij x1 ... xn = b" %
% %
% and lij does not appear free in any of the other conjuncts or in b. %
% The li's are related by the equation: %
% %
% {li1,...,lik} u {li(k+1),...,lir} = {l1,...,lr} %
% %
% The conversion works if one or more of the eqnij's are not present, %
% i.e. if lij is not free in any of the conjuncts, but does not work if lij %
% appears free in more than one of the conjuncts. p may be zero, that is, %
% all the conjuncts may be eqnij's. In this case the body of the result will %
% be T (true). Also, for each eqnij, m and n may be zero. %
% %
% If there is more than one line with a specified name (but with different %
% types), the one that appears outermost in the existential quantifications %
% is pruned. If such a line name is mentioned twice in the list, the two %
% outermost occurrences of lines with that name will be pruned, and so on. %
%----------------------------------------------------------------------------%
letrec PRUNE_SOME_CONV vs tm =
(if (null vs)
then REFL tm
else (PRUNE_SOME_CONV (tl vs) THENC PRUNE_ONE_CONV (hd vs)) tm
) ? failwith `PRUNE_SOME_CONV`;;
%----------------------------------------------------------------------------%
% PRUNE_CONV : conv %
% %
% Prunes all hidden variables. %
% %
% "?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp" %
% ----> %
% |- (?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp) = %
% (t1 /\ ... /\ tp) %
% %
% where each eqni has the form "!y1 ... ym. li x1 ... xn = b" and li does %
% not appear free in any of the other conjuncts or in b. The conversion %
% works if one or more of the eqni's are not present, i.e. if li is not free %
% in any of the conjuncts, but does not work if li appears free in more than %
% one of the conjuncts. p may be zero, that is, all the conjuncts may be %
% eqni's. In this case the result will be simply T (true). Also, for each %
% eqni, m and n may be zero. %
%----------------------------------------------------------------------------%
letrec PRUNE_CONV tm =
(if (is_exists tm)
then (RAND_CONV (ABS_CONV PRUNE_CONV) THENC PRUNE_ONCE_CONV) tm
else REFL tm
) ? failwith `PRUNE_CONV`;;
%----------------------------------------------------------------------------%
% PRUNE_SOME_RIGHT_RULE : string list -> thm -> thm %
% %
% Prunes several hidden variables. %
% %
% PRUNE_SOME_RIGHT_RULE [`li1`;...;`lik`] %
% %
% A |- !z1 ... zr. %
% t = ?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp %
% ----------------------------------------------------------------------- %
% A |- !z1 ... zr. t = ?li(k+1) ... lir. t1 /\ ... /\ tp %
% %
% where for 1 <= j <= k, each eqnij has the form: %
% %
% "!y1 ... ym. lij x1 ... xn = b" %
% %
% and lij does not appear free in any of the other conjuncts or in b. %
% The li's are related by the equation: %
% %
% {li1,...,lik} u {li(k+1),...,lir} = {l1,...,lr} %
% %
% The rule works if one or more of the eqnij's are not present, i.e. if lij %
% is not free in any of the conjuncts, but does not work if lij appears free %
% in more than one of the conjuncts. p may be zero, that is, all the %
% conjuncts may be eqnij's. In this case the conjunction will be transformed %
% to T (true). Also, for each eqnij, m and n may be zero. %
% %
% If there is more than one line with a specified name (but with different %
% types), the one that appears outermost in the existential quantifications %
% is pruned. If such a line name is mentioned twice in the list, the two %
% outermost occurrences of lines with that name will be pruned, and so on. %
%----------------------------------------------------------------------------%
let PRUNE_SOME_RIGHT_RULE vs th =
CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV (PRUNE_SOME_CONV vs))) th
? failwith `PRUNE_SOME_RIGHT_RULE`;;
%----------------------------------------------------------------------------%
% PRUNE_RIGHT_RULE : thm -> thm %
% %
% Prunes all hidden variables. %
% %
% A |- !z1 ... zr. %
% t = ?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp %
% --------------------------------------------------------------------- %
% A |- !z1 ... zr. t = t1 /\ ... /\ tp %
% %
% where each eqni has the form "!y1 ... ym. li x1 ... xn = b" and li does %
% not appear free in any of the other conjuncts or in b. The rule works if %
% one or more of the eqni's are not present, i.e. if li is not free in any %
% of the conjuncts, but does not work if li appears free in more than one of %
% the conjuncts. p may be zero, that is, all the conjuncts may be eqni's. In %
% this case the result will be simply T (true). Also, for each eqni, m and n %
% may be zero. %
%----------------------------------------------------------------------------%
let PRUNE_RIGHT_RULE th =
CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV PRUNE_CONV)) th
? failwith `PRUNE_RIGHT_RULE`;;
%============================================================================%
% Functions which do unfolding, unwinding and pruning %
%============================================================================%
%----------------------------------------------------------------------------%
% EXPAND_ALL_BUT_CONV : string list -> thm list -> conv %
% %
% Unfold with the theorems thl, then unwind all lines (except those in the %
% list) as much as possible and prune the unwound lines. %
% %
% WARNING -- MAY LOOP! %
% %
% EXPAND_ALL_BUT_CONV [`li(k+1)`;...;`lim`] thl %
% %
% "?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn" %
% ----> %
% B |- (?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn) = %
% (?li(k+1) ... lim. t1' /\ ... /\ tn') %
% %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the %
% theorems used for rewriting. If none of the rewrites are applicable to a %
% conjunct, it is unchanged. Those conjuncts that after rewriting are %
% equations for the lines li1,...,lik (they are denoted by ui1,...,uik) are %
% used to unwind and the lines li1,...,lik are then pruned. If this is not %
% possible the function will fail. It is also possible for the function to %
% attempt unwinding indefinitely (to loop). %
% %
% The li's are related by the equation: %
% %
% {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm} %
%----------------------------------------------------------------------------%
let EXPAND_ALL_BUT_CONV l thl tm =
(DEPTH_EXISTS_CONV ((UNFOLD_CONV thl) THENC (UNWIND_ALL_BUT_CONV l)) THENC
(\tm. let var_names = map (fst o dest_var) (fst (strip_exists tm))
in PRUNE_SOME_CONV (subtract var_names l) tm))
tm
? failwith `EXPAND_ALL_BUT_CONV`;;
%----------------------------------------------------------------------------%
% EXPAND_AUTO_CONV : thm list -> conv %
% %
% Unfold with the theorems thl, then unwind as much as possible and prune %
% the unwound lines. %
% %
% EXPAND_AUTO_CONV thl %
% %
% "?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn" %
% ----> %
% B |- (?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn) = %
% (?li(k+1) ... lim. t1' /\ ... /\ tn') %
% %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the %
% theorems used for rewriting. If none of the rewrites are applicable to a %
% conjunct, it is unchanged. After rewriting the function decides which of %
% the resulting terms to use for unwinding by performing a loop analysis on %
% the graph representing the dependencies of the lines. %
% %
% Suppose the function decides to unwind the lines li1,...,lik using the %
% terms ui1',...,uik' respectively. Then after unwinding the lines %
% li1,...,lik are pruned (provided they have been eliminated from the RHS's %
% of the conjuncts that are equations, and from the whole of any other %
% conjuncts) resulting in the elimination of ui1',...,uik'. %
% %
% The li's are related by the equation: %
% %
% {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm} %
% %
% The loop analysis allows the term to be unwound as much as possible %
% without the risk of looping. The user is left to deal with the recursive %
% equations. %
%----------------------------------------------------------------------------%
let EXPAND_AUTO_CONV thl tm =
(DEPTH_EXISTS_CONV (UNFOLD_CONV thl) THENC
UNWIND_AUTO_CONV THENC
(\tm. let internals,conjs = (I # conjuncts) (strip_exists tm)
in
let vars =
flat (map (frees o (\tm. rhs tm ? tm) o snd o strip_forall) conjs)
in
PRUNE_SOME_CONV (map (fst o dest_var) (subtract internals vars)) tm))
tm
? failwith `EXPAND_AUTO_CONV`;;
%----------------------------------------------------------------------------%
% EXPAND_ALL_BUT_RIGHT_RULE : string list -> thm list -> thm -> thm %
% %
% Unfold with the theorems thl, then unwind all lines (except those in the %
% list) as much as possible and prune the unwound lines. %
% %
% WARNING -- MAY LOOP! %
% %
% EXPAND_ALL_BUT_RIGHT_RULE [`li(k+1)`;...;`lim`] thl %
% %
% A |- !z1 ... zr. %
% t = ?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn %
% ----------------------------------------------------------------------- %
% B u A |- !z1 ... zr. t = ?li(k+1) ... lim. t1' /\ ... /\ tn' %
% %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the %
% theorems used for rewriting. If none of the rewrites are applicable to a %
% conjunct, it is unchanged. Those conjuncts that after rewriting are %
% equations for the lines li1,...,lik (they are denoted by ui1,...,uik) are %
% used to unwind and the lines li1,...,lik are then pruned. If this is not %
% possible the function will fail. It is also possible for the function to %
% attempt unwinding indefinitely (to loop). %
% %
% The li's are related by the equation: %
% %
% {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm} %
%----------------------------------------------------------------------------%
let EXPAND_ALL_BUT_RIGHT_RULE l thl th =
CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV (EXPAND_ALL_BUT_CONV l thl))) th
? failwith `EXPAND_ALL_BUT_RIGHT_RULE`;;
%----------------------------------------------------------------------------%
% EXPAND_AUTO_RIGHT_RULE : thm list -> thm -> thm %
% %
% Unfold with the theorems thl, then unwind as much as possible and prune %
% the unwound lines. %
% %
% EXPAND_AUTO_RIGHT_RULE thl %
% %
% A |- !z1 ... zr. %
% t = ?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn %
% ----------------------------------------------------------------------- %
% B u A |- !z1 ... zr. t = ?li(k+1) ... lim. t1' /\ ... /\ tn' %
% %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the %
% theorems used for rewriting. If none of the rewrites are applicable to a %
% conjunct, it is unchanged. After rewriting the function decides which of %
% the resulting terms to use for unwinding by performing a loop analysis on %
% the graph representing the dependencies of the lines. %
% %
% Suppose the function decides to unwind the lines li1,...,lik using the %
% terms ui1',...,uik' respectively. Then after unwinding the lines %
% li1,...,lik are pruned (provided they have been eliminated from the RHS's %
% of the conjuncts that are equations, and from the whole of any other %
% conjuncts) resulting in the elimination of ui1',...,uik'. %
% %
% The li's are related by the equation: %
% %
% {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm} %
% %
% The loop analysis allows the term to be unwound as much as possible %
% without the risk of looping. The user is left to deal with the recursive %
% equations. %
%----------------------------------------------------------------------------%
let EXPAND_AUTO_RIGHT_RULE thl th =
CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV (EXPAND_AUTO_CONV thl))) th
? failwith `EXPAND_AUTO_RIGHT_RULE`;;
|