This file is indexed.

/usr/share/hol88-2.02.19940316/Library/unwind/unwinding.ml is in hol88-library-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
%****************************************************************************%
% FILE          : unwinding.ml                                               %
% DESCRIPTION   : Rules for unfolding, unwinding, pruning, etc.              %
%                                                                            %
% READS FILES   : <none>                                                     %
% WRITES FILES  : <none>                                                     %
%                                                                            %
% AUTHOR        : Originally written for LCF-LSM by Mike Gordon (MJCG).      %
% 21.May.1985   : Additions by Tom Melham (TFM).                             %
% 10.Mar.1988   : Modifications by David Shepherd (DES) of INMOS.            %
% 24.Mar.1988   : Bug fixes by David Shepherd (DES).                         %
% 23.Apr.1990   : Modifications by Tom Melham (TFM).                         %
% 22.Aug.1991   : Additions and tidying-up by Richard Boulton (RJB).         %
%                                                                            %
% LAST MODIFIED : R.J.Boulton                                                %
% DATE          : 21st July 1992                                             %
%****************************************************************************%

%============================================================================%
% Tools for manipulating device implementations `by hand'                    %
%============================================================================%

%----------------------------------------------------------------------------%
% DEPTH_FORALL_CONV : conv -> conv                                           %
%                                                                            %
% DEPTH_FORALL_CONV conv "!x1 ... xn. body" applies conv to "body" and       %
% returns a theorem of the form:                                             %
%                                                                            %
%    |- (!x1 ... xn. body) = (!x1 ... xn. body')                             %
%----------------------------------------------------------------------------%

letrec DEPTH_FORALL_CONV conv tm =
 if (is_forall tm)
 then RAND_CONV (ABS_CONV (DEPTH_FORALL_CONV conv)) tm
 else conv tm;;

%----------------------------------------------------------------------------%
% DEPTH_EXISTS_CONV : conv -> conv                                           %
%                                                                            %
% DEPTH_EXISTS_CONV conv "?x1 ... xn. body" applies conv to "body" and       %
% returns a theorem of the form:                                             %
%                                                                            %
%    |- (?x1 ... xn. body) = (?x1 ... xn. body')                             %
%----------------------------------------------------------------------------%

letrec DEPTH_EXISTS_CONV conv tm =
 if (is_exists tm)
 then RAND_CONV (ABS_CONV (DEPTH_EXISTS_CONV conv)) tm
 else conv tm;;

%----------------------------------------------------------------------------%
% FLATTEN_CONJ_CONV : conv                                                   %
%                                                                            %
%    "t1 /\ ... /\ tn"                                                       %
%    ---->                                                                   %
%    |- t1 /\ ... /\ tn = u1 /\ ... /\ un                                    %
%                                                                            %
% where the RHS of the equation is a flattened version of the LHS.           %
%----------------------------------------------------------------------------%

let FLATTEN_CONJ_CONV t =
 CONJUNCTS_CONV (t,list_mk_conj (conjuncts t));;

%============================================================================%
% Moving universal quantifiers in and out of conjunctions                    %
%============================================================================%

%----------------------------------------------------------------------------%
% CONJ_FORALL_ONCE_CONV : conv                                               %
%                                                                            %
%    "(!x. t1) /\ ... /\ (!x. tn)"                                           %
%    ---->                                                                   %
%    |- (!x. t1) /\ ... /\ (!x. tn) = !x. t1 /\ ... /\ tn                    %
%                                                                            %
% where the original term can be an arbitrary tree of /\s, not just linear.  %
% The structure of the tree is retained in both sides of the equation.       %
%                                                                            %
% To avoid deriving incompatible theorems for IMP_ANTISYM_RULE when one or   %
% more of the ti's is a conjunction, the original term is broken up as well  %
% as the theorem. If this were not done, the conversion would fail in such   %
% cases.                                                                     %
%----------------------------------------------------------------------------%

let CONJ_FORALL_ONCE_CONV t =
 letrec conj_tree_map f t th =
  (let t1,t2 = dest_conj t
   and th1,th2 = CONJ_PAIR th
   in  CONJ (conj_tree_map f t1 th1) (conj_tree_map f t2 th2)
  ) ? (f th)
 in
  (let conjs = conjuncts t
   in
   if (length conjs = 1) then REFL t
   else
   let var = case (setify (map (fst o dest_forall) conjs))
             of [x] . x
              | (_) . fail
   in
   let th = GEN var (conj_tree_map (SPEC var) t (ASSUME t))
   in
   let th1 = DISCH t th
   and th2 = DISCH (concl th)
              (conj_tree_map (GEN var) t (SPEC var (ASSUME (concl th))))
   in  IMP_ANTISYM_RULE th1 th2
  ) ? failwith `CONJ_FORALL_ONCE_CONV`;;

%----------------------------------------------------------------------------%
% FORALL_CONJ_ONCE_CONV : conv                                               %
%                                                                            %
%    "!x. t1 /\ ... /\ tn"                                                   %
%    ---->                                                                   %
%    |- !x. t1 /\ ... /\ tn = (!x. t1) /\ ... /\ (!x. tn)                    %
%                                                                            %
% where the original term can be an arbitrary tree of /\s, not just linear.  %
% The structure of the tree is retained in both sides of the equation.       %
%----------------------------------------------------------------------------%

let FORALL_CONJ_ONCE_CONV t =
 letrec conj_tree_map f th =
  (let th1,th2 = CONJ_PAIR th
   in  CONJ (conj_tree_map f th1) (conj_tree_map f th2)
  ) ? (f th)
 in
  (let var = fst (dest_forall t)
   in
   let th = conj_tree_map (GEN var) (SPEC var (ASSUME t))
   in
   let th1 = DISCH t th
   and th2 = DISCH (concl th)
              (GEN var (conj_tree_map (SPEC var) (ASSUME (concl th))))
   in  IMP_ANTISYM_RULE th1 th2
  ) ? failwith `FORALL_CONJ_ONCE_CONV`;;

%----------------------------------------------------------------------------%
% CONJ_FORALL_CONV : conv                                                    %
%                                                                            %
%    "(!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)"                           %
%    ---->                                                                   %
%    |- (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn) =                        %
%       !x1 ... xm. t1 /\ ... /\ tn                                          %
%                                                                            %
% where the original term can be an arbitrary tree of /\s, not just linear.  %
% The structure of the tree is retained in both sides of the equation.       %
%----------------------------------------------------------------------------%

letrec CONJ_FORALL_CONV tm =
 (if (length (conjuncts tm) = 1)
  then fail
  else (CONJ_FORALL_ONCE_CONV THENC (RAND_CONV (ABS_CONV CONJ_FORALL_CONV))) tm
 ) ? REFL tm;;

%----------------------------------------------------------------------------%
% FORALL_CONJ_CONV : conv                                                    %
%                                                                            %
%    "!x1 ... xm. t1 /\ ... /\ tn"                                           %
%    ---->                                                                   %
%    |- !x1 ... xm. t1 /\ ... /\ tn =                                        %
%       (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)                          %
%                                                                            %
% where the original term can be an arbitrary tree of /\s, not just linear.  %
% The structure of the tree is retained in both sides of the equation.       %
%----------------------------------------------------------------------------%

letrec FORALL_CONJ_CONV tm =
 if (is_forall tm)
 then (RAND_CONV (ABS_CONV FORALL_CONJ_CONV) THENC FORALL_CONJ_ONCE_CONV) tm
 else REFL tm;;

%----------------------------------------------------------------------------%
% CONJ_FORALL_RIGHT_RULE : thm -> thm                                        %
%                                                                            %
%     A |- !z1 ... zr.                                                       %
%           t = ?y1 ... yp. (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)      %
%    -------------------------------------------------------------------     %
%     A |- !z1 ... zr. t = ?y1 ... yp. !x1 ... xm. t1 /\ ... /\ tn           %
%                                                                            %
%----------------------------------------------------------------------------%

let CONJ_FORALL_RIGHT_RULE th =
 CONV_RULE
  (DEPTH_FORALL_CONV (RAND_CONV (DEPTH_EXISTS_CONV CONJ_FORALL_CONV))) th
 ? failwith `CONJ_FORALL_RIGHT_RULE`;;

%----------------------------------------------------------------------------%
% FORALL_CONJ_RIGHT_RULE : thm -> thm                                        %
%                                                                            %
%     A |- !z1 ... zr. t = ?y1 ... yp. !x1 ... xm. t1 /\ ... /\ tn           %
%    -------------------------------------------------------------------     %
%     A |- !z1 ... zr.                                                       %
%           t = ?y1 ... yp. (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)      %
%                                                                            %
%----------------------------------------------------------------------------%

let FORALL_CONJ_RIGHT_RULE th =
 CONV_RULE
  (DEPTH_FORALL_CONV (RAND_CONV (DEPTH_EXISTS_CONV FORALL_CONJ_CONV))) th
 ? failwith `FORALL_CONJ_RIGHT_RULE`;;

%============================================================================%
% Rules for unfolding                                                        %
%============================================================================%

%----------------------------------------------------------------------------%
% UNFOLD_CONV : thm list -> conv                                             %
%                                                                            %
%    UNFOLD_CONV thl                                                         %
%                                                                            %
%    "t1 /\ ... /\ tn"                                                       %
%    ---->                                                                   %
%    B |- t1 /\ ... /\ tn = t1' /\ ... /\ tn'                                %
%                                                                            %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the   %
% theorems used for rewriting. If none of the rewrites are applicable to a   %
% ti, it is unchanged.                                                       %
%----------------------------------------------------------------------------%

let UNFOLD_CONV thl =
 let net = mk_conv_net thl
 in
 let REWRITES_CONV net = \tm. FIRST_CONV (lookup_term net tm) tm
 in
 let THENQC conv1 conv2 tm =
    (let th1 = conv1 tm
     in  ((th1 TRANS (conv2 (rhs (concl th1)))) ? th1))
    ? (conv2 tm)
 in
 letrec CONJ_TREE_CONV conv tm =
    if (is_conj tm)
    then THENQC (RATOR_CONV (RAND_CONV (CONJ_TREE_CONV conv)))
                (RAND_CONV (CONJ_TREE_CONV conv))
                tm
    else conv tm
 in
 \t. if (null thl)
     then REFL t
     else CONJ_TREE_CONV (REWRITES_CONV net) t ? REFL t;;

%----------------------------------------------------------------------------%
% UNFOLD_RIGHT_RULE : thm list -> thm -> thm                                 %
%                                                                            %
%    UNFOLD_RIGHT_RULE thl                                                   %
%                                                                            %
%         A |- !z1 ... zr. t = ?y1 ... yp. t1 /\ ... /\ tn                   %
%    --------------------------------------------------------                %
%     B u A |- !z1 ... zr. t = ?y1 ... yp. t1' /\ ... /\ tn'                 %
%                                                                            %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the   %
% theorems used for rewriting. If none of the rewrites are applicable to a   %
% ti, it is unchanged.                                                       %
%----------------------------------------------------------------------------%

let UNFOLD_RIGHT_RULE thl th =
 CONV_RULE
  (DEPTH_FORALL_CONV (RAND_CONV (DEPTH_EXISTS_CONV (UNFOLD_CONV thl))))
  th
 ? failwith `UNFOLD_RIGHT_RULE`;;

%============================================================================%
% Rules for unwinding device implementations                                 %
%============================================================================%

%----------------------------------------------------------------------------%
% line_var : term -> term                                                    %
%                                                                            %
%    line_var "!y1 ... ym. f x1 ... xn = t"  ----> "f"                       %
%----------------------------------------------------------------------------%

let line_var tm =
 (fst o strip_comb o lhs o snd o strip_forall) tm ? failwith `line_var`;;

%----------------------------------------------------------------------------%
% line_name : term -> string                                                 %
%                                                                            %
%    line_name "!y1 ... ym. f x1 ... xn = t"  ----> `f`                      %
%----------------------------------------------------------------------------%

let line_name tm = (fst o dest_var o line_var) tm ? failwith `line_name`;;

%----------------------------------------------------------------------------%
% UNWIND_ONCE_CONV : (term -> bool) -> conv                                  %
%                                                                            %
% Basic conversion for parallel unwinding of equations defining wire values  %
% in a standard device specification.                                        %
%                                                                            %
% USAGE: UNWIND_ONCE_CONV p tm                                               %
%                                                                            %
% DESCRIPTION: tm should be a conjunction of terms, equivalent under         %
%              associative-commutative reordering to:                        %
%                                                                            %
%                   t1 /\ t2 /\ ... /\ tn.                                   %
%                                                                            %
%              The function p:term->bool is a predicate which will be        %
%              used to partition the terms ti for 1 <= i <= n into two       %
%              disjoint sets:                                                %
%                                                                            %
%                   REW = {ti | p ti} and OBJ = {ti | ~p ti}                 %
%                                                                            %
%              The terms ti for which p is true are then used as a set       %
%              of rewrite rules (thus they should be equations) to do a      %
%              single top-down parallel rewrite of the remaining terms.      %
%              The rewritten terms take the place of the original terms      %
%              in the input conjunction.                                     %
%                                                                            %
%              For example, if tm is:                                        %
%                                                                            %
%                 t1 /\ t2 /\ t3 /\ t4                                       %
%                                                                            %
%              and REW = {t1,t3} then the result is:                         %
%                                                                            %
%                 |-  t1 /\ t2 /\ t3 /\ t4 = t1 /\ t2' /\ t3 /\ t4'          %
%                                                                            %
%              where ti' is ti rewritten with the equations REW.             %
%                                                                            %
% IMPLEMENTATION NOTE:                                                       %
%                                                                            %
% The assignment:                                                            %
%                                                                            %
%    let pf,fn,eqns = trav p tm []                                           %
%                                                                            %
% makes                                                                      %
%                                                                            %
%    eqns = a list of theorems constructed by assuming each term for         %
%           which p is true, i.e., eqns = the list of rewrites.              %
%                                                                            %
%    fn   = a function which, when applied to a rewriting conversion         %
%           will reconstruct the original term in the original structure,    %
%           but with the subterms for which p is not true rewritten          %
%           using the supplied conversion.                                   %
%                                                                            %
%    pf   = a function which maps |- tm to [|- t1;...;|- tj] where each      %
%           ti is a term for which p is true.                                %
%----------------------------------------------------------------------------%

let UNWIND_ONCE_CONV =
 let REWRITES_CONV net = \tm. FIRST_CONV (lookup_term net tm) tm
 in
 let AND = mk_const (`/\\`,":bool->bool->bool")
 in
 letrec trav p tm rl =
  (let (l,r) = dest_conj tm
   in
   let (pf2,fn2,pf1,fn1,rew) = (I # (I # trav p l)) (trav p r rl)
   in
   let pf = $@ o (pf1 # pf2) o CONJ_PAIR
   in  (pf,(\rf. MK_COMB ((AP_TERM AND (fn1 rf)),(fn2 rf))),rew)
  ) ? if ((p tm) ? false)
      then ((\th.[th]),(\rf. REFL tm),(ASSUME tm . rl))
      else ((\th.[]),(\rf. rf tm),rl)
 in
  (\p tm.
   let (pf,fn,eqns) = trav p tm []
   in
   let rconv = ONCE_DEPTH_CONV (REWRITES_CONV (mk_conv_net eqns))
   in
   let th = fn rconv
   in
   let l,r = (dest_eq (concl th))
   in
   let lth = ASSUME l
   and rth = ASSUME r
   in
   let imp1 = DISCH l (EQ_MP (itlist PROVE_HYP (pf lth) th) lth)
   and imp2 = DISCH r (EQ_MP (SYM (itlist PROVE_HYP (pf rth) th)) rth)
   in  IMP_ANTISYM_RULE imp1 imp2
  ) ? failwith `UNWIND_ONCE_CONV`;;

%----------------------------------------------------------------------------%
% UNWIND_CONV : (term -> bool) -> conv                                       %
%                                                                            %
% Unwind device behaviour using line equations eqnx selected by p until no   %
% change.                                                                    %
%                                                                            %
% WARNING -- MAY LOOP!                                                       %
%                                                                            %
%    UNWIND_CONV p                                                           %
%                                                                            %
%    "t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn"                         %
%    ---->                                                                   %
%    |- t1  /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn =                     %
%       t1' /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn'                      %
%                                                                            %
% where ti' (for 1 <= i <= n) is ti rewritten with the equations             %
% eqni (1 <= i <= m). These equations are the conjuncts for which the        %
% predicate p is true. The ti terms are the conjuncts for which p is false.  %
% The rewriting is repeated until no changes take place.                     %
%----------------------------------------------------------------------------%

letrec UNWIND_CONV p tm =
 let th = UNWIND_ONCE_CONV p tm
 in  if lhs (concl th) = rhs (concl th)
     then th
     else th TRANS (UNWIND_CONV p (rhs (concl th)));;

%----------------------------------------------------------------------------%
% UNWIND_ALL_BUT_CONV : string list -> conv                                  %
%                                                                            %
% Unwind all lines (except those in the list l) as much as possible.         %
%                                                                            %
% WARNING -- MAY LOOP!                                                       %
%                                                                            %
%    UNWIND_ALL_BUT_CONV l                                                   %
%                                                                            %
%    "t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn"                         %
%    ---->                                                                   %
%    |- t1  /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn =                     %
%       t1' /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn'                      %
%                                                                            %
% where ti' (for 1 <= i <= n) is ti rewritten with the equations             %
% eqni (1 <= i <= m). These equations are those conjuncts with line name not %
% in l (and which are equations).                                            %
%----------------------------------------------------------------------------%

let UNWIND_ALL_BUT_CONV l tm =
 (let line_names = subtract (mapfilter line_name (conjuncts tm)) l
  in
  let p line = \tm. (line_name tm) = line
  in
  let itfn line = \th. th TRANS (UNWIND_CONV (p line) (rhs (concl th)))
  in
  itlist itfn line_names (REFL tm)
 ) ? failwith `UNWIND_ALL_BUT_CONV`;;

%----------------------------------------------------------------------------%
% UNWIND_AUTO_CONV : conv                                                    %
%                                                                            %
%    "?l1 ... lm. t1 /\ ... /\ tn"                                           %
%    ---->                                                                   %
%    |- (?l1 ... lm. t1 /\ ... /\ tn) = (?l1 ... lm. t1' /\ ... /\ tn')      %
%                                                                            %
% where tj' is tj rewritten with equations selected from the ti's. The       %
% function decides which equations to use by performing a loop analysis on   %
% the graph representing the dependencies of the lines. By this means the    %
% term can be unwound as much as possible without the risk of looping. The   %
% user is left to deal with the recursive equations.                         %
%                                                                            %
% There is some inefficiency in that certain lines may be used in unwinding  %
% even though they do not appear in any RHS's.                               %
%                                                                            %
% The algorithms used for loop analysis in this function have exponential    %
% complexity in the number of lines. However, steps are taken to limit this  %
% as much as possible. The internal function `next_combination' computes     %
% combinations of a list, but only as they are required. This puts the       %
% burden on time resources rather than space resources. The computation time %
% would be less if a complete list of combinations were computed in one go,  %
% but the list generated might exhaust memory. The first argument to         %
% `next_combination' is the list to find the combinations of. The second     %
% argument is the reverse of the previous combination. Initially this should %
% be the empty list. The result of a call is the reverse of the next         %
% combination. The function assumes that the source list is a set.           %
%                                                                            %
% Amongst other things, the internal function `graph_of_term' rearranges the %
% lines in the graph representation so that external lines come first. It is %
% important that the number of internal lines left unwound because of loops  %
% is minimised since it is the internal lines that are existentially         %
% quantified. Further manipulations by the user should be easier if any      %
% loops remaining do not involve existentially quantified variables.         %
%                                                                            %
% The algorithm for breaking loops is:                                       %
%                                                                            %
% 1. Isolate any loops of length one. Each such loop involves only one line  %
%    so must be broken at that line.                                         %
%                                                                            %
% 2. Eliminate from consideration the single element loops and any other     %
%    loop that will be broken by the elements in those loops.                %
%                                                                            %
% 3. Determine those loops that consist entirely of internal lines. All      %
%    other loops can be broken at an external line. A minimal set of         %
%    internal lines that break all the exclusively internal loops is then    %
%    computed. This may not be the only minimal set.                         %
%                                                                            %
% 4. Any loop broken by the minimal set of internal lines is eliminated from %
%    consideration. A list of external lines appearing in these remaining    %
%    loops is computed. From these external lines a minimal set that breaks  %
%    all the remaining loops is computed. This set will only be minimal      %
%    relative to the choice of minimal set of internals. A different choice  %
%    for the latter might have produced a smaller set of external lines.     %
%                                                                            %
% 5. The three lists of lines computed in 1-4 are concatenated and returned. %
%----------------------------------------------------------------------------%

let UNWIND_AUTO_CONV =
 let graph_of_term tm =
  (let internals,t = strip_exists tm
   in  let (lines,rhs_frees) =
          split (mapfilter ((((assert is_var) o fst o strip_comb) # frees) o
                            dest_eq o snd o strip_forall) (conjuncts t))
   in
   if (distinct lines)
   then let graph = combine (lines,map (intersect lines) rhs_frees)
        in  let (intern,extern) = partition (\p. mem (fst p) internals) graph
        in  extern @ intern
   else fail)
 in
 letrec loops_containing_line line graph chain =
  (let successors =
      map fst (filter (\(_,predecs). mem (hd chain) predecs) graph)
   in  let not_in_chain = filter (\line. not (mem line chain)) successors
   in  let new_chains = map (\line. line.chain) not_in_chain
   in  let new_loops = flat (map (loops_containing_line line graph) new_chains)
   in  if (mem line successors)
       then (rev chain).new_loops
       else new_loops)
 in
 letrec chop_at x l =
  (if (hd l = x)
   then ([],l)
   else let (l1,l2) = chop_at x (tl l)
        in  ((hd l).l1,l2))
 in
 let equal_loops lp1 lp2 =
  (if (set_equal lp1 lp2)
   then let (before,rest) = chop_at (hd lp1) lp2
        in  lp1 = (rest @ before)
   else false)
 in
 letrec distinct_loops lps =
  (if (null lps)
   then []
   else let (h.t) = lps
        in  if (exists (\lp. equal_loops lp h) t)
            then distinct_loops t
            else h.(distinct_loops t))
 in
 let loops_of_graph graph =
  (distinct_loops
    (flat
      (map (\line. loops_containing_line line graph [line]) (map fst graph))))
 in
 letrec list_after x l =
  (if (x = hd l)
   then tl l
   else list_after x (tl l))
 in
 letrec rev_front_of l n front =
  (if (n < 0) then fail
   if (n = 0) then front
   else rev_front_of (tl l) (n - 1) ((hd l).front))
 in
 letrec next_comb_at_this_level source n (h.t) =
  (let l = list_after h source
   in  if (length l > n)
       then (rev_front_of l (n + 1) []) @ t
       else next_comb_at_this_level source (n + 1) t)
 in
 let next_combination source previous =
  ((next_comb_at_this_level source 0 previous) ?
   (rev_front_of source ((length previous) + 1) []))
 in
 letrec break_all_loops lps lines previous =
  (let comb = next_combination lines previous
   in  if (forall (\lp. not (null (intersect lp comb))) lps)
       then comb
       else break_all_loops lps lines comb)
 in
 let breaks internals graph =
  (let loops = loops_of_graph graph
   in  let single_el_loops = filter (\l. length l = 1) loops
   in  let single_breaks = flat single_el_loops
   in  let loops' = filter (null o (intersect single_breaks)) loops
   in  let only_internal_loops =
              filter (\l. null (subtract l internals)) loops'
   in  let only_internal_lines = end_itlist union only_internal_loops ? []
   in  let internal_breaks =
              break_all_loops only_internal_loops only_internal_lines [] ? []
   in  let external_loops = filter (null o (intersect internal_breaks)) loops'
   in  let external_lines =
              subtract (end_itlist union external_loops ? []) internals
   in  let external_breaks =
              break_all_loops external_loops external_lines [] ? []
   in  single_breaks @ (rev internal_breaks) @ (rev external_breaks))
 in
 letrec conv dependencies used t =
  (let vars =
      map fst (filter ((\l. null (subtract l used)) o snd) dependencies)
   in  if (null vars)
       then REFL t
       else ((UNWIND_ONCE_CONV (\tm. mem (line_var tm) vars)) THENC
             (conv (filter (\p. not (mem (fst p) vars)) dependencies)
                   (used @ vars))) t)
 in
 \tm.
 (let internals = fst (strip_exists tm)
  and graph = graph_of_term tm
  in
  let brks = breaks internals graph
  in
  let dependencies =
   map (I # (\l. subtract l brks)) (filter (\p. not (mem (fst p) brks)) graph)
  in
  DEPTH_EXISTS_CONV (conv dependencies []) tm
 ) ? failwith `UNWIND_AUTO_CONV`;;

%----------------------------------------------------------------------------%
% UNWIND_ALL_BUT_RIGHT_RULE : string list -> thm -> thm                      %
%                                                                            %
% Unwind all lines (except those in the list l) as much as possible.         %
%                                                                            %
% WARNING -- MAY LOOP!                                                       %
%                                                                            %
%    UNWIND_ALL_BUT_RIGHT_RULE l                                             %
%                                                                            %
%     A |- !z1 ... zr.                                                       %
%           t =                                                              %
%           (?l1 ... lp. t1  /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn)     %
%    ---------------------------------------------------------------------   %
%     A |- !z1 ... zr.                                                       %
%           t =                                                              %
%           (?l1 ... lp. t1' /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn')    %
%                                                                            %
% where ti' (for 1 <= i <= n) is ti rewritten with the equations             %
% eqni (1 <= i <= m). These equations are those conjuncts with line name not %
% in l (and which are equations).                                            %
%----------------------------------------------------------------------------%

let UNWIND_ALL_BUT_RIGHT_RULE l th =
 CONV_RULE
  (DEPTH_FORALL_CONV (RAND_CONV (DEPTH_EXISTS_CONV (UNWIND_ALL_BUT_CONV l))))
  th
 ? failwith `UNWIND_ALL_BUT_RIGHT_RULE`;; 

%----------------------------------------------------------------------------%
% UNWIND_AUTO_RIGHT_RULE : thm -> thm                                        %
%                                                                            %
%     A |- !z1 ... zr. t = ?l1 ... lm. t1  /\ ... /\ tn                      %
%    ----------------------------------------------------                    %
%     A |- !z1 ... zr. t = ?l1 ... lm. t1' /\ ... /\ tn'                     %
%                                                                            %
% where tj' is tj rewritten with equations selected from the ti's. The       %
% function decides which equations to use by performing a loop analysis on   %
% the graph representing the dependencies of the lines. By this means the    %
% equations can be unwound as much as possible without the risk of looping.  %
% The user is left to deal with the recursive equations.                     %
%----------------------------------------------------------------------------%

let UNWIND_AUTO_RIGHT_RULE th =
 CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV UNWIND_AUTO_CONV)) th
 ? failwith `UNWIND_AUTO_RIGHT_RULE`;; 

%============================================================================%
% Rules for pruning                                                          %
%============================================================================%

%----------------------------------------------------------------------------%
% EXISTS_DEL1_CONV : conv                                                    %
%                                                                            %
%    "?x. t"                                                                 %
%    ---->                                                                   %
%    |- (?x. t) = t                                                          %
%                                                                            %
% provided x is not free in t.                                               %
%                                                                            %
% Deletes one existential quantifier.                                        %
%----------------------------------------------------------------------------%

let EXISTS_DEL1_CONV tm =
 (let x,t = dest_exists tm
  in
  let th = ASSUME t
  in
  let th1 = DISCH tm (CHOOSE (x, ASSUME tm) th)
  and th2 = DISCH t (EXISTS (tm,x) th)
  in
  IMP_ANTISYM_RULE th1 th2
 ) ? failwith `EXISTS_DEL1_CONV`;;

%----------------------------------------------------------------------------%
% EXISTS_DEL_CONV : conv                                                     %
%                                                                            %
%    "?x1 ... xn. t"                                                         %
%    ---->                                                                   %
%    |- (?x1 ... xn. t) = t                                                  %
%                                                                            %
% provided x1,...,xn are not free in t.                                      %
%                                                                            %
% Deletes existential quantifiers. The conversion fails if any of the x's    %
% appear free in t. It does not perform a partial deletion; for example, if  %
% x1 and x2 do not appear free in t but x3 does, the function will fail; it  %
% will not return |- ?x1 ... xn. t = ?x3 ... xn. t.                          %
%----------------------------------------------------------------------------%

let EXISTS_DEL_CONV tm =
 letrec terms_and_vars tm =
  (let x,tm' = dest_exists tm
   in  (tm,x).(terms_and_vars tm')
  ) ? []
 in
 (let txs = terms_and_vars tm
  in
  let t = snd (dest_exists (fst (last txs))) ? tm
  in
  let th = ASSUME t
  in
  let th1 = DISCH tm (itlist (\(tm,x). CHOOSE (x, ASSUME tm)) txs th)
  and th2 = DISCH t (itlist EXISTS txs th)
  in
  IMP_ANTISYM_RULE th1 th2
 ) ? failwith `EXISTS_DEL_CONV`;;

%----------------------------------------------------------------------------%
% EXISTS_EQN_CONV : conv                                                     %
%                                                                            %
%    "?l. !y1 ... ym. l x1 ... xn = t"                                       %
%    ---->                                                                   %
%    |- (?l. !y1 ... ym. l x1 ... xn = t) = T                                %
%                                                                            %
% provided l is not free in t. Both m and n may be zero.                     %
%----------------------------------------------------------------------------%

let EXISTS_EQN_CONV t =
 (let l,ys,t1,t2 = (I # ((I # dest_eq) o strip_forall)) (dest_exists t)
  in
  let xs = snd ((assert (curry $= l) # I) (strip_comb t1))
  in
  let t3 = list_mk_abs (xs,t2)
  in
  let th1 =
   GENL ys (RIGHT_CONV_RULE LIST_BETA_CONV (REFL (list_mk_comb (t3,xs))))
  in
  EQT_INTRO (EXISTS (t,t3) th1)
 ) ? failwith `EXISTS_EQN_CONV`;;

%----------------------------------------------------------------------------%
% PRUNE_ONCE_CONV : conv                                                     %
%                                                                            %
% Prunes one hidden variable.                                                %
%                                                                            %
%    "?l. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp"                      %
%    ---->                                                                   %
%    |- (?l. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp) =                 %
%       (t1 /\ ... /\ ti /\ t(i+1) /\ ... /\ tp)                             %
%                                                                            %
% where eq has the form "!y1 ... ym. l x1 ... xn = b" and l does not appear  %
% free in the ti's or in b. The conversion works if eq is not present,       %
% i.e. if l is not free in any of the conjuncts, but does not work if l      %
% appears free in more than one of the conjuncts. Each of m, n and p may be  %
% zero.                                                                      %
%----------------------------------------------------------------------------%

let PRUNE_ONCE_CONV tm =
 (let x,t = dest_exists tm
  in
  let l1,l2 = partition (free_in x) (conjuncts t)
  in
  if (null l1) then EXISTS_DEL1_CONV tm
  else
  let [eq] = l1
  in
  let th1 = EXISTS_EQN_CONV (mk_exists (x,eq))
  in
  if (null l2) then th1
  else
  let conj = list_mk_conj l2
  in
  let th2 = AP_THM (AP_TERM "$/\" th1) conj
  in
  let th3 = EXISTS_EQ x (CONJUNCTS_CONV (t,mk_conj(eq,conj)))
  in
  let th4 = RIGHT_CONV_RULE EXISTS_AND_CONV th3
  in
  th4 TRANS th2 TRANS (CONJUNCT1 (SPEC conj AND_CLAUSES))
 ) ? failwith `PRUNE_ONCE_CONV`;;

%----------------------------------------------------------------------------%
% PRUNE_ONE_CONV : string -> conv                                            %
%                                                                            %
% Prunes one hidden variable.                                                %
%                                                                            %
%    PRUNE_ONE_CONV `lj`                                                     %
%                                                                            %
%    "?l1 ... lj ... lr. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp"       %
%    ---->                                                                   %
%    |- (?l1 ... lj ... lr. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp) =  %
%       (?l1 ... l(j-1) l(j+1) ... lr.                                       %
%         t1 /\ ... /\ ti /\ t(i+1) /\ ... /\ tp)                            %
%                                                                            %
% where eq has the form "!y1 ... ym. lj x1 ... xn = b" and lj does not       %
% appear free in the ti's or in b. The conversion works if eq is not         %
% present, i.e. if lj is not free in any of the conjuncts, but does not work %
% if lj appears free in more than one of the conjuncts. Each of m, n and p   %
% may be zero.                                                               %
%                                                                            %
% If there is more than one line with the specified name (but with different %
% types), the one that appears outermost in the existential quantifications  %
% is pruned.                                                                 %
%----------------------------------------------------------------------------%

letrec PRUNE_ONE_CONV v tm =
 (let x,tm' = dest_exists tm
  in  if (fst (dest_var x) = v)
      then if (is_exists tm')
           then (SWAP_EXISTS_CONV THENC
                 (RAND_CONV (ABS_CONV (PRUNE_ONE_CONV v)))) tm
           else PRUNE_ONCE_CONV tm
      else RAND_CONV (ABS_CONV (PRUNE_ONE_CONV v)) tm
 ) ? failwith `PRUNE_ONE_CONV`;;

%----------------------------------------------------------------------------%
% PRUNE_SOME_CONV : string list -> conv                                      %
%                                                                            %
% Prunes several hidden variables.                                           %
%                                                                            %
%    PRUNE_SOME_CONV [`li1`;...;`lik`]                                       %
%                                                                            %
%    "?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp"           %
%    ---->                                                                   %
%    |- (?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp) =      %
%       (?li(k+1) ... lir. t1 /\ ... /\ tp)                                  %
%                                                                            %
% where for 1 <= j <= k, each eqnij has the form:                            %
%                                                                            %
%    "!y1 ... ym. lij x1 ... xn = b"                                         %
%                                                                            %
% and lij does not appear free in any of the other conjuncts or in b.        %
% The li's are related by the equation:                                      %
%                                                                            %
%    {li1,...,lik} u {li(k+1),...,lir} = {l1,...,lr}                         %
%                                                                            %
% The conversion works if one or more of the eqnij's are not present,        %
% i.e. if lij is not free in any of the conjuncts, but does not work if lij  %
% appears free in more than one of the conjuncts. p may be zero, that is,    %
% all the conjuncts may be eqnij's. In this case the body of the result will %
% be T (true). Also, for each eqnij, m and n may be zero.                    %
%                                                                            %
% If there is more than one line with a specified name (but with different   %
% types), the one that appears outermost in the existential quantifications  %
% is pruned. If such a line name is mentioned twice in the list, the two     %
% outermost occurrences of lines with that name will be pruned, and so on.   %
%----------------------------------------------------------------------------%

letrec PRUNE_SOME_CONV vs tm =
 (if (null vs)
  then REFL tm
  else (PRUNE_SOME_CONV (tl vs) THENC PRUNE_ONE_CONV (hd vs)) tm
 ) ? failwith `PRUNE_SOME_CONV`;;

%----------------------------------------------------------------------------%
% PRUNE_CONV : conv                                                          %
%                                                                            %
% Prunes all hidden variables.                                               %
%                                                                            %
%    "?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp"             %
%    ---->                                                                   %
%    |- (?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp) =        %
%       (t1 /\ ... /\ tp)                                                    %
%                                                                            %
% where each eqni has the form "!y1 ... ym. li x1 ... xn = b" and li does    %
% not appear free in any of the other conjuncts or in b. The conversion      %
% works if one or more of the eqni's are not present, i.e. if li is not free %
% in any of the conjuncts, but does not work if li appears free in more than %
% one of the conjuncts. p may be zero, that is, all the conjuncts may be     %
% eqni's. In this case the result will be simply T (true). Also, for each    %
% eqni, m and n may be zero.                                                 %
%----------------------------------------------------------------------------%

letrec PRUNE_CONV tm =
 (if (is_exists tm)
  then (RAND_CONV (ABS_CONV PRUNE_CONV) THENC PRUNE_ONCE_CONV) tm
  else REFL tm
 ) ? failwith `PRUNE_CONV`;;

%----------------------------------------------------------------------------%
% PRUNE_SOME_RIGHT_RULE : string list -> thm -> thm                          %
%                                                                            %
% Prunes several hidden variables.                                           %
%                                                                            %
%    PRUNE_SOME_RIGHT_RULE [`li1`;...;`lik`]                                 %
%                                                                            %
%     A |- !z1 ... zr.                                                       %
%           t = ?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp  %
%    ----------------------------------------------------------------------- %
%     A |- !z1 ... zr. t = ?li(k+1) ... lir. t1 /\ ... /\ tp                 %
%                                                                            %
% where for 1 <= j <= k, each eqnij has the form:                            %
%                                                                            %
%    "!y1 ... ym. lij x1 ... xn = b"                                         %
%                                                                            %
% and lij does not appear free in any of the other conjuncts or in b.        %
% The li's are related by the equation:                                      %
%                                                                            %
%    {li1,...,lik} u {li(k+1),...,lir} = {l1,...,lr}                         %
%                                                                            %
% The rule works if one or more of the eqnij's are not present, i.e. if lij  %
% is not free in any of the conjuncts, but does not work if lij appears free %
% in more than one of the conjuncts. p may be zero, that is, all the         %
% conjuncts may be eqnij's. In this case the conjunction will be transformed %
% to T (true). Also, for each eqnij, m and n may be zero.                    %
%                                                                            %
% If there is more than one line with a specified name (but with different   %
% types), the one that appears outermost in the existential quantifications  %
% is pruned. If such a line name is mentioned twice in the list, the two     %
% outermost occurrences of lines with that name will be pruned, and so on.   %
%----------------------------------------------------------------------------%

let PRUNE_SOME_RIGHT_RULE vs th =
 CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV (PRUNE_SOME_CONV vs))) th
 ? failwith `PRUNE_SOME_RIGHT_RULE`;;

%----------------------------------------------------------------------------%
% PRUNE_RIGHT_RULE : thm -> thm                                              %
%                                                                            %
% Prunes all hidden variables.                                               %
%                                                                            %
%     A |- !z1 ... zr.                                                       %
%           t = ?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp    %
%    ---------------------------------------------------------------------   %
%     A |- !z1 ... zr. t = t1 /\ ... /\ tp                                   %
%                                                                            %
% where each eqni has the form "!y1 ... ym. li x1 ... xn = b" and li does    %
% not appear free in any of the other conjuncts or in b. The rule works if   %
% one or more of the eqni's are not present, i.e. if li is not free in any   %
% of the conjuncts, but does not work if li appears free in more than one of %
% the conjuncts. p may be zero, that is, all the conjuncts may be eqni's. In %
% this case the result will be simply T (true). Also, for each eqni, m and n %
% may be zero.                                                               %
%----------------------------------------------------------------------------%

let PRUNE_RIGHT_RULE th =
 CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV PRUNE_CONV)) th
 ? failwith `PRUNE_RIGHT_RULE`;;

%============================================================================%
% Functions which do unfolding, unwinding and pruning                        %
%============================================================================%

%----------------------------------------------------------------------------%
% EXPAND_ALL_BUT_CONV : string list -> thm list -> conv                      %
%                                                                            %
% Unfold with the theorems thl, then unwind all lines (except those in the   %
% list) as much as possible and prune the unwound lines.                     %
%                                                                            %
% WARNING -- MAY LOOP!                                                       %
%                                                                            %
%    EXPAND_ALL_BUT_CONV [`li(k+1)`;...;`lim`] thl                           %
%                                                                            %
%    "?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn"               %
%    ---->                                                                   %
%    B |- (?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn) =        %
%         (?li(k+1) ... lim. t1' /\ ... /\ tn')                              %
%                                                                            %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the   %
% theorems used for rewriting. If none of the rewrites are applicable to a   %
% conjunct, it is unchanged. Those conjuncts that after rewriting are        %
% equations for the lines li1,...,lik (they are denoted by ui1,...,uik) are  %
% used to unwind and the lines li1,...,lik are then pruned. If this is not   %
% possible the function will fail. It is also possible for the function to   %
% attempt unwinding indefinitely (to loop).                                  %
%                                                                            %
% The li's are related by the equation:                                      %
%                                                                            %
%    {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm}                         %
%----------------------------------------------------------------------------%

let EXPAND_ALL_BUT_CONV l thl tm =
 (DEPTH_EXISTS_CONV ((UNFOLD_CONV thl) THENC (UNWIND_ALL_BUT_CONV l)) THENC
  (\tm. let var_names = map (fst o dest_var) (fst (strip_exists tm))
        in  PRUNE_SOME_CONV (subtract var_names l) tm))
 tm
 ? failwith `EXPAND_ALL_BUT_CONV`;;

%----------------------------------------------------------------------------%
% EXPAND_AUTO_CONV : thm list -> conv                                        %
%                                                                            %
% Unfold with the theorems thl, then unwind as much as possible and prune    %
% the unwound lines.                                                         %
%                                                                            %
%    EXPAND_AUTO_CONV thl                                                    %
%                                                                            %
%    "?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn"               %
%    ---->                                                                   %
%    B |- (?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn) =        %
%         (?li(k+1) ... lim. t1' /\ ... /\ tn')                              %
%                                                                            %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the   %
% theorems used for rewriting. If none of the rewrites are applicable to a   %
% conjunct, it is unchanged. After rewriting the function decides which of   %
% the resulting terms to use for unwinding by performing a loop analysis on  %
% the graph representing the dependencies of the lines.                      %
%                                                                            %
% Suppose the function decides to unwind the lines li1,...,lik using the     %
% terms ui1',...,uik' respectively. Then after unwinding the lines           %
% li1,...,lik are pruned (provided they have been eliminated from the RHS's  %
% of the conjuncts that are equations, and from the whole of any other       %
% conjuncts) resulting in the elimination of ui1',...,uik'.                  %
%                                                                            %
% The li's are related by the equation:                                      %
%                                                                            %
%    {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm}                         %
%                                                                            %
% The loop analysis allows the term to be unwound as much as possible        %
% without the risk of looping. The user is left to deal with the recursive   %
% equations.                                                                 %
%----------------------------------------------------------------------------%

let EXPAND_AUTO_CONV thl tm =
 (DEPTH_EXISTS_CONV (UNFOLD_CONV thl) THENC
  UNWIND_AUTO_CONV THENC
  (\tm. let internals,conjs = (I # conjuncts) (strip_exists tm)
        in
        let vars =
         flat (map (frees o (\tm. rhs tm ? tm) o snd o strip_forall) conjs)
        in
        PRUNE_SOME_CONV (map (fst o dest_var) (subtract internals vars)) tm))
 tm
 ? failwith `EXPAND_AUTO_CONV`;;

%----------------------------------------------------------------------------%
% EXPAND_ALL_BUT_RIGHT_RULE : string list -> thm list -> thm -> thm          %
%                                                                            %
% Unfold with the theorems thl, then unwind all lines (except those in the   %
% list) as much as possible and prune the unwound lines.                     %
%                                                                            %
% WARNING -- MAY LOOP!                                                       %
%                                                                            %
%    EXPAND_ALL_BUT_RIGHT_RULE [`li(k+1)`;...;`lim`] thl                     %
%                                                                            %
%         A |- !z1 ... zr.                                                   %
%               t = ?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn  %
%    ----------------------------------------------------------------------- %
%     B u A |- !z1 ... zr. t = ?li(k+1) ... lim. t1' /\ ... /\ tn'           %
%                                                                            %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the   %
% theorems used for rewriting. If none of the rewrites are applicable to a   %
% conjunct, it is unchanged. Those conjuncts that after rewriting are        %
% equations for the lines li1,...,lik (they are denoted by ui1,...,uik) are  %
% used to unwind and the lines li1,...,lik are then pruned. If this is not   %
% possible the function will fail. It is also possible for the function to   %
% attempt unwinding indefinitely (to loop).                                  %
%                                                                            %
% The li's are related by the equation:                                      %
%                                                                            %
%    {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm}                         %
%----------------------------------------------------------------------------%

let EXPAND_ALL_BUT_RIGHT_RULE l thl th =
 CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV (EXPAND_ALL_BUT_CONV l thl))) th
 ? failwith `EXPAND_ALL_BUT_RIGHT_RULE`;;

%----------------------------------------------------------------------------%
% EXPAND_AUTO_RIGHT_RULE : thm list -> thm -> thm                            %
%                                                                            %
% Unfold with the theorems thl, then unwind as much as possible and prune    %
% the unwound lines.                                                         %
%                                                                            %
%    EXPAND_AUTO_RIGHT_RULE thl                                              %
%                                                                            %
%         A |- !z1 ... zr.                                                   %
%               t = ?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn  %
%    ----------------------------------------------------------------------- %
%     B u A |- !z1 ... zr. t = ?li(k+1) ... lim. t1' /\ ... /\ tn'           %
%                                                                            %
% where each ti' is the result of rewriting ti with the theorems in thl. The %
% set of assumptions B is the union of the instantiated assumptions of the   %
% theorems used for rewriting. If none of the rewrites are applicable to a   %
% conjunct, it is unchanged. After rewriting the function decides which of   %
% the resulting terms to use for unwinding by performing a loop analysis on  %
% the graph representing the dependencies of the lines.                      %
%                                                                            %
% Suppose the function decides to unwind the lines li1,...,lik using the     %
% terms ui1',...,uik' respectively. Then after unwinding the lines           %
% li1,...,lik are pruned (provided they have been eliminated from the RHS's  %
% of the conjuncts that are equations, and from the whole of any other       %
% conjuncts) resulting in the elimination of ui1',...,uik'.                  %
%                                                                            %
% The li's are related by the equation:                                      %
%                                                                            %
%    {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm}                         %
%                                                                            %
% The loop analysis allows the term to be unwound as much as possible        %
% without the risk of looping. The user is left to deal with the recursive   %
% equations.                                                                 %
%----------------------------------------------------------------------------%

let EXPAND_AUTO_RIGHT_RULE thl th =
 CONV_RULE (DEPTH_FORALL_CONV (RAND_CONV (EXPAND_AUTO_CONV thl))) th
 ? failwith `EXPAND_AUTO_RIGHT_RULE`;;