/usr/share/hyphy/TemplateBatchFiles/BS2007.bf is in hyphy-common 2.2.7+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | /* 1. include a file to define the genetic code
Note the use of base directory and path forming variables to make this analysis
independent of directory placement
*/
incFileName = HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"TemplateModels"+DIRECTORY_SEPARATOR+"chooseGeneticCode.def";
ExecuteCommands ("#include \""+incFileName+"\";");
/* 2. load a codon partition */
SetDialogPrompt ("Please locate a coding alignment:");
DataSet ds = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter filteredData = CreateFilter (ds,3,"","",GeneticCodeExclusions);
coding_path = LAST_FILE_PATH;
fprintf (stdout, "\nLoaded a ", filteredData.species, " sequence alignment with ", filteredData.sites, " codons from\n",coding_path,"\n");
/* 3. include a file to prompt for a tree */
incFileName = HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"queryTree.bf";
ExecuteCommands ("#include \""+incFileName+"\";");
/* 4. Compute nucleotide counts by position for the F3x4 estimator */
COUNT_GAPS_IN_FREQUENCIES = 0;
HarvestFrequencies (baseFreqs,filteredData,3,1,1);
COUNT_GAPS_IN_FREQUENCIES = 1;
fprintf (stdout, "\nBase composition:\n\tA: ", Format (baseFreqs[0][0],10,5),",",Format (baseFreqs[0][1],10,5),",",Format (baseFreqs[0][2],10,5),
"\n\tC: ", Format (baseFreqs[1][0],10,5),",",Format (baseFreqs[1][1],10,5),",",Format (baseFreqs[1][2],10,5),
"\n\tG: ", Format (baseFreqs[2][0],10,5),",",Format (baseFreqs[2][1],10,5),",",Format (baseFreqs[2][2],10,5),
"\n\tT: ", Format (baseFreqs[3][0],10,5),",",Format (baseFreqs[3][1],10,5),",",Format (baseFreqs[3][2],10,5), "\n");
/* 6. define the GY94 rate matrix; for now each branch will have it's own
dS and dN, we will constrain them later */
global kappa_inv = 1;
ModelMatrixDimension = 64;
for (h = 0; h<64; h=h+1)
{
if (_Genetic_Code[h]==10) /* stop codon */
{
ModelMatrixDimension = ModelMatrixDimension-1;
}
}
GY_Matrix = {ModelMatrixDimension,ModelMatrixDimension};
hshift = 0;
for (h=0; h<64; h=h+1)
{
if (_Genetic_Code[h]==10)
{
hshift = hshift+1;
}
else
{
vshift = hshift;
for (v = h+1; v<64; v=v+1)
{
diff = v-h;
if (_Genetic_Code[v]==10)
{
vshift = vshift+1;
}
else
{
if ((h$4==v$4)||((diff%4==0)&&(h$16==v$16))||(diff%16==0)) /* one step */
{
if (h$4==v$4)
{
transition = v%4;
transition2= h%4;
}
else
{
if(diff%16==0)
{
transition = v$16;
transition2= h$16;
}
else
{
transition = v%16$4;
transition2= h%16$4;
}
}
if (_Genetic_Code[0][h]==_Genetic_Code[0][v]) /* synonymous */
{
if (Abs(transition-transition2)%2) /* transversion */
{
GY_Matrix[h-hshift][v-vshift] := kappa_inv*synRate;
GY_Matrix[v-vshift][h-hshift] := kappa_inv*synRate;
}
else
{
GY_Matrix[h-hshift][v-vshift] := synRate;
GY_Matrix[v-vshift][h-hshift] := synRate;
}
}
else
{
if (Abs(transition-transition2)%2) /* transversion */
{
GY_Matrix[h-hshift][v-vshift] := kappa_inv*nonSynRate;
GY_Matrix[v-vshift][h-hshift] := kappa_inv*nonSynRate;
}
else
{
GY_Matrix[h-hshift][v-vshift] := nonSynRate;
GY_Matrix[v-vshift][h-hshift] := nonSynRate;
}
}
}
}
}
}
}
/*8. build codon frequencies (use the F3x4 estimator) */
PIStop = 1.0;
codonFreqs = {ModelMatrixDimension,1};
hshift = 0;
for (h=0; h<64; h=h+1)
{
first = h$16;
second = h%16$4;
third = h%4;
if (_Genetic_Code[h]==10)
{
hshift = hshift+1;
PIStop = PIStop-baseFreqs[first][0]*baseFreqs[second][1]*baseFreqs[third][2];
continue;
}
codonFreqs[h-hshift]=baseFreqs[first][0]*baseFreqs[second][1]*baseFreqs[third][2];
}
codonFreqs = codonFreqs*(1.0/PIStop);
/*9. define the codon model */
Model GY_Model = (GY_Matrix,codonFreqs,1);
/*10. Define the tree and pick the foreground branch, displaying a tree window to facilitate selection;
the latter step is executed for 2 of 3 model choices */
Tree givenTree1 = treeString;
Tree givenTree2 = treeString;
Tree givenTree3 = treeString;
Tree givenTree4 = treeString;
USE_LAST_RESULTS = 0;
OPTIMIZATION_METHOD = 4;
/* Approximate kappa and branch lengths using an HKY85 fit */
HKY85_Matrix = {{*,t*kappa_inv,t,t*kappa_inv}
{t*kappa_inv,*,kappa_inv*t,t}
{t,t*kappa_inv,*,kappa_inv*t}
{t*kappa_inv,t,kappa_inv*t,*}};
HarvestFrequencies (nucFreqs,ds,1,1,1);
Model HKY85_Model = (HKY85_Matrix,nucFreqs,1);
Tree nucTree = treeString;
DataSetFilter nucData = CreateFilter (ds,1);
fprintf (stdout, "Obtaining nucleotide branch lengths and kappa to be used as starting values...\n");
LikelihoodFunction nuc_lf = (nucData,nucTree);
Optimize (nuc_mle,nuc_lf);
fprintf (stdout, "\n", Format (nucTree,1,1), "\nkappa=", Format (1/kappa_inv,8,3), "\n");
USE_LAST_RESULTS = 1;
mxTreeSpec = {5,1};
mxTreeSpec [0] = "nucTree";
mxTreeSpec [1] = "8240";
mxTreeSpec [2] = "10,40,-10,-175,1";
mxTreeSpec [3] = "";
mxTreeSpec [4] = "";
OpenWindow (TREEWINDOW, mxTreeSpec,"(SCREEN_WIDTH-50)/2;(SCREEN_HEIGHT-50)/2;30+(SCREEN_WIDTH-30)/2;45");
leafNodes = TipCount (givenTree);
internalNodes = BranchCount(givenTree);
choiceMatrix = {internalNodes+leafNodes,2};
for (bc=0; bc<internalNodes; bc=bc+1)
{
choiceMatrix[bc][0] = BranchName(givenTree,bc);
choiceMatrix[bc][1] = "Internal Branch Rooting " + givenTree[bc];
}
for (bc=0; bc<leafNodes; bc=bc+1)
{
choiceMatrix[bc+internalNodes][0] = TipName(givenTree,bc);
choiceMatrix[bc+internalNodes][1] = "Leaf node " + choiceMatrix[bc+internalNodes][0];
}
ChoiceList (stOption,"Choose the foreground branch",0,NO_SKIP,choiceMatrix);
if (stOption[0] < 0)
{
return -1;
}
fprintf (stdout, "\n\n", Columns (stOption)," foreground branch(es) set to: ", "\n");
for (bc = 0; bc < Columns (stOption); bc = bc + 1)
{
fprintf (stdout, choiceMatrix[stOption[bc]][0], "\n");
}
OpenWindow (CLOSEWINDOW, "Tree nucTree");
/* 15. Constrain dS and dN in the tree to based upon different models */
global omega_1 = 0.25;
global omega_2 = 0.5;
global omega_3 = 1.5;
omega_1 :< 1;
omega_2 :< 1;
omega_3 :> 1;
ClearConstraints (givenTree1);
ClearConstraints (givenTree2);
ClearConstraints (givenTree3);
ClearConstraints (givenTree4);
/* 16. define and optimize the likelihood function */
bNames = BranchName (givenTree,-1);
nucBL = BranchLength (nucTree,-1);
for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
{
ExecuteCommands ("givenTree1."+bNames[bc]+".synRate =nucTree."+bNames[bc]+".t;");
ExecuteCommands ("givenTree1."+bNames[bc]+".nonSynRate =nucTree."+bNames[bc]+".t;");
ExecuteCommands ("givenTree2."+bNames[bc]+".synRate =nucTree."+bNames[bc]+".t;");
ExecuteCommands ("givenTree2."+bNames[bc]+".nonSynRate =nucTree."+bNames[bc]+".t;");
ExecuteCommands ("givenTree3."+bNames[bc]+".synRate =nucTree."+bNames[bc]+".t;");
ExecuteCommands ("givenTree3."+bNames[bc]+".nonSynRate =nucTree."+bNames[bc]+".t;");
ExecuteCommands ("givenTree4."+bNames[bc]+".synRate =nucTree."+bNames[bc]+".t;");
ExecuteCommands ("givenTree4."+bNames[bc]+".nonSynRate =nucTree."+bNames[bc]+".t;");
}
codBL = BranchLength (givenTree1,-1);
for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
{
if (nucBL[bc]>0)
{
scalingFactor = nucBL[bc]/codBL[bc];
ExecuteCommands ("givenTree1."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
ExecuteCommands ("givenTree1."+bNames[bc]+".nonSynRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
ExecuteCommands ("givenTree2."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
ExecuteCommands ("givenTree2."+bNames[bc]+".nonSynRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
ExecuteCommands ("givenTree3."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
ExecuteCommands ("givenTree3."+bNames[bc]+".nonSynRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
ExecuteCommands ("givenTree4."+bNames[bc]+".synRate =nucTree."+bNames[bc]+".t;");
ExecuteCommands ("givenTree4."+bNames[bc]+".nonSynRate =nucTree."+bNames[bc]+".t;");
}
}
for (bc = 0; bc < Columns (stOption); bc = bc + 1)
{
bName = choiceMatrix[stOption[bc]][0];
ExecuteCommands ("givenTree1."+bName+".nonSynRate:=omega_1*givenTree1."+bName+".synRate");
ExecuteCommands ("givenTree2."+bName+".nonSynRate:=omega_2*givenTree2."+bName+".synRate");
ExecuteCommands ("givenTree3."+bName+".nonSynRate:=givenTree3."+bName+".synRate");
ExecuteCommands ("givenTree4."+bName+".nonSynRate:=omega_3*givenTree4."+bName+".synRate");
}
OPTIMIZATION_PRECISION = 0.001;
global P_1 = 1/4;
global P_2 = 1/3;
global P_3 = 1/2;
P_1 :< 1;
P_2 :< 1;
P_3 :< 1;
fprintf (stdout, "\nFitting the model with selection...\n");
LikelihoodFunction lf = (filteredData, givenTree1, filteredData, givenTree2,filteredData, givenTree3,filteredData, givenTree4,
"Log(P_1*SITE_LIKELIHOOD[0]+(1-P_1)*P_2*SITE_LIKELIHOOD[1]+(1-P_1)(1-P_2)*P_3*SITE_LIKELIHOOD[2]+(1-P_1)(1-P_2)(1-P_3)*SITE_LIKELIHOOD[3])");
Optimize (mles,lf);
fprintf (stdout, lf);
|