This file is indexed.

/usr/share/hyphy/TemplateBatchFiles/BS2007.bf is in hyphy-common 2.2.7+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/* 1. include a file to define the genetic code
   Note the use of base directory and path forming variables to make this analysis 
   independent of directory placement
 */

incFileName = HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"TemplateModels"+DIRECTORY_SEPARATOR+"chooseGeneticCode.def";
ExecuteCommands  ("#include \""+incFileName+"\";");

/* 2. load a codon partition  */

SetDialogPrompt 			("Please locate a coding alignment:");
DataSet 	  ds		   = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter filteredData = CreateFilter (ds,3,"","",GeneticCodeExclusions);
coding_path = LAST_FILE_PATH;

fprintf (stdout, "\nLoaded a ", filteredData.species, " sequence alignment with ", filteredData.sites, " codons from\n",coding_path,"\n");

/* 3. include a file to prompt for a tree */

incFileName = HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"queryTree.bf";
ExecuteCommands  ("#include \""+incFileName+"\";");

/* 4. Compute nucleotide counts by position for the F3x4 estimator */

COUNT_GAPS_IN_FREQUENCIES = 0;
HarvestFrequencies (baseFreqs,filteredData,3,1,1);
COUNT_GAPS_IN_FREQUENCIES = 1;

fprintf (stdout, "\nBase composition:\n\tA: ", Format (baseFreqs[0][0],10,5),",",Format (baseFreqs[0][1],10,5),",",Format (baseFreqs[0][2],10,5),
								    "\n\tC: ", Format (baseFreqs[1][0],10,5),",",Format (baseFreqs[1][1],10,5),",",Format (baseFreqs[1][2],10,5), 
									"\n\tG: ", Format (baseFreqs[2][0],10,5),",",Format (baseFreqs[2][1],10,5),",",Format (baseFreqs[2][2],10,5), 
									"\n\tT: ", Format (baseFreqs[3][0],10,5),",",Format (baseFreqs[3][1],10,5),",",Format (baseFreqs[3][2],10,5), "\n");
										  


/* 6. define the GY94 rate matrix; for now each branch will have it's own
   dS and dN, we will constrain them later */

global kappa_inv = 1;

ModelMatrixDimension = 64;
for (h = 0; h<64; h=h+1) 
{
	if (_Genetic_Code[h]==10) /* stop codon */
	{
		ModelMatrixDimension = ModelMatrixDimension-1;
	}
}

GY_Matrix = {ModelMatrixDimension,ModelMatrixDimension};
hshift = 0;
for (h=0; h<64; h=h+1)
{
	if (_Genetic_Code[h]==10) 
	{
		hshift = hshift+1;
	}
	else
	{
		vshift = hshift;
		for (v = h+1; v<64; v=v+1)
		{
			diff = v-h;
			if (_Genetic_Code[v]==10) 
			{
				vshift = vshift+1;
			}
			else
			{
			  	if ((h$4==v$4)||((diff%4==0)&&(h$16==v$16))||(diff%16==0)) /* one step */
			  	{
			  		if (h$4==v$4)
			  		{
			  			transition = v%4;
			  			transition2= h%4;
			  		}
			  		else
			  		{
			  			if(diff%16==0)
			  			{
			  				transition = v$16;
			  				transition2= h$16;
			  			}
			  			else
			  			{
			  				transition = v%16$4;
			  				transition2= h%16$4;
			  			}
			  		}
			  		if (_Genetic_Code[0][h]==_Genetic_Code[0][v]) /* synonymous */
			  		{
			  			if (Abs(transition-transition2)%2) /* transversion */
			  			{
			  				GY_Matrix[h-hshift][v-vshift] := kappa_inv*synRate;
			  				GY_Matrix[v-vshift][h-hshift] := kappa_inv*synRate;
			  			}
			  			else
			  			{
			  				GY_Matrix[h-hshift][v-vshift] := synRate;
			  				GY_Matrix[v-vshift][h-hshift] := synRate;			  			
			  			}
				  	}
			  		else
			  		{
			  			if (Abs(transition-transition2)%2) /* transversion */
			  			{
			  				GY_Matrix[h-hshift][v-vshift] := kappa_inv*nonSynRate;
			  				GY_Matrix[v-vshift][h-hshift] := kappa_inv*nonSynRate;
			  			}
			  			else
			  			{
			  				GY_Matrix[h-hshift][v-vshift] := nonSynRate;
			  				GY_Matrix[v-vshift][h-hshift] := nonSynRate;			  			
			  			}
		  			}
			  	}
			 }
		 }
	}	
}

/*8. build codon frequencies (use the F3x4 estimator) */

PIStop = 1.0;
codonFreqs = {ModelMatrixDimension,1};
hshift = 0;

for (h=0; h<64; h=h+1)
{
	first  = h$16;
	second = h%16$4;
	third  = h%4;
	if (_Genetic_Code[h]==10) 
	{
		hshift = hshift+1;
		PIStop = PIStop-baseFreqs[first][0]*baseFreqs[second][1]*baseFreqs[third][2];
		continue; 
	}
	codonFreqs[h-hshift]=baseFreqs[first][0]*baseFreqs[second][1]*baseFreqs[third][2];
}

codonFreqs = codonFreqs*(1.0/PIStop);

/*9. define the codon model */

Model GY_Model = (GY_Matrix,codonFreqs,1);

/*10. Define the tree and pick the foreground branch, displaying a tree window to facilitate selection; 
the latter step is executed for 2 of 3 model choices */

Tree 	  givenTree1 	= treeString;
Tree 	  givenTree2	= treeString;
Tree 	  givenTree3	= treeString;
Tree	  givenTree4	= treeString;

USE_LAST_RESULTS    = 0;
OPTIMIZATION_METHOD = 4;

/* Approximate kappa and branch lengths using an HKY85 fit */

HKY85_Matrix = {{*,t*kappa_inv,t,t*kappa_inv}
				{t*kappa_inv,*,kappa_inv*t,t}
				{t,t*kappa_inv,*,kappa_inv*t}
				{t*kappa_inv,t,kappa_inv*t,*}};
			
HarvestFrequencies (nucFreqs,ds,1,1,1);
Model HKY85_Model = (HKY85_Matrix,nucFreqs,1);

Tree		  nucTree = treeString;
DataSetFilter nucData = CreateFilter (ds,1);

fprintf 					 (stdout, "Obtaining nucleotide branch lengths and kappa to be used as starting values...\n");
LikelihoodFunction	nuc_lf = (nucData,nucTree);
Optimize					 (nuc_mle,nuc_lf);
fprintf 					 (stdout, "\n", Format (nucTree,1,1), "\nkappa=", Format (1/kappa_inv,8,3), "\n");

USE_LAST_RESULTS = 1;

mxTreeSpec = {5,1};
mxTreeSpec [0] = "nucTree";
mxTreeSpec [1] = "8240";
mxTreeSpec [2] = "10,40,-10,-175,1";
mxTreeSpec [3] = "";
mxTreeSpec [4] = "";
OpenWindow 		(TREEWINDOW, mxTreeSpec,"(SCREEN_WIDTH-50)/2;(SCREEN_HEIGHT-50)/2;30+(SCREEN_WIDTH-30)/2;45");				

leafNodes	  = TipCount   (givenTree);			
internalNodes = BranchCount(givenTree);

choiceMatrix = {internalNodes+leafNodes,2};
for (bc=0; bc<internalNodes; bc=bc+1)
{
	choiceMatrix[bc][0] = BranchName(givenTree,bc);
	choiceMatrix[bc][1] = "Internal Branch Rooting " + givenTree[bc];
}
for (bc=0; bc<leafNodes; bc=bc+1)
{
	choiceMatrix[bc+internalNodes][0] = TipName(givenTree,bc);
	choiceMatrix[bc+internalNodes][1] = "Leaf node " + choiceMatrix[bc+internalNodes][0];
}

ChoiceList  (stOption,"Choose the foreground branch",0,NO_SKIP,choiceMatrix);

if (stOption[0] < 0)
{
	return -1;
}

fprintf (stdout, "\n\n", Columns (stOption)," foreground branch(es) set to: ", "\n");
for (bc = 0; bc < Columns (stOption); bc = bc + 1)
{
	fprintf (stdout, choiceMatrix[stOption[bc]][0], "\n");
}
OpenWindow (CLOSEWINDOW, "Tree nucTree");
	
/* 15. Constrain dS and dN in the tree to based upon different models */

global omega_1 = 0.25;
global omega_2 = 0.5;
global omega_3 = 1.5;

omega_1 		:< 1;
omega_2 		:< 1;
omega_3 		:> 1;

ClearConstraints (givenTree1);
ClearConstraints (givenTree2);
ClearConstraints (givenTree3);
ClearConstraints (givenTree4);

/* 16. define and optimize the likelihood function */

bNames = BranchName   (givenTree,-1);
nucBL  = BranchLength (nucTree,-1);

for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
{
	ExecuteCommands ("givenTree1."+bNames[bc]+".synRate		=nucTree."+bNames[bc]+".t;");
	ExecuteCommands ("givenTree1."+bNames[bc]+".nonSynRate	=nucTree."+bNames[bc]+".t;");
	ExecuteCommands ("givenTree2."+bNames[bc]+".synRate		=nucTree."+bNames[bc]+".t;");
	ExecuteCommands ("givenTree2."+bNames[bc]+".nonSynRate	=nucTree."+bNames[bc]+".t;");
	ExecuteCommands ("givenTree3."+bNames[bc]+".synRate		=nucTree."+bNames[bc]+".t;");
	ExecuteCommands ("givenTree3."+bNames[bc]+".nonSynRate	=nucTree."+bNames[bc]+".t;");
	ExecuteCommands ("givenTree4."+bNames[bc]+".synRate		=nucTree."+bNames[bc]+".t;");
	ExecuteCommands ("givenTree4."+bNames[bc]+".nonSynRate	=nucTree."+bNames[bc]+".t;");
}

codBL  = BranchLength (givenTree1,-1);

for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
{
	if (nucBL[bc]>0)
	{
		scalingFactor = nucBL[bc]/codBL[bc];
		ExecuteCommands ("givenTree1."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
		ExecuteCommands ("givenTree1."+bNames[bc]+".nonSynRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
		ExecuteCommands ("givenTree2."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
		ExecuteCommands ("givenTree2."+bNames[bc]+".nonSynRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
		ExecuteCommands ("givenTree3."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
		ExecuteCommands ("givenTree3."+bNames[bc]+".nonSynRate=nucTree."+bNames[bc]+".t*"+scalingFactor+";");
		ExecuteCommands ("givenTree4."+bNames[bc]+".synRate		=nucTree."+bNames[bc]+".t;");
		ExecuteCommands ("givenTree4."+bNames[bc]+".nonSynRate	=nucTree."+bNames[bc]+".t;");
	}
}

for (bc = 0; bc < Columns (stOption); bc = bc + 1)
{
	bName = choiceMatrix[stOption[bc]][0];
	ExecuteCommands ("givenTree1."+bName+".nonSynRate:=omega_1*givenTree1."+bName+".synRate");
	ExecuteCommands ("givenTree2."+bName+".nonSynRate:=omega_2*givenTree2."+bName+".synRate");
	ExecuteCommands ("givenTree3."+bName+".nonSynRate:=givenTree3."+bName+".synRate");
	ExecuteCommands ("givenTree4."+bName+".nonSynRate:=omega_3*givenTree4."+bName+".synRate");
}


OPTIMIZATION_PRECISION = 0.001;

global P_1 = 1/4;
global P_2 = 1/3;
global P_3 = 1/2;
P_1 :< 1;
P_2 :< 1;
P_3 :< 1;


fprintf (stdout, "\nFitting the model with selection...\n");

LikelihoodFunction lf  = (filteredData, givenTree1, filteredData, givenTree2,filteredData, givenTree3,filteredData, givenTree4,
						  "Log(P_1*SITE_LIKELIHOOD[0]+(1-P_1)*P_2*SITE_LIKELIHOOD[1]+(1-P_1)(1-P_2)*P_3*SITE_LIKELIHOOD[2]+(1-P_1)(1-P_2)(1-P_3)*SITE_LIKELIHOOD[3])");
						  

Optimize 		    (mles,lf);
fprintf 			(stdout, lf);