/usr/share/hyphy/TemplateBatchFiles/MEDS.bf is in hyphy-common 2.2.7+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 | RequireVersion ("2.0020101201");
/*----------Branch-Site Directional Selection Analysis---------*/
/*Usage: Takes an alignment and a tree (with foreground branches tagged with "{FG}"), a nucleotide model
string ("010010" for HKY85, "012345" for REV), a range of sites to test, and a site reference shift,
which allows for alignments that don't start where they should*/
/*--Analysis Setup--*/
fprintf (stdout, "\n[RUNNING MEDS (Models for Episodic Directional Selection). For help please refer to http://www.hyphy.org/wiki/MEDS ]\n");
nucModelString = "012345";
SetDialogPrompt ("Load a coding alignment");
/*---------Loading alignment and tree files-------------------------------------*/
DataSet myData = ReadDataFile (PROMPT_FOR_FILE);
fprintf (stdout, "Loaded ", myData.species, " sequences with ", myData.sites, " sites from ",LAST_FILE_PATH,"\n");
SetDialogPrompt ("Load an annotated tree file");
fscanf (PROMPT_FOR_FILE, "Raw", treeString);
SetDialogPrompt ("Specify the output (.csv) file");
fprintf (PROMPT_FOR_FILE, CLEAR_FILE);
outputFile = LAST_FILE_PATH;
siteShift = -1; /*Used to standardize codon positions. Remember HyPhy indexes from 0, so siteShift = -1 will report first codon as 1*/
/*--Code Overview:--*/
/*
1) Estimate branch lengths by fitting a custom nuc model. These are used throughout.
2) Fit foreground and background codon models, with all parameters except the nonsyn rate tied
between fg and bg. This is to get estimates of the nucleotide transition rates from a codon model.
3) Site by site FEL directional selection analysis: Nuc transition rates are fixed from 2).
For each site, fit a positive selection null model that allows freely variable syn rate,
and nonsynBG rates but with nonsynFG constrained to equal syn. Fit a second positive selection
model, with nonsynFG unconstrained. An LRT is used to determine whether the unconstrained
positive selection model significantly outperformed the null. So far this is only positive
selection. The unconstrained positive selection model will be used as the null for tests of
directional selection. For each of 20 AAs, fit a seperate model that allows a rate multiplier
favouring substitutions towards that AA. This produces 20 nested models, so a set Bonferroni
corrected LRTs can be used to identify evidence of direction selection. This batch file outputs
p-values BEFORE Bonferroni correction.
*/
/*--Code--*/
ACCEPT_ROOTED_TREES=1;
_DO_TREE_REBALANCE_ = 0;
COUNT_GAPS_IN_FREQUENCIES = 0;
LoadFunctionLibrary ("chooseGeneticCode");
countSenseCodons = + ({64,1}["IsStop(_MATRIX_ELEMENT_ROW_,_Genetic_Code)==0"]);
/*---------Estimate Branch Lengths Using Nucleotide Model-----------------------*/
DataSetFilter myFilter = CreateFilter (myData,1);
HarvestFrequencies (obsNucFreqs, myFilter, 1, 1, 1);
/*---------Begin Setting up custom nuc model---------------*/
/*The parameters that the nucModelString indexes into*/
nucBiasMult = {{"AC*","","AT*","CG*","CT*","GT*"}};
/*Initialises and populates a matrix of string values nuc multipliers*/
customRateString = {{"*","","",""}
{"","*","",""}
{"","","*",""}
{"","","","*"}
};
for (i=0; i<3; i+=1)
{
shift = -(i == 0);
for(j=i+1;j<4;j += 1)
{
customRateString[i][j] = Eval ("nucBiasMult["+nucModelString[j+i+shift]+"]");
customRateString[j][i] = customRateString[i][j];
}
}
global AC = 1; global AT = 1; global CG = 1; global CT = 1; global GT = 1;
/*To set up a nucleotide model, populate a string version of the rate matrix*/
modelDefString = "";
modelDefString * 16384;
modelDefString* "{" ;
for (i=0; i<4; i += 1)
{
modelDefString*("{");
for(j=0;j<4;j=j+1)
{
if(j>0)
{
modelDefString*(",");
}
if(i==j)
{
modelDefString*("*");
}
else
{
modelDefString*(customRateString[i][j]+"t");
}
}
modelDefString*"}";
}
modelDefString*"}";
modelDefString*0;
ExecuteCommands("nucModel = " + modelDefString);
Model RT = (nucModel, obsNucFreqs);
/*This is in case the treestring came with model assignments!*/
Model FG = (nucModel, obsNucFreqs);
/*-----------End of defining nuc model------------*/
/*FIDDLING WITH THE ROOTING. This (commented out) code reroots on an internal branch and is only certain to work on trees with external branches marked FG. This is removed and now only rooted trees are accepted.*/
/*
Tree tempTree = treeString;
treeString = RerootTree(treeString,BranchName(tempTree,0));
*/
Tree givenTree = treeString;
fprintf (stdout, "\n\n[PHASE 1. Estimating Branch Lengths using a Nucleotide Model]\n");
LikelihoodFunction theLikFun = (myFilter, givenTree, obsFreqs);
Optimize (paramValues, theLikFun);
fprintf (stdout, theLikFun);
/*---------end nuc model fit----------*/
/*---------Labels all branches containing branchID with the FG model. This code segment does nothing when the branches are explicitly tagged, and branchMatch doesn't match anything-------------*/
/*--First populate a list of branches containing branchID. branchID could be regExp text--*/
branchMatch = "DONTNAMEANYTAXATHISUNLESSYOUREALLYMEANIT"; /*This is a different (old) way to tag foreground branches - All terminal branches with any substring = branchMatch will get tagged. This is untested and explicit tree tagging is preffered*/
branchID = branchMatch;
BOInames = {};
tips = TipCount(givenTree);
loc = 0;
for (i=0; i<tips; i=i+1)
{
tempTipName = TipName(givenTree,i);
tempResult = tempTipName$branchID;
if (tempResult[1][1]>=0)
{
BOInames[loc] = TipName(givenTree,i);
loc=loc+1;
}
}
/*--use regular expressions to append the FG model text--*/
numBOI = loc;
newTreeString = treeString;
fprintf (stdout, "The following branches were labeled as foreground: \n");
for (i=0; i< numBOI; i=i+1)
{
newTreeString = newTreeString^{{BOInames[i]}{BOInames[i]+"{FG}"}};
/*Just to check what I label*/
//fprintf (stdout, BOInames[i], "\n");
}
treeString = newTreeString;
/*-----End branch labeling code-----*/
/*---------------------Harvesting Frequencies-----------------------*/
/*---A function that converts a nucFreqMatrix to a vector of freqs--*/
function BuildCodonFrequencies (nucFreqMatrix)
{
PIStop = 1.0; /* denominator */
result = {countSenseCodons,1}; /* resulting codon frequencies */
hshift = 0; /* how many stop codons have been counted so far */
for (h=0; h<64; h=h+1) /* loop over all possible codons */
{
first = h$16; /* Decompose a codon into 3 nucleotides.
The index of the first nucleotide (A=0,C=1,G=2,T=3) is found here,
by doing integer division by 16 */
second = h%16$4; /* The index of the second nucleotide.
First take the remainder of division by 16, i.e. positions 2 and 3
and then extract position 2 by integer division by 4*/
third = h%4; /* The index of the third nucleotide.
Remainder of integer division by 4*/
/* in the end: h = 16*first + 4*second + third */
if (_Genetic_Code[h]==10) /* stop codon */
{
hshift = hshift+1;
PIStop = PIStop-nucFreqMatrix[first][0]*nucFreqMatrix[second][1]*nucFreqMatrix[third][2]; /* adjust the denominator */
}
else
{
result[h-hshift] = nucFreqMatrix[first][0]*nucFreqMatrix[second][1]*nucFreqMatrix[third][2];
/* store the frequency for codon h. Notice the substraction of hshift to compensate
for the absense of stop codons. The first codon affected by it is
TAC (h=49), which gets stored in result[48], because TAA (a stop codon) was skipped. */
}
}
return result*(1.0/PIStop);
}
DataSetFilter codonFilter = CreateFilter (myData,3,"","","TAA,TAG,TGA"); /* define the codon filter, excluding stop codons */
HarvestFrequencies (nuc3by4,myData,3,1,1); /* collect position specific nucleotide frequencies */
estimatedCodonFreqs = BuildCodonFrequencies(nuc3by4);
/*----------------------Done with freqs-----------------------------------------*/
/*----------------------Defines a function for creating a custom codon model--------------*/
/*-------Usage: "PopulateModelMatrix ("ModelVarName",Freq3x4,targetAA,customRateString,"nonSynRateTag");"---*/
/*specify targetAA = 21 if you don't want directional selection. NonSynRateTag allows one to control the
name of the "nonsyn" rate variable by appending nonSynRateTag to the end. This allows having seperate foreground
and background nonsyn rates. "customRateString" is NOT a PAUP specifier, but rather a matrix of string valued
multiplers, derived above in the setup of the nuc model*/
/*Part copypasta from MG94customCF3x4.mdl*/
function PopulateModelMatrix (ModelMatrixName&, EFV, targetAA,customRateString,nonSynRateTag)
{
ModelMatrixDimension = countSenseCodons;
_localNucBiasMult = customRateString;
ModelMatrixName = {ModelMatrixDimension,ModelMatrixDimension};
modelDefString = "";
modelDefString*16384;
hshift = 0;
for (h=0; h<64; h=h+1)
{
if (_Genetic_Code[h]==10)
{
hshift = hshift+1;
continue;
}
vshift = 0;
for (v = 0; v<64; v=v+1)
{
if(h==v)
{
continue;
}
diff = v-h;
if (_Genetic_Code[v]==10)
{
vshift = vshift+1;
continue;
}
nucPosInCodon = 2;
if ((h$4==v$4)||((diff%4==0)&&(h$16==v$16))||(diff%16==0)) /* differ by one subsitution only */
{
if (h$4==v$4) /* third position */
{
transition = v%4;
transition2= h%4;
}
else
{
if(diff%16==0) /* first position */
{
transition = v$16;
transition2= h$16;
nucPosInCodon = 0;
}
else /* second position */
{
transition = v%16$4;
transition2= h%16$4;
nucPosInCodon = 1;
}
}
hs = Format(h-hshift,0,0);
vs = Format(v-vshift,0,0);
ts = Format(transition,0,0);
ts2= Format(transition2,0,0);
ps = Format(nucPosInCodon,0,0);
aa1 = _Genetic_Code[h];
aa2 = _Genetic_Code[v];
synOrNon = "nonsyn"+ nonSynRateTag +"*";
if (aa1==aa2) {synOrNon = "syn*";}
targetAAmult = "";
if (aa2==targetAA) {targetAAmult = "((1/(1-omegaT))-1)*";} /*This is a different way of parameterizing the omegaT multiplier that improves optimization speed. Needs to be transformed back at the end*/
modelDefString*("ModelMatrixName["+hs+"]["+vs+"] := " + targetAAmult + synOrNon + "t*"+_localNucBiasMult[transition][transition2]+"EFV__["+ts+"]["+ps+"];\n"); /*EFV__["+ts+"]["+ps+"] multiplies the 3x4 equilibrium frequency of the column codon*/
}
}
}
modelDefString*0;
ExecuteCommands (modelDefString);
return 0;
}
/*--------------------End of custom codon model setup function-------------*/
/* --------------------Set up the background model--------------------*/
global syn = 1;
global nonsyn=1;
/*--Populate the transition matrix for the background codon model--*/
PopulateModelMatrix ("MG94xCustomRateMatrix",nuc3by4,21,customRateString,"");
Model MG94xCustom = (MG94xCustomRateMatrix,estimatedCodonFreqs,0);
/* -------------------Set up the foreground model-------------------------*/
global nonsynFG=1;
/*Populate the transition matrix for the foreground codon model*/
PopulateModelMatrix ("MG94xCustomRateMatrixFG",nuc3by4,21,customRateString,"FG");
Model FG = (MG94xCustomRateMatrixFG,estimatedCodonFreqs,0);
/*------------------Assign models to tree------------------------*/
UseModel(MG94xCustom); /*This sets assigns background model to all unlabeled branches*/
/*Just to check my {FG} tags!*/
fprintf (stdout, treeString);
Tree myTreeFG = treeString; /*treeString has "{FG}" appended to all foreground branches*/
/*Forces all branch lengths to be those estimated by the nuc model*/
ReplicateConstraint ("this1.?.t:=this2.?.t__",myTreeFG,givenTree);
/*----------------Optimise likelihood function--------------------*/
fprintf (stdout, "\n\n[PHASE 2. Estimating Substitution Parameters using the Global Codon Model]\n");
LikelihoodFunction lf = (codonFilter, myTreeFG);
Optimize (myRes, lf);
fprintf (stdout, "\n", lf, "\n");
/*--------Forever constrain nuc rates-------*/
AC := AC__; AT := AT__; CG := CG__; CT := CT__; GT := GT__;
/*--------------Setting up the output file--------------------------*/
fprintf (outputFile,CLEAR_FILE,"Site,NullLL,NullBgNonSyn,NullSyn,DivLL,Div_p,DivFgNonSyn,DivBgNonSyn,DivSyn,0LL,0p,0w,0FgNonSyn,0BgNonSyn,0Syn,1LL,1p,1w,1FgNonSyn,1BgNonSyn,1Syn,2LL,2p,2w,2FgNonSyn,2BgNonSyn,2Syn,3LL,3p,3w,3FgNonSyn,3BgNonSyn,3Syn,4LL,4p,4w,4FgNonSyn,4BgNonSyn,4Syn,5LL,5p,5w,5FgNonSyn,5BgNonSyn,5Syn,6LL,6p,6w,6FgNonSyn,6BgNonSyn,6Syn,7LL,7p,7w,7FgNonSyn,7BgNonSyn,7Syn,8LL,8p,8w,8FgNonSyn,8BgNonSyn,8Syn,9LL,9p,9w,9FgNonSyn,9BgNonSyn,9Syn,10LL,10p,10w,10FgNonSyn,10BgNonSyn,10Syn,11LL,11p,11w,11FgNonSyn,11BgNonSyn,11Syn,12LL,12p,12w,12FgNonSyn,12BgNonSyn,12Syn,13LL,13p,13w,13FgNonSyn,13BgNonSyn,13Syn,14LL,14p,14w,14FgNonSyn,14BgNonSyn,14Syn,15LL,15p,15w,15FgNonSyn,15BgNonSyn,15Syn,16LL,16p,16w,16FgNonSyn,16BgNonSyn,16Syn,17LL,17p,17w,17FgNonSyn,17BgNonSyn,17Syn,18LL,18p,18w,18FgNonSyn,18BgNonSyn,18Syn,19LL,19p,19w,19FgNonSyn,19BgNonSyn,19Syn,20LL,20p,20w,20FgNonSyn,20BgNonSyn,20Syn");
/*----------------------------For loop over sites-----------------------------------*/
fprintf (stdout, "\n\n[PHASE 3. Testing for Directional Selection on Foreground Branches]\n");
for(siteIn=1;siteIn<=codonFilter.sites;siteIn += 1)
{
fprintf (stdout, "Working on site ", siteIn, "\n");
/*-------------Allow user to select sites and options-------------*/
site = siteIn +siteShift;
siteString = "" + (site*3) + "-" + (site*3+2);
DataSetFilter siteFilter = CreateFilter (myData,3,siteString,"","TAA,TAG,TGA");
/*-----Count Site Specific Codon and AA Freqs. This is just to exclude certain sites------*/
HarvestFrequencies (siteCodFreqs, siteFilter, 3, 3, 0);
AAfreqs = {21,1};
for (h=0; h<64; h=h+1) /* loop over all possible codons */
{
AAfreqs[ _Genetic_Code[h]] += siteCodFreqs[h];
}
/*Count how many AA have frequencies greater than 0*/
numGrtZero = 0;
for (h=0; h<21; h=h+1) /* loop over all possible codons */
{
if(AAfreqs[h]>0)
{
numGrtZero = numGrtZero+1;
}
}
/*-------------Only test a site if there is more than one observed AA-------------*/
if(numGrtZero>1)
{
AAlower = 0; AAupper = 20;
AAlikes = {};
AAlikesOmegaTs = {};
AAlikesSyn = {};
AAlikesBgNonSyn = {};
AAlikesFgNonSyn = {};
/*-------------------------loop over amino acid targets--------------------------------*/
for (AAcount=AAlower; AAcount<AAupper+1; AAcount=AAcount+1)
{
/*------Only test for directional selection towards observed AAs-------*/
if(AAfreqs[AAcount]>0) /*Stop codons are implicitly excluded*/
{
fprintf (stdout, "\tTesting target residue ", _hyphyAAOrdering[AAcount], "\n");
targetAA = AAcount;
/* --------------------Construct Directional Model---------------------------------*/
global nonsynDIR=1;
global omegaT = 0.5; /*reparameterized. 0.5 = 1*/
PopulateModelMatrix ("MG94xCustomRateMatrixDIR",nuc3by4,targetAA,customRateString,"DIR");
Model FG = (MG94xCustomRateMatrixDIR,estimatedCodonFreqs,0);
UseModel(MG94xCustom); /*This assigns background model to all unlabeled branches*/
Tree myTreeFG = treeString;
/*Forces all branch lengths to be those estimated by the nuc model*/
ReplicateConstraint ("this1.?.t:=this2.?.t__",myTreeFG,givenTree);
omegaT :<1; /*For the reparameterization*/
syn = 1; /*this is shared between foreground and background*/
nonsyn=1; /*background nonsyn rate*/
LikelihoodFunction lf = (siteFilter, myTreeFG);
Optimize (mySiteRes, lf);
/*fprintf (stdout, "\n", lf, "\n");*/
unConstrainedRatio = mySiteRes[1][0];
AAlikes[AAcount] = unConstrainedRatio;
AAlikesOmegaTs[AAcount] = omegaT;
AAlikesSyn[AAcount] = syn;
AAlikesBgNonSyn[AAcount] = nonsyn;
AAlikesFgNonSyn[AAcount] = nonsynDIR;
}
else
{
fprintf (stdout, "\tSkipping unobserved target residue ", _hyphyAAOrdering[AAcount], "\n");
AAlikes[AAcount] = -99999999;
AAlikesOmegaTs[AAcount] = -99;
AAlikesSyn[AAcount] = -99;
AAlikesBgNonSyn[AAcount] = -99;
AAlikesFgNonSyn[AAcount] = -99;
}
}
/*---------------------Set up model allowing non-neutral selection on FG---------------*/
syn = 1;
nonsyn=1;
nonsynDIR=1; /*Allow positive selection on FG*/
omegaT :=0.5; /*Constrain omegaT to 1 for null model - reparameterized*/
LikelihoodFunction lf = (siteFilter, myTreeFG);
Optimize (mySiteRes, lf);
constrainedRatioPos = mySiteRes[1][0];
DivFgNonSyn = nonsynDIR;
DivBgNonSyn = nonsyn;
DivSyn = syn;
/*--End non-neutral model--*/
/*---------------------Set up null model forcing neutral selection on FG----------------*/
syn = 1;
nonsyn=1;
nonsynDIR:=syn; /*Force neutral selection on FG*/
omegaT :=0.5; /*Constrain omegaT to 1 for null model - reparameterized*/
LikelihoodFunction lf = (siteFilter, myTreeFG);
Optimize (mySiteRes, lf);
/*fprintf (stdout, "\n", lf, "\n");*/
constrainedRatioNoPos = mySiteRes[1][0];
/*--End null model--*/
/*-----------------------Display and Write Results------------------------*/
/*---"Site,NullLL,NullBgNonSyn,NullSyn,DivLL,Div_p,DivFgNonSyn,DivBgNonSyn,DivSyn,0LL,0p,0w,0FgNonSyn,0BgNonSyn,0Syn"---*/
outputString = ""+siteIn;
outputString = outputString + "," + constrainedRatioNoPos + "," + nonsyn + "," + syn;
fprintf (stdout, "\nTests for site ", siteIn,"\n");
/*--First a test for general positive selection at the site--*/
lrtPosVsNoPos = 2*(constrainedRatioPos-constrainedRatioNoPos);
pValPosVsNoPos = 1-CChi2 (lrtPosVsNoPos, 1);
fprintf (stdout, "\tLikelihood Ratio Test for diversifying selection");
fprintf (stdout, ": ", lrtPosVsNoPos);
fprintf (stdout, " p-value: ", pValPosVsNoPos, "\n");
outputString = outputString + "," + constrainedRatioNoPos + "," + pValPosVsNoPos + "," + DivFgNonSyn + "," + DivBgNonSyn + "," + DivSyn;
/*--Now test for directional selection vs positive selection--*/
fprintf (stdout, "\tTesting for directional selection againts null allowing positive selection in foreground", "\n");
for (AAcount=AAlower; AAcount<AAupper+1; AAcount=AAcount+1)
{
lrtScore = 2*(AAlikes[AAcount]-constrainedRatioPos);
pValues = 1-CChi2 (2*(AAlikes[AAcount]-constrainedRatioPos), 1);
if (AAfreqs[AAcount] > 0)
{
fprintf (stdout, "\tLikelihood Ratio Test for: ", _hyphyAAOrdering[AAcount]);
fprintf (stdout, " : ", lrtScore);
fprintf (stdout, " p-value: ", pValues, "\n");
}
outputString = outputString + "," + AAlikes[AAcount] + "," + pValues + "," + AAlikesOmegaTs[AAcount] + "," + AAlikesFgNonSyn[AAcount] + "," + AAlikesBgNonSyn[AAcount] + "," + AAlikesSyn[AAcount];
}
/*Testing for directional vs neutral selection can be done in post-processesing*/
fprintf (outputFile,"\n",outputString);
/*Clear constraints to test another site*/
ClearConstraints(omegaT)
ClearConstraints(nonsynDIR);
}
else
{
fprintf (stdout,"Skipped site ",siteIn," because it is invariable\n");
}
} /*End main loop*/
|