This file is indexed.

/usr/share/hyphy/TemplateBatchFiles/YangNielsenBranchSite2005.bf is in hyphy-common 2.2.7+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/* 1. include a file to define the genetic code
   Note the use of base directory and path forming variables to make this analysis 
   independent of directory placement
 */

incFileName = HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"TemplateModels"+DIRECTORY_SEPARATOR+"chooseGeneticCode.def";
ExecuteCommands  ("#include \""+incFileName+"\";");

/* 2. load a codon partition  */

SetDialogPrompt 			("Please locate a coding alignment:");
DataSet 	  ds		   = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter filteredData = CreateFilter (ds,3,"","",GeneticCodeExclusions);
coding_path = LAST_FILE_PATH;

fprintf (stdout, "\nLoaded a ", filteredData.species, " sequence alignment with ", filteredData.sites, " codons from\n",coding_path,"\n");

/* 3. include a file to prompt for a tree */

incFileName = HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"queryTree.bf";
ExecuteCommands  ("#include \""+incFileName+"\";");

/* 4. Compute nucleotide counts by position for the F3x4 estimator */

COUNT_GAPS_IN_FREQUENCIES = 0;
HarvestFrequencies (baseFreqs,filteredData,3,1,1);
COUNT_GAPS_IN_FREQUENCIES = 1;

fprintf (stdout, "\nBase composition:\n\tA: ", Format (baseFreqs[0][0],10,5),",",Format (baseFreqs[0][1],10,5),",",Format (baseFreqs[0][2],10,5),
								    "\n\tC: ", Format (baseFreqs[1][0],10,5),",",Format (baseFreqs[1][1],10,5),",",Format (baseFreqs[1][2],10,5), 
									"\n\tG: ", Format (baseFreqs[2][0],10,5),",",Format (baseFreqs[2][1],10,5),",",Format (baseFreqs[2][2],10,5), 
									"\n\tT: ", Format (baseFreqs[3][0],10,5),",",Format (baseFreqs[3][1],10,5),",",Format (baseFreqs[3][2],10,5), "\n");
										  

/* 5. prompt for the type of model to run */

ChoiceList (modelKind, "Model", 1, SKIP_NONE,
					   "Alternative", "Fit Model A with 4 rate classes. Class 1: Negative selection in FG and BG. Class 2: Neutral evolution in FG and BG. Class 3: Negative selection in BG, Positive in FG. Class 4: Neutral evolution in BG, Positive in FG",
					   "Null for Test 1", "Fit a model with 2 rate classes. Class 1: Negative selection in FG and BG. Class 2: Neutral evolution in FG and BG.",
					   "Null for Test 2", "Fit Model A with 3 rate classes. Class 1: Negative selection in FG and BG. Class 2: Neutral evolution in FG and BG. Class 3: Negative selection in BG, Neutral in FG.",
);					   

if (modelKind < 0)
{
	return 0;
}


/* 6. define the 'site_kind' variable as a discrete category variable; 
	  it decides which class a site belongs to, but does not
	  determine omega ratios directly (see below for this) */

global P_0     = 0.5;
P_0:<1;
P_0:>0;

if (modelKind == 1)
{
	rateClasses = 2;

	categFreqMatrix = {{P_0,1-P_0}} ;
	categRateMatrix = {{1,2}};
}
else
{
	P_0        = 1/4;
	global 		P_1_aux = 1/4;
	global 		P_1     := Min(P_1_aux,1-P_0);
	P_1:<1;
	P_1:>0;
	
	if (modelKind == 0)
	{
		rateClasses = 4;
		categFreqMatrix = {{P_0,P_1,(1-P_0-P_1)/(P_0+P_1)*P_0,(1-P_0-P_1)/(P_0+P_1)*P_1}} ;
		categRateMatrix = {{1,2,3,4}};
	}
	else
	{
		rateClasses = 3;
		categFreqMatrix = {{P_0,P_1/(P_0+P_1),(1-P_0-P_1)/(P_0+P_1)*P_0}} ;
		categRateMatrix = {{1,2,3}};
	}
}

category site_kind = (rateClasses, categFreqMatrix , MEAN, ,categRateMatrix, 1, 4);

/* 7. define the GY94 rate matrix; for now each branch will have it's own
   dS and dN, we will constrain them later */

global kappa_inv = 1;

ModelMatrixDimension = 64;
for (h = 0; h<64; h=h+1) 
{
	if (_Genetic_Code[h]==10) /* stop codon */
	{
		ModelMatrixDimension = ModelMatrixDimension-1;
	}
}

GY_Matrix = {ModelMatrixDimension,ModelMatrixDimension};
hshift = 0;
for (h=0; h<64; h=h+1)
{
	if (_Genetic_Code[h]==10) 
	{
		hshift = hshift+1;
	}
	else
	{
		vshift = hshift;
		for (v = h+1; v<64; v=v+1)
		{
			diff = v-h;
			if (_Genetic_Code[v]==10) 
			{
				vshift = vshift+1;
			}
			else
			{
			  	if ((h$4==v$4)||((diff%4==0)&&(h$16==v$16))||(diff%16==0)) /* one step */
			  	{
			  		if (h$4==v$4)
			  		{
			  			transition = v%4;
			  			transition2= h%4;
			  		}
			  		else
			  		{
			  			if(diff%16==0)
			  			{
			  				transition = v$16;
			  				transition2= h$16;
			  			}
			  			else
			  			{
			  				transition = v%16$4;
			  				transition2= h%16$4;
			  			}
			  		}
			  		if (_Genetic_Code[0][h]==_Genetic_Code[0][v]) /* synonymous */
			  		{
			  			if (Abs(transition-transition2)%2) /* transversion */
			  			{
			  				GY_Matrix[h-hshift][v-vshift] := kappa_inv*synRate;
			  				GY_Matrix[v-vshift][h-hshift] := kappa_inv*synRate;
			  			}
			  			else
			  			{
			  				GY_Matrix[h-hshift][v-vshift] := synRate;
			  				GY_Matrix[v-vshift][h-hshift] := synRate;			  			
			  			}
				  	}
			  		else
			  		{
			  			if (Abs(transition-transition2)%2) /* transversion */
			  			{
			  				GY_Matrix[h-hshift][v-vshift] := kappa_inv*nonSynRate;
			  				GY_Matrix[v-vshift][h-hshift] := kappa_inv*nonSynRate;
			  			}
			  			else
			  			{
			  				GY_Matrix[h-hshift][v-vshift] := nonSynRate;
			  				GY_Matrix[v-vshift][h-hshift] := nonSynRate;			  			
			  			}
		  			}
			  	}
			 }
		 }
	}	
}

/*8. build codon frequencies (use the F3x4 estimator) */

PIStop = 1.0;
codonFreqs = {ModelMatrixDimension,1};
hshift = 0;

for (h=0; h<64; h=h+1)
{
	first  = h$16;
	second = h%16$4;
	third  = h%4;
	if (_Genetic_Code[h]==10) 
	{
		hshift = hshift+1;
		PIStop = PIStop-baseFreqs[first][0]*baseFreqs[second][1]*baseFreqs[third][2];
		continue; 
	}
	codonFreqs[h-hshift]=baseFreqs[first][0]*baseFreqs[second][1]*baseFreqs[third][2];
}

codonFreqs = codonFreqs*(1.0/PIStop);

/*9. define the codon model */

Model GY_Model = (GY_Matrix,codonFreqs,1);

/*10. Define the tree and pick the foreground branch, displaying a tree window to facilitate selection; 
the latter step is executed for 2 of 3 model choices */

Tree 	  givenTree = treeString;

USE_LAST_RESULTS    = 0;
OPTIMIZATION_METHOD = 4;

/* Approximate kappa and branch lengths using an HKY85 fit */

HKY85_Matrix = {{*,t*kappa_inv,t,t*kappa_inv}
				{t*kappa_inv,*,kappa_inv*t,t}
				{t,t*kappa_inv,*,kappa_inv*t}
				{t*kappa_inv,t,kappa_inv*t,*}};
			
HarvestFrequencies (nucFreqs,ds,1,1,1);
Model HKY85_Model = (HKY85_Matrix,nucFreqs,1);

Tree		  nucTree = treeString;
DataSetFilter nucData = CreateFilter (ds,1);

fprintf (stdout, "Obtaining nucleotide branch lengths and kappa to be used as starting values...\n");
LikelihoodFunction	nuc_lf = (nucData,nucTree);
Optimize(nuc_mle,nuc_lf);
fprintf (stdout, "\n", Format (nucTree,1,1), "\nkappa=", Format (1/kappa_inv,8,3), "\n");

USE_LAST_RESULTS = 1;

if (modelKind != 1)
{

	mxTreeSpec = {5,1};
	mxTreeSpec [0] = "givenTree";
	mxTreeSpec [1] = "8240";
	mxTreeSpec [2] = "10,40,-10,-175,1";
	mxTreeSpec [3] = "";
	mxTreeSpec [4] = "";
	OpenWindow 		(TREEWINDOW, mxTreeSpec,"(SCREEN_WIDTH-50)/2;(SCREEN_HEIGHT-50)/2;30+(SCREEN_WIDTH-30)/2;45");				

	leafNodes	  = TipCount   (givenTree);			
	internalNodes = BranchCount(givenTree);

	choiceMatrix = {internalNodes+leafNodes,2};
	for (bc=0; bc<internalNodes; bc=bc+1)
	{
		choiceMatrix[bc][0] = BranchName(givenTree,bc);
		choiceMatrix[bc][1] = "Internal Branch Rooting " + givenTree[bc];
	}
	for (bc=0; bc<leafNodes; bc=bc+1)
	{
		choiceMatrix[bc+internalNodes][0] = TipName(givenTree,bc);
		choiceMatrix[bc+internalNodes][1] = "Leaf node " + choiceMatrix[bc+internalNodes][0];
	}

	ChoiceList  (stOption,"Choose the foreground branch",0,NO_SKIP,choiceMatrix);

	if (stOption[0] < 0)
	{
		return -1;
	}

	fprintf (stdout, "\n\n", Columns (stOption)," foreground branch(es) set to: ", "\n");
	for (bc = 0; bc < Columns (stOption); bc = bc + 1)
	{
		fprintf (stdout, choiceMatrix[stOption[bc]][0], "\n");
	}
	OpenWindow (CLOSEWINDOW, "Tree givenTree");
}
	
/* 15. Constrain dS and dN in the tree to based upon different models */

global omega_0 = 0.25;
omega_0 :< 1;
ClearConstraints (givenTree);

if (modelKind == 1)
{
	global omega := ((site_kind==1)*omega_0+(site_kind==2));
	/*  will evaluate to omega_0 for sites in class site_kind=1 and to 1 for sites in class site_kind=2 */
	ReplicateConstraint ("this1.?.nonSynRate:=omega*this2.?.synRate",givenTree,givenTree);
}
else
{
	if (modelKind == 2)
	{
		global omega_FG := ((site_kind==1)*omega_0+(site_kind>1)); 						/* foreground model */
		global omega_BG := (((site_kind==1)+(site_kind==3))*omega_0+(site_kind==2));    /* background model */
	}
	else
	{
		global omega_2 = 2.0;
		omega_2:>1;
		global omega_FG := ((site_kind==1)*omega_0+(site_kind==2)+(site_kind>2)*omega_2); 			/* foreground model */
		global omega_BG := (((site_kind==1)+(site_kind==3))*omega_0+(site_kind==2)+(site_kind==4)); /* background model */
	}
	
	/* constrain the foreground branch first */
	for (bc = 0; bc < Columns (stOption); bc = bc + 1)
	{
		ExecuteCommands ("givenTree."+choiceMatrix[stOption[bc]][0]+".nonSynRate:=omega_FG*givenTree."+choiceMatrix[stOption[bc]][0]+".synRate;");
	}

	/* constrain other branches next */
	ReplicateConstraint ("this1.?.nonSynRate:=omega_BG*this2.?.synRate",givenTree,givenTree);

}

/* 16. define and optimize the likelihood function */

bNames = BranchName   (givenTree,-1);
nucBL  = BranchLength (nucTree,-1);

for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
{
	ExecuteCommands ("givenTree."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t;");
}

codBL  = BranchLength (givenTree,-1);

for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
{
	if (nucBL[bc]>0)
	{
		ExecuteCommands ("givenTree."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t*"+nucBL[bc]/codBL[bc]+";");
	}
}

OPTIMIZATION_PRECISION = 0.001;
LikelihoodFunction lf = (filteredData, givenTree);


while (1)
{
	Optimize 		   (mles,lf);
	
	fprintf (stdout, lf);

	GetString 		  (lfParameters, lf, -1);
	glV 		 	= lfParameters["Local Independent"];
	stashedValues 	= {};
	for (glVI = 0; glVI < Columns (glV); glVI = glVI + 1)
	{
		ExecuteCommands ("stashedValues[\""+glV[glVI]+"\"] = " + glV[glVI] + ";\n");
	}
	glV 		 	= lfParameters["Global Independent"];
	for (glVI = 0; glVI < Columns (glV); glVI = glVI + 1)
	{
		ExecuteCommands ("stashedValues[\""+glV[glVI]+"\"] = " + glV[glVI] + ";\n");
	}
	
	mlBL		 	= BranchLength (givenTree,-1);
	
	samples = 500;
	fprintf (stdout, "\nChecking for convergence by Latin Hypercube Sampling (this may take a bit of time...)\n");
		
	steps 		  = 50;
	if (modelKind == 0)
	{
		vn			  = {{"P_0","P_1_aux","omega_0", "omega_2"}};
		ranges		  = {{0.0001,1}{0.0001,1}{0.0001,1}{1,10}};
	}
	else
	{
		if (modelKind==2)
		{
			vn			  = {{"P_0","P_1_aux","omega_0"}};
			ranges		  = {{0.0001,1}{0.0001,1}{0.0001,1}};
		}
		else
		{
			if (modelKind==1)
			{
				vn			  = {{"P_0","omega_0"}};
				ranges		  = {{0.0001,1}{0.0001,1}};
			}		
		}
	}
		
	LFCompute (lf,LF_START_COMPUTE);
	
	for (sample = 0; sample < samples; sample = sample + 1)
	{
		rv = Random({1,steps}["_MATRIX_ELEMENT_COLUMN_"],0);
		for (vid = 0; vid < Columns (vn); vid = vid + 1)
		{
			ctx = vn[vid] + "=" + (ranges[vid][0] + (ranges[vid][1]-ranges[vid][0])/steps*rv[vid]);
			ExecuteCommands (ctx);
		}
		currentBL = BranchLength (givenTree,-1);
		for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
		{
			if (currentBL[bc]>0)
			{
				ExecuteCommands ("givenTree."+bNames[bc]+".synRate=givenTree."+bNames[bc]+".synRate*"+mlBL[bc]/currentBL[bc]+";");
			}
		}		

		LFCompute (lf,sample_value);	
		if (sample_value>mles[1][0])
		{
			fprintf (stdout, "\nFound a better likelihood score. Restarting the optimization routine.\n");
			break;
		}	
	}
	LFCompute (lf,LF_DONE_COMPUTE);
	
	if (sample < samples)
	{
		continue;
	}
	storedV = Rows (stashedValues);
	for (k=0; k<Columns (storedV); k=k+1)
	{
		ExecuteCommands (storedV[k] + "=" + stashedValues[storedV[k]]);
	}
	fprintf (stdout, "\nThe estimation procedure appears to have converged.\n");
	break;
}


/* 17. Report inferred rate distribition to screen */

if (modelKind == 0)
{
	fprintf (stdout, "\nInferred rate distribution:",
					 "\n\tClass 0.  omega_0 = ", Format (omega_0, 5,3), " weight = ", Format (P_0,5,3),
					 "\n\tClass 1.  omega  := ", Format (1, 5,3), " weight = ", Format (P_1,5,3),
					 "\n\tClass 2a. Background omega_0 = ", Format (omega_0, 5,3), " foreground omega_2 = ", Format (omega_2, 5,3), " weight = ", Format (P_0(1-P_0-P_1)/(P_0+P_1),5,3), 
					 "\n\tClass 2b. Background omega  := ", Format (1, 5,3), " foreground omega_2 = ", Format (omega_2, 5,3), " weight = ", Format (P_1(1-P_0-P_1)/(P_0+P_1),5,3), "\n");
}
if (modelKind == 1)
{
	fprintf (stdout, "\nInferred rate distribution:",
					 "\n\tClass 0.  omega_0 = ", Format (omega_0, 5,3), " weight = ", Format (P_0,5,3),
					 "\n\tClass 1.  omega  := ", Format (1, 5,3), " weight = ", Format (1-P_0,5,3), "\n");
}
if (modelKind == 2)
{
	fprintf (stdout, "\nInferred rate distribution:",
					 "\n\tClass 0.  omega_0 = ", Format (omega_0, 5,3), " weight = ", Format (P_0,5,3),
					 "\n\tClass 1.  omega  := ", Format (1, 5,3), " weight = ", Format (P_1,5,3),
					 "\n\tClass 2a. Background omega_0 = ", Format (omega_0, 5,3), " foreground omega_2 := ", Format (1, 5,3), " weight = ", Format (P_0(1-P_0-P_1)/(P_0+P_1),5,3), 
					 "\n\tClass 2b. Background omega  := ", Format (1, 5,3), " foreground omega_2 := ", Format (1, 5,3), " weight = ", Format (P_1(1-P_0-P_1)/(P_0+P_1),5,3), "\n");
}

/* 18. Prepare and open a window of conditional probabilities at every site (this requires a GUI but will still run - 
- just not open any windows in a console build */

ConstructCategoryMatrix (posteriorMatrix, lf, COMPLETE);
posteriorMatrix = Transpose (posteriorMatrix);

GetInformation			(siteProfile, site_kind); 
						/* this call returns the distribution function {{value1,..., valueN}{prob1, ..., probN}} for site_kind */

headers = {1, rateClasses};

for (k=1; k<=rateClasses;k=k+1)
{
	headers [k-1] = "Class " + k;
}

/* convert distribution info to the form expected by OpenWindow */
disributionInfo = "site_kind";

for (k = 0; k < rateClasses; k=k+1)
{
	disributionInfo = disributionInfo + ":" + siteProfile[1][k];
}
for (k = 0; k < rateClasses; k=k+1)
{
	disributionInfo = disributionInfo + ":" + siteProfile[0][k];
}

OpenWindow (DISTRIBUTIONWINDOW,{{"Conditional probabilities by site"}
		{"headers"}
		{"posteriorMatrix"}
		{"None"}
		{"Index"}
		{"None"}
		{""}
		{""}
		{""}
		{"0"}
		{""}
		{"0;0"}
		{"10;1.309;0.785398"}
		{"Times:12:0;Times:10:0;Times:12:2"}
		{"0;0;13816530;16777215;0;0;6579300;11842740;13158600;14474460;0;3947580;16777215;15670812;6845928;16771158;2984993;9199669;7018159;1460610;16748822;11184810;14173291"}
		{"16,0,0"}
		{disributionInfo}
		},
		"600;600;50;50");
		
_MARGINAL_MATRIX_ = Transpose(posteriorMatrix);
_CATEGORY_VARIABLE_CDF_ = siteProfile[1][-1];

ExecuteAFile(HYPHY_LIB_DIRECTORY+"ChartAddIns"+DIRECTORY_SEPARATOR+"DistributionAddIns"+DIRECTORY_SEPARATOR+"Includes"+DIRECTORY_SEPARATOR+"posteriors.ibf");
ExecuteAFile(HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"Utility"+DIRECTORY_SEPARATOR+"WriteDelimitedFiles.bf");
siteCount = Columns(_MARGINAL_MATRIX_);
siteCounter = {};
for (k=0; k<siteCount; k=k+1)
{
	siteCounter[k] = k + 1;
}
classCount = Columns(_CATEGORY_VARIABLE_CDF_);
columnHeaders = {1,classCount+1};
columnHeaders[0] = "Site";
for (k=1; k<=classCount; k=k+1)
{
	columnHeaders[k] = "Class "+k;
}

SetDialogPrompt ("Write site-by-site conditional probabilities to this file:");
WriteSeparatedTable("",columnHeaders,Transpose(_MARGINAL_MATRIX_), siteCounter,",");