/usr/share/hyphy/TemplateBatchFiles/YangNielsenBranchSite2005.bf is in hyphy-common 2.2.7+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | /* 1. include a file to define the genetic code
Note the use of base directory and path forming variables to make this analysis
independent of directory placement
*/
incFileName = HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"TemplateModels"+DIRECTORY_SEPARATOR+"chooseGeneticCode.def";
ExecuteCommands ("#include \""+incFileName+"\";");
/* 2. load a codon partition */
SetDialogPrompt ("Please locate a coding alignment:");
DataSet ds = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter filteredData = CreateFilter (ds,3,"","",GeneticCodeExclusions);
coding_path = LAST_FILE_PATH;
fprintf (stdout, "\nLoaded a ", filteredData.species, " sequence alignment with ", filteredData.sites, " codons from\n",coding_path,"\n");
/* 3. include a file to prompt for a tree */
incFileName = HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"queryTree.bf";
ExecuteCommands ("#include \""+incFileName+"\";");
/* 4. Compute nucleotide counts by position for the F3x4 estimator */
COUNT_GAPS_IN_FREQUENCIES = 0;
HarvestFrequencies (baseFreqs,filteredData,3,1,1);
COUNT_GAPS_IN_FREQUENCIES = 1;
fprintf (stdout, "\nBase composition:\n\tA: ", Format (baseFreqs[0][0],10,5),",",Format (baseFreqs[0][1],10,5),",",Format (baseFreqs[0][2],10,5),
"\n\tC: ", Format (baseFreqs[1][0],10,5),",",Format (baseFreqs[1][1],10,5),",",Format (baseFreqs[1][2],10,5),
"\n\tG: ", Format (baseFreqs[2][0],10,5),",",Format (baseFreqs[2][1],10,5),",",Format (baseFreqs[2][2],10,5),
"\n\tT: ", Format (baseFreqs[3][0],10,5),",",Format (baseFreqs[3][1],10,5),",",Format (baseFreqs[3][2],10,5), "\n");
/* 5. prompt for the type of model to run */
ChoiceList (modelKind, "Model", 1, SKIP_NONE,
"Alternative", "Fit Model A with 4 rate classes. Class 1: Negative selection in FG and BG. Class 2: Neutral evolution in FG and BG. Class 3: Negative selection in BG, Positive in FG. Class 4: Neutral evolution in BG, Positive in FG",
"Null for Test 1", "Fit a model with 2 rate classes. Class 1: Negative selection in FG and BG. Class 2: Neutral evolution in FG and BG.",
"Null for Test 2", "Fit Model A with 3 rate classes. Class 1: Negative selection in FG and BG. Class 2: Neutral evolution in FG and BG. Class 3: Negative selection in BG, Neutral in FG.",
);
if (modelKind < 0)
{
return 0;
}
/* 6. define the 'site_kind' variable as a discrete category variable;
it decides which class a site belongs to, but does not
determine omega ratios directly (see below for this) */
global P_0 = 0.5;
P_0:<1;
P_0:>0;
if (modelKind == 1)
{
rateClasses = 2;
categFreqMatrix = {{P_0,1-P_0}} ;
categRateMatrix = {{1,2}};
}
else
{
P_0 = 1/4;
global P_1_aux = 1/4;
global P_1 := Min(P_1_aux,1-P_0);
P_1:<1;
P_1:>0;
if (modelKind == 0)
{
rateClasses = 4;
categFreqMatrix = {{P_0,P_1,(1-P_0-P_1)/(P_0+P_1)*P_0,(1-P_0-P_1)/(P_0+P_1)*P_1}} ;
categRateMatrix = {{1,2,3,4}};
}
else
{
rateClasses = 3;
categFreqMatrix = {{P_0,P_1/(P_0+P_1),(1-P_0-P_1)/(P_0+P_1)*P_0}} ;
categRateMatrix = {{1,2,3}};
}
}
category site_kind = (rateClasses, categFreqMatrix , MEAN, ,categRateMatrix, 1, 4);
/* 7. define the GY94 rate matrix; for now each branch will have it's own
dS and dN, we will constrain them later */
global kappa_inv = 1;
ModelMatrixDimension = 64;
for (h = 0; h<64; h=h+1)
{
if (_Genetic_Code[h]==10) /* stop codon */
{
ModelMatrixDimension = ModelMatrixDimension-1;
}
}
GY_Matrix = {ModelMatrixDimension,ModelMatrixDimension};
hshift = 0;
for (h=0; h<64; h=h+1)
{
if (_Genetic_Code[h]==10)
{
hshift = hshift+1;
}
else
{
vshift = hshift;
for (v = h+1; v<64; v=v+1)
{
diff = v-h;
if (_Genetic_Code[v]==10)
{
vshift = vshift+1;
}
else
{
if ((h$4==v$4)||((diff%4==0)&&(h$16==v$16))||(diff%16==0)) /* one step */
{
if (h$4==v$4)
{
transition = v%4;
transition2= h%4;
}
else
{
if(diff%16==0)
{
transition = v$16;
transition2= h$16;
}
else
{
transition = v%16$4;
transition2= h%16$4;
}
}
if (_Genetic_Code[0][h]==_Genetic_Code[0][v]) /* synonymous */
{
if (Abs(transition-transition2)%2) /* transversion */
{
GY_Matrix[h-hshift][v-vshift] := kappa_inv*synRate;
GY_Matrix[v-vshift][h-hshift] := kappa_inv*synRate;
}
else
{
GY_Matrix[h-hshift][v-vshift] := synRate;
GY_Matrix[v-vshift][h-hshift] := synRate;
}
}
else
{
if (Abs(transition-transition2)%2) /* transversion */
{
GY_Matrix[h-hshift][v-vshift] := kappa_inv*nonSynRate;
GY_Matrix[v-vshift][h-hshift] := kappa_inv*nonSynRate;
}
else
{
GY_Matrix[h-hshift][v-vshift] := nonSynRate;
GY_Matrix[v-vshift][h-hshift] := nonSynRate;
}
}
}
}
}
}
}
/*8. build codon frequencies (use the F3x4 estimator) */
PIStop = 1.0;
codonFreqs = {ModelMatrixDimension,1};
hshift = 0;
for (h=0; h<64; h=h+1)
{
first = h$16;
second = h%16$4;
third = h%4;
if (_Genetic_Code[h]==10)
{
hshift = hshift+1;
PIStop = PIStop-baseFreqs[first][0]*baseFreqs[second][1]*baseFreqs[third][2];
continue;
}
codonFreqs[h-hshift]=baseFreqs[first][0]*baseFreqs[second][1]*baseFreqs[third][2];
}
codonFreqs = codonFreqs*(1.0/PIStop);
/*9. define the codon model */
Model GY_Model = (GY_Matrix,codonFreqs,1);
/*10. Define the tree and pick the foreground branch, displaying a tree window to facilitate selection;
the latter step is executed for 2 of 3 model choices */
Tree givenTree = treeString;
USE_LAST_RESULTS = 0;
OPTIMIZATION_METHOD = 4;
/* Approximate kappa and branch lengths using an HKY85 fit */
HKY85_Matrix = {{*,t*kappa_inv,t,t*kappa_inv}
{t*kappa_inv,*,kappa_inv*t,t}
{t,t*kappa_inv,*,kappa_inv*t}
{t*kappa_inv,t,kappa_inv*t,*}};
HarvestFrequencies (nucFreqs,ds,1,1,1);
Model HKY85_Model = (HKY85_Matrix,nucFreqs,1);
Tree nucTree = treeString;
DataSetFilter nucData = CreateFilter (ds,1);
fprintf (stdout, "Obtaining nucleotide branch lengths and kappa to be used as starting values...\n");
LikelihoodFunction nuc_lf = (nucData,nucTree);
Optimize(nuc_mle,nuc_lf);
fprintf (stdout, "\n", Format (nucTree,1,1), "\nkappa=", Format (1/kappa_inv,8,3), "\n");
USE_LAST_RESULTS = 1;
if (modelKind != 1)
{
mxTreeSpec = {5,1};
mxTreeSpec [0] = "givenTree";
mxTreeSpec [1] = "8240";
mxTreeSpec [2] = "10,40,-10,-175,1";
mxTreeSpec [3] = "";
mxTreeSpec [4] = "";
OpenWindow (TREEWINDOW, mxTreeSpec,"(SCREEN_WIDTH-50)/2;(SCREEN_HEIGHT-50)/2;30+(SCREEN_WIDTH-30)/2;45");
leafNodes = TipCount (givenTree);
internalNodes = BranchCount(givenTree);
choiceMatrix = {internalNodes+leafNodes,2};
for (bc=0; bc<internalNodes; bc=bc+1)
{
choiceMatrix[bc][0] = BranchName(givenTree,bc);
choiceMatrix[bc][1] = "Internal Branch Rooting " + givenTree[bc];
}
for (bc=0; bc<leafNodes; bc=bc+1)
{
choiceMatrix[bc+internalNodes][0] = TipName(givenTree,bc);
choiceMatrix[bc+internalNodes][1] = "Leaf node " + choiceMatrix[bc+internalNodes][0];
}
ChoiceList (stOption,"Choose the foreground branch",0,NO_SKIP,choiceMatrix);
if (stOption[0] < 0)
{
return -1;
}
fprintf (stdout, "\n\n", Columns (stOption)," foreground branch(es) set to: ", "\n");
for (bc = 0; bc < Columns (stOption); bc = bc + 1)
{
fprintf (stdout, choiceMatrix[stOption[bc]][0], "\n");
}
OpenWindow (CLOSEWINDOW, "Tree givenTree");
}
/* 15. Constrain dS and dN in the tree to based upon different models */
global omega_0 = 0.25;
omega_0 :< 1;
ClearConstraints (givenTree);
if (modelKind == 1)
{
global omega := ((site_kind==1)*omega_0+(site_kind==2));
/* will evaluate to omega_0 for sites in class site_kind=1 and to 1 for sites in class site_kind=2 */
ReplicateConstraint ("this1.?.nonSynRate:=omega*this2.?.synRate",givenTree,givenTree);
}
else
{
if (modelKind == 2)
{
global omega_FG := ((site_kind==1)*omega_0+(site_kind>1)); /* foreground model */
global omega_BG := (((site_kind==1)+(site_kind==3))*omega_0+(site_kind==2)); /* background model */
}
else
{
global omega_2 = 2.0;
omega_2:>1;
global omega_FG := ((site_kind==1)*omega_0+(site_kind==2)+(site_kind>2)*omega_2); /* foreground model */
global omega_BG := (((site_kind==1)+(site_kind==3))*omega_0+(site_kind==2)+(site_kind==4)); /* background model */
}
/* constrain the foreground branch first */
for (bc = 0; bc < Columns (stOption); bc = bc + 1)
{
ExecuteCommands ("givenTree."+choiceMatrix[stOption[bc]][0]+".nonSynRate:=omega_FG*givenTree."+choiceMatrix[stOption[bc]][0]+".synRate;");
}
/* constrain other branches next */
ReplicateConstraint ("this1.?.nonSynRate:=omega_BG*this2.?.synRate",givenTree,givenTree);
}
/* 16. define and optimize the likelihood function */
bNames = BranchName (givenTree,-1);
nucBL = BranchLength (nucTree,-1);
for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
{
ExecuteCommands ("givenTree."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t;");
}
codBL = BranchLength (givenTree,-1);
for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
{
if (nucBL[bc]>0)
{
ExecuteCommands ("givenTree."+bNames[bc]+".synRate=nucTree."+bNames[bc]+".t*"+nucBL[bc]/codBL[bc]+";");
}
}
OPTIMIZATION_PRECISION = 0.001;
LikelihoodFunction lf = (filteredData, givenTree);
while (1)
{
Optimize (mles,lf);
fprintf (stdout, lf);
GetString (lfParameters, lf, -1);
glV = lfParameters["Local Independent"];
stashedValues = {};
for (glVI = 0; glVI < Columns (glV); glVI = glVI + 1)
{
ExecuteCommands ("stashedValues[\""+glV[glVI]+"\"] = " + glV[glVI] + ";\n");
}
glV = lfParameters["Global Independent"];
for (glVI = 0; glVI < Columns (glV); glVI = glVI + 1)
{
ExecuteCommands ("stashedValues[\""+glV[glVI]+"\"] = " + glV[glVI] + ";\n");
}
mlBL = BranchLength (givenTree,-1);
samples = 500;
fprintf (stdout, "\nChecking for convergence by Latin Hypercube Sampling (this may take a bit of time...)\n");
steps = 50;
if (modelKind == 0)
{
vn = {{"P_0","P_1_aux","omega_0", "omega_2"}};
ranges = {{0.0001,1}{0.0001,1}{0.0001,1}{1,10}};
}
else
{
if (modelKind==2)
{
vn = {{"P_0","P_1_aux","omega_0"}};
ranges = {{0.0001,1}{0.0001,1}{0.0001,1}};
}
else
{
if (modelKind==1)
{
vn = {{"P_0","omega_0"}};
ranges = {{0.0001,1}{0.0001,1}};
}
}
}
LFCompute (lf,LF_START_COMPUTE);
for (sample = 0; sample < samples; sample = sample + 1)
{
rv = Random({1,steps}["_MATRIX_ELEMENT_COLUMN_"],0);
for (vid = 0; vid < Columns (vn); vid = vid + 1)
{
ctx = vn[vid] + "=" + (ranges[vid][0] + (ranges[vid][1]-ranges[vid][0])/steps*rv[vid]);
ExecuteCommands (ctx);
}
currentBL = BranchLength (givenTree,-1);
for (bc=0; bc<Columns(bNames)-1; bc=bc+1)
{
if (currentBL[bc]>0)
{
ExecuteCommands ("givenTree."+bNames[bc]+".synRate=givenTree."+bNames[bc]+".synRate*"+mlBL[bc]/currentBL[bc]+";");
}
}
LFCompute (lf,sample_value);
if (sample_value>mles[1][0])
{
fprintf (stdout, "\nFound a better likelihood score. Restarting the optimization routine.\n");
break;
}
}
LFCompute (lf,LF_DONE_COMPUTE);
if (sample < samples)
{
continue;
}
storedV = Rows (stashedValues);
for (k=0; k<Columns (storedV); k=k+1)
{
ExecuteCommands (storedV[k] + "=" + stashedValues[storedV[k]]);
}
fprintf (stdout, "\nThe estimation procedure appears to have converged.\n");
break;
}
/* 17. Report inferred rate distribition to screen */
if (modelKind == 0)
{
fprintf (stdout, "\nInferred rate distribution:",
"\n\tClass 0. omega_0 = ", Format (omega_0, 5,3), " weight = ", Format (P_0,5,3),
"\n\tClass 1. omega := ", Format (1, 5,3), " weight = ", Format (P_1,5,3),
"\n\tClass 2a. Background omega_0 = ", Format (omega_0, 5,3), " foreground omega_2 = ", Format (omega_2, 5,3), " weight = ", Format (P_0(1-P_0-P_1)/(P_0+P_1),5,3),
"\n\tClass 2b. Background omega := ", Format (1, 5,3), " foreground omega_2 = ", Format (omega_2, 5,3), " weight = ", Format (P_1(1-P_0-P_1)/(P_0+P_1),5,3), "\n");
}
if (modelKind == 1)
{
fprintf (stdout, "\nInferred rate distribution:",
"\n\tClass 0. omega_0 = ", Format (omega_0, 5,3), " weight = ", Format (P_0,5,3),
"\n\tClass 1. omega := ", Format (1, 5,3), " weight = ", Format (1-P_0,5,3), "\n");
}
if (modelKind == 2)
{
fprintf (stdout, "\nInferred rate distribution:",
"\n\tClass 0. omega_0 = ", Format (omega_0, 5,3), " weight = ", Format (P_0,5,3),
"\n\tClass 1. omega := ", Format (1, 5,3), " weight = ", Format (P_1,5,3),
"\n\tClass 2a. Background omega_0 = ", Format (omega_0, 5,3), " foreground omega_2 := ", Format (1, 5,3), " weight = ", Format (P_0(1-P_0-P_1)/(P_0+P_1),5,3),
"\n\tClass 2b. Background omega := ", Format (1, 5,3), " foreground omega_2 := ", Format (1, 5,3), " weight = ", Format (P_1(1-P_0-P_1)/(P_0+P_1),5,3), "\n");
}
/* 18. Prepare and open a window of conditional probabilities at every site (this requires a GUI but will still run -
- just not open any windows in a console build */
ConstructCategoryMatrix (posteriorMatrix, lf, COMPLETE);
posteriorMatrix = Transpose (posteriorMatrix);
GetInformation (siteProfile, site_kind);
/* this call returns the distribution function {{value1,..., valueN}{prob1, ..., probN}} for site_kind */
headers = {1, rateClasses};
for (k=1; k<=rateClasses;k=k+1)
{
headers [k-1] = "Class " + k;
}
/* convert distribution info to the form expected by OpenWindow */
disributionInfo = "site_kind";
for (k = 0; k < rateClasses; k=k+1)
{
disributionInfo = disributionInfo + ":" + siteProfile[1][k];
}
for (k = 0; k < rateClasses; k=k+1)
{
disributionInfo = disributionInfo + ":" + siteProfile[0][k];
}
OpenWindow (DISTRIBUTIONWINDOW,{{"Conditional probabilities by site"}
{"headers"}
{"posteriorMatrix"}
{"None"}
{"Index"}
{"None"}
{""}
{""}
{""}
{"0"}
{""}
{"0;0"}
{"10;1.309;0.785398"}
{"Times:12:0;Times:10:0;Times:12:2"}
{"0;0;13816530;16777215;0;0;6579300;11842740;13158600;14474460;0;3947580;16777215;15670812;6845928;16771158;2984993;9199669;7018159;1460610;16748822;11184810;14173291"}
{"16,0,0"}
{disributionInfo}
},
"600;600;50;50");
_MARGINAL_MATRIX_ = Transpose(posteriorMatrix);
_CATEGORY_VARIABLE_CDF_ = siteProfile[1][-1];
ExecuteAFile(HYPHY_LIB_DIRECTORY+"ChartAddIns"+DIRECTORY_SEPARATOR+"DistributionAddIns"+DIRECTORY_SEPARATOR+"Includes"+DIRECTORY_SEPARATOR+"posteriors.ibf");
ExecuteAFile(HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"Utility"+DIRECTORY_SEPARATOR+"WriteDelimitedFiles.bf");
siteCount = Columns(_MARGINAL_MATRIX_);
siteCounter = {};
for (k=0; k<siteCount; k=k+1)
{
siteCounter[k] = k + 1;
}
classCount = Columns(_CATEGORY_VARIABLE_CDF_);
columnHeaders = {1,classCount+1};
columnHeaders[0] = "Site";
for (k=1; k<=classCount; k=k+1)
{
columnHeaders[k] = "Class "+k;
}
SetDialogPrompt ("Write site-by-site conditional probabilities to this file:");
WriteSeparatedTable("",columnHeaders,Transpose(_MARGINAL_MATRIX_), siteCounter,",");
|