This file is indexed.

/usr/share/hyphy/TemplateBatchFiles/bayesgraph.ibf is in hyphy-common 2.2.7+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
USE_MPI_CACHING = 1;
PRINT_DIGITS = -1;


function add_discrete_node (node_id, max_parents, sample_size, nlevels)
{
	node = {};
	node["NodeID"] = node_id;
    node["NodeType"] = 0;
    node["MaxParents"] = max_parents;
	node["PriorSize"] = sample_size;
	node["NumLevels"] = nlevels;
	return node;
}

function add_gaussian_node (node_id, max_parents, sample_size, mean, precision, scale)
{
	node = {};
	node["NodeID"] = node_id;
    node["NodeType"] = 1;
	node["MaxParents"] = max_parents;
	node["PriorSize"] = sample_size;
	node["PriorMean"]	= mean;
	node["PriorPrecision"]	= precision;
	node["PriorScale"] = scale;
	return node;
}



/* utility functions from ReadDelimitedFiles.bf */
function ReadCSVTable (fileName, haveHeader)
{
	if (Abs(fileName) == 0)
	{
		fscanf (PROMPT_FOR_FILE, "Lines", inData);
	}
	else
	{
		fscanf (fileName, "Lines", inData);		
	}
	if (haveHeader)
	{
		output = {};
		output[0] = splitOnRegExp (inData[0],"\\,");
	}
	felMXString = "";
	felMXString * 256;
	felMXString * "_tempMatrix={";
	for (lineID = haveHeader; lineID < Columns(inData); lineID = lineID + 1)
	{
		felMXString * ("{" + inData[lineID] + "}\n");
	}
	felMXString * "}";
	felMXString * 0;
	ExecuteCommands (felMXString);
	felMXString = 0;
	inData = 0;
	if (haveHeader)
	{
		output[1] = _tempMatrix;
		_tempMatrix = 0;
		return output;
	}
	return _tempMatrix;
}


function splitOnRegExp (string, splitter)
{
	matched = string || splitter;
	splitBits = {};
	if (matched [0] < 0)
	{
		splitBits[0] = string;
	}
	else
	{
		mc = 0;
		if (matched[0] == 0)
		{
			fromPos = matched[1]+1;
			mc = 2;
		}
		else
		{
			fromPos = 0;
			toPos	= 0;
		}
		for (; mc < Rows (matched); mc = mc+2)
		{
			toPos = matched[mc]-1;
			splitBits [Abs(splitBits)] = string[fromPos][toPos];
			fromPos    = matched[mc+1]+1;
		}
		splitBits [Abs(splitBits)] = string[fromPos][Abs(string)-1];
	}
	return splitBits;
}


/* a wrapper around ReadCSVTable */
function import_data (inData, hasHeader)
{
	timer0 = Time(0);
	file_input = ReadCSVTable (inData, hasHeader);
	
	bgm_data_matrix = {{}};
	names = {{}};
	num_nodes = 0;
	
	if (hasHeader)
	{
		names = file_input["0"];
		bgm_data_matrix = file_input["1"];
		
		fprintf (stdout, "Read ", Rows(bgm_data_matrix), " cases from file.\n");
		
		num_nodes = Columns(bgm_data_matrix);
		
		if (Abs(file_input["0"]) != num_nodes)
		{
			fprintf (stdout, "ERROR! Number of items in header does not match the number of items in the data matrix.");
			return 0;
		}
		
		fprintf (stdout, "Detected ", num_nodes, " variables.\n");
	}
	else
	{
		bgm_data_matrix = file_input;
		
		fprintf (stdout, "Read ", Rows(bgm_data_matrix), " cases from file.\n");
		
		num_nodes = Columns(bgm_data_matrix);
		names = {num_nodes, 1};
		
		for (i = 0; i < num_nodes; i = i+1)
		{
			names[i] = i;
		}
		
		fprintf (stdout, "Detected ", num_nodes, " variables.\n");
	}
	
	return bgm_data_matrix;
}



function import_cache (filename, cache_name)
{
	fscanf (filename, "Raw", cacheStr);
	ExecuteCommands(cache_name+" = "+cacheStr+";");
	return 0;
}



function attach_cache (_bgm, cache)
{
	ExecuteCommands ("SetParameter("+_bgm+", BGM_SCORE_CACHE, cache);");
	return 0;
}




/* ____________________________________________________________ */
/*  accessor functions											*/
function setStructure (_bgm, graph_matrix)
{
	ExecuteCommands("SetParameter ("+_bgm+", BGM_GRAPH_MATRIX, graph_matrix);");
}

function setOrder (_bgm, order_matrix)
{
	if (Rows(order_matrix) > 1)
	{
		if (Columns(order_matrix) == 1)
		{
			t_order_matrix = Transpose(order_matrix);
			ExecuteCommands("SetParameter ("+_bgm+", BGM_NODE_ORDER, t_order_matrix);");
		}
		else
		{
			fprintf (stdout, "Warning: expecting row vector matrix, received non-vector matrix");
			fprintf (stdout, "         with dimensions ", Rows(order_matrix), " x ", Columns(order_matrix), "\n");
			fprintf (stdout, "Node order not set!\n");
		}
	}
	else
	{
		ExecuteCommands ("SetParameter ("+_bgm+", BGM_NODE_ORDER, order_matrix);");
	}
}


function setConstraints (_bgm, constraint_matrix)
{
	ExecuteCommands("SetParameter ("+_bgm+", BGM_CONSTRAINT_MATRIX, constraint_matrix);");
	return 0;
}


/* ____________________________________________________________ */
/*	Assign data matrix to _BayesianGraphicalModel object 		*/
function attach_data (_bgm, data, impute_max, impute_burn, impute_samp)
{
	BGM_IMPUTE_MAXSTEPS = impute_max$1;
	BGM_IMPUTE_BURNIN = impute_burn$1;
	BGM_IMPUTE_SAMPLES = impute_samp$1;

	ExecuteCommands("SetParameter ("+_bgm+", BGM_DATA_MATRIX, data);");
	return 0;
}



/*  
	Structural (graph) MCMC by Metropolis-Hastings				
 		Returns matrix object containing chain trace, edge			
	marginal posterior probabilities, and best graph as 		
	adjacency matrix.
	
	rand_tolerance = maximum number of failed steps in graph randomization
					to tolerate
	
	prob_swap = probability of reversing an edge, instead of adding or deleting an edge
	
	with_order = a vector containing node ordering to constrain graph MCMC
					set to 0 to have unconstrained chain sample
*/

BGM_MCMC_MAXFAILS = 100;
BGM_MCMC_PROBSWAP = 0.1;

function graph_MCMC (_bgm, duration, burnin, num_samples, with_order=0)
{
	if (Rows(with_order) * Columns(with_order) > 0)
	{
		/* fixed node order */
		ExecuteCommands("setOrder ("+_bgm+", with_order);");
		BGM_OPTIMIZATION_METHOD = 2;
	}
	else
	{
		/* shuffle node order */
		BGM_OPTIMIZATION_METHOD = 3;
	}
	
	BGM_MCMC_MAXSTEPS 	= duration;
	BGM_MCMC_BURNIN		= burnin;
	BGM_MCMC_SAMPLES 	= num_samples;
	
	ExecuteCommands("Optimize(res, "+_bgm+");");
	
	return res;
}


/*
	Order (node precedence permutation) MCMC by Metropolis-Hastings
*/
function order_MCMC (_bgm, duration, burnin, num_samples)
{
	BGM_OPTIMIZATION_METHOD = 4;
	
	BGM_MCMC_MAXSTEPS 	= duration;
	BGM_MCMC_BURNIN		= burnin;
	BGM_MCMC_SAMPLES 	= num_samples;
	
	ExecuteCommands("Optimize(res, "+_bgm+");");
	
	return res;
}





function display_MCMC_chain (res)
{
	if (Rows(res)*Columns(res) == 0)
	{
		fprintf (stdout, "ERROR: Cannot display MCMC chain for empty matrix\n");
		return 1;
	}
	
	pp_trace = res[-1][0];
	min_trace = pp_trace[0];
	max_trace = pp_trace[0];
	
	/* locate min/max and end of trace */
	for (k = 0; k < Rows(pp_trace); k = k+1)
	{
		if (pp_trace[k] == 0)
		{
			break;
		}
		if (pp_trace[k] < min_trace)
		{
			min_trace = pp_trace[k];
		}
		if (pp_trace[k] > max_trace)
		{
			max_trace = pp_trace[k];
		}
	}
	k = k-1;
	pp_trace = pp_trace[{{0,0}}][{{k-1,0}}];
	
	
	columnHeaders = {{"MCMC chain","sample;1;2;3;4;5;6;7;8;9"}};
	
	OpenWindow (CHARTWINDOW,{{"Posterior probability"}
			{"columnHeaders"}
			{"pp_trace"}
			{"Step Plot"}
			{"Index"}
			{"MCMC chain"}
			{"chain sample step"}
			{"posterior prob."}
			{""}
			{"0"}
			{""}
			{"0;0"}
			{"10;1.309;0.785398"}
			{"Times:12:0;Times:10:0;Times:12:2"}
			{"0;0;13816530;16777215;0;0;6579300;11842740;13158600;14474460;0;3947580;16777215;15670812;6845928;16771158;2984993;9199669;7018159;1460610;16748822;11184810;14173291"}
			{"16,"+min_trace+","+max_trace}
			},
			"405;462;105;100");
	
	return 0;
}


function get_MCMC_graph (res, num_nodes, mode)
{
	/* mode = -1 		: best_graph
	   mode = 0 		: last_graph
	   0 < mode <= 1 	: marginal posterior graph with threshold = mode (e.g. 0.9)
	   */
	graph = {num_nodes, num_nodes};
	
	if (mode > 0)
	{
		for (row = 0; row < num_nodes * num_nodes; row = row+1)
		{
			if (res[row][1] >= mode)
			{
				graph[row $ num_nodes][row % num_nodes] = 1;
			}
		}
	}
	else
	{
		for (row = 0; row < num_nodes; row = row+1)
		{
			for (col = 0; col < num_nodes; col = col+1)
			{
				graph[row][col] = res[row*num_nodes+col][mode+3];
			}
		}
	}
	
	return graph;
}


function write_edgelist (filename,res,num_nodes,directed)
{
	fprintf (filename, CLEAR_FILE, KEEP_OPEN);
	if (directed)	
	{
		for (row = 0; row < num_nodes; row = row+1)
		{
			for (col = 0; col < num_nodes; col = col+1)
			{
				fprintf (filename, names[row], ",", names[col], ",", res[row*num_nodes+col][1], "\n");
			}
		}
	}
	else
	{
		for (row = 0; row < num_nodes-1; row = row+1)
		{
			for (col = row+1; col < num_nodes; col = col+1)
			{
				fprintf (filename, names[row], ",", names[col], ",", res[row*num_nodes+col][1] + res[col*num_nodes+row][1], "\n");
			}
		}
	}
	fprintf (filename, CLOSE_FILE);
	return 0;
}


function mcmc_graph_to_dotfile (filename, threshold, res, nodes)
{	
	fprintf (filename, CLEAR_FILE);
	fprintf (filename, "digraph foo\n{\n");
	fprintf (filename, "\tnode [fontname=\"Helvetica\" style=\"filled\" fillcolor=\"white\"];\n");
	fprintf (filename, "\tedge [labelfontname=\"Helvetica\" labelangle=30 labeldistance=2];\n");
	
	for (_n = 0; _n < Abs(nodes); _n+=1) {
		fprintf (filename, "\t", (nodes[_n])["NodeID"]);
		if ((nodes[_n])["NodeType"]==0) {
			fprintf (filename, " [shape=\"Msquare\"];\n");
		} else {
			fprintf (filename, " [shape=\"circle\"];\n");
		}
	}
	
	
	// sum edge posteriors in both directions between nodes X and Y, 
	// and assign direction to the greater value
	for (row = 0; row < num_nodes-1; row = row+1) {
		for (col = row+1; col < num_nodes; col = col+1) {
			xy = res[row*num_nodes+col][1];
			yx = res[col*num_nodes+row][1];
			if (xy+yx > threshold) {
				/*
					This is really annoying - order MCMC reports edge marginal matrix with rows = child
					whereas graph MCMC reports rows = parent
				*/
				if ( xy > yx ) {
					fprintf (filename, "\t", (nodes[row])["NodeID"], "->", (nodes[col])["NodeID"], ";\n");
				} else {
					fprintf (filename, "\t", (nodes[col])["NodeID"], "->", (nodes[row])["NodeID"], ";\n");
				}
			}			
		}
	}
	
	fprintf (filename, "}\n");
	return 0;
}


/* argument must be string identifier of BGM object */
function get_network_parameters (_bgm)
{
	ExecuteCommands("GetString (res, "+_bgm+", 1);");
	ExecuteCommands(res);
	/* returns string identifier to associative array */
	ExecuteCommands("params="+_bgm+"_export;");
	return params;
}


function get_node_score_cache (_bgm)
{
	ExecuteCommands("GetString (res, "+_bgm+", 0);");
	return res;
}


/*
function getStructure (_bgm)
{
	ExecuteCommands("GetInformation (s, "+_bgm+", 0);");
	return s;
}

function getNodeOrder (_bgm)
{
	ExecuteCommands("GetInformation (s, "+_bgm+", 1);");
	return s;
}

*/




/*  
	Simulation of data based on the inferred network
		structure and parameters.
	mode = 0 (local) : for each case, instantiate parameters de novo.
						Better for assessing uncertainty.
	mode = 1 (global) : instantiate all parameters once.
						Assuming known network.
*/
function instantiate_CPDFs (params)
{
	node_names = Rows(params);
	
	/* instantiate network parameters from conditional posterior distribution functions */
	for (i = 0; i < Abs(params); i = i + 1) {
		/* stores instantiations */
		ExecuteCommands("(params[\""+node_names[i]+"\"])[\"Parameters\"] = {};");	
		
		/* number of parent combinations */
		//ExecuteCommands("npac = Columns((params[\""+node_names[i]+"\"])[\"CPDFs\"]);");
		ExecuteCommands("npac = (params[\""+node_names[i]+"\"])[\"NParentCombs\"];"); // safe version
		
		for (pa = 0; pa < npac; pa = pa+1) {
			ExecuteCommands("_p = " + ((params[node_names[i]])["CPDFs"])[pa] + ";");
			ExecuteCommands("((params[\""+node_names[i]+"\"])[\"Parameters\"])[\""+pa+"\"] = "+_p+";");
		}
		
		//ExecuteCommands("((params[\""+node_names[i]+"\"])[\"Levels\"] = Columns( ((params[\""+node_names[i]+"\"])[\"Parameters\"])[0] ));");
	}
	return 0;
}


/*
	Return a parameter vector for conditional Gaussian (CG) node given 
	hyperparameters passed as arguments.
*/
function cg_params (mean_vec, rho, phi, tau) {
	ExecuteCommands("sigma = Random({{"+phi+"}}, {\"PDF\":\"InverseWishart\", \"ARG0\":{{"+rho+"}} });");
	ExecuteCommands("em = Random("+mean_vec+", {\"PDF\":\"Gaussian\", \"ARG0\":(Inverse("+tau+") * "+sigma[0]+") } );");
	return ({"EM":em, "SIGMA":sigma});
}



function simulate_data (params, num_cases)
{
	// prepare matrix to store simulated data
	result = {num_cases, Abs(params)};
	
	node_names = Rows(params);
	if ( Columns(Rows((params[node_names[0]])["Parameters"])) == 0 )
	{
		/* parameters have not been instantiated yet */
		instantiate_CPDFs(params);
	}
	
	
	// initialize State variables and generate root states
	for (case = 0; case < num_cases; case = case+1) {	
		
		for (i = 0; i < Abs(params); i = i + 1) {
			// set to String as a placeholder
			(params[node_names[i]])["State"] = "";
			
			if ( Type((params[node_names[i]])["Parents"]) == "AssociativeList" ) {
				// if condition is true then this is a root node (no parents) 
				if ( (params[node_names[i]])["NodeType"] == 0 ) {
					// discrete node, parameters define conditional probability table
					urn = Random(0,1);
					cpt = ((params[node_names[i]])["Parameters"])[0];
					r_i = Columns(cpt);
					for (k = 0; k < r_i; k = k+1)
					{
						if ( urn <= cpt[k] )
						{
							(params[node_names[i]])["State"] = k;
							break;
						}
						urn = urn - cpt[k];
					}
				} else {
					// conditional Gaussian node, parameter defines intercept
					em = (((params[node_names[i]])["Parameters"])[0])["EM"];
					sigma = (((params[node_names[i]])["Parameters"])[0])["SIGMA"];
					(params[node_names[i]])["State"] = (Random(em, {"PDF":"Gaussian", "ARG0":sigma}))[0];
				}
			}
		}
		
		while (1)
		{
			all_done = 1;
			
			/* loop until parameters are instantiated for all nodes */
			for (i = 0; i < Abs(params); i = i+1)
			{
				if (Type(params[node_names[i]])["State"] == "String")
				{
					// Type String indicates no value - replace placeholder with NoneType when it becomes available
					
					all_done = 0;
					ok_to_go = 1;
					
					parents = (params[node_names[i]])["Parents"];
					num_parent_combos = 1;
					pa_index = 0;
					
					for (p = 0; p < Abs(Rows(parents)); p = p+1)
					{
						pid = parents[p];
						if ( Type(params[pid])["State"] == "String" )
						{
							// parents not resolved, skipping
							ok_to_go = 0;
							break;
						}
						
						// compute parental index for discrete parents
						if ( (params[pid])["NodeType"] == 0 ) {
							pa_index = pa_index + (params[pid])["State"] * num_parent_combos;						
							num_parent_combos = num_parent_combos * (params[pid])["Levels"];
						}					
					}
					
					
					if (ok_to_go)
					{
						// instantiate this node's parameters
						if ( (params[node_names[i]])["NodeType"] == 0 ) {
							urn = Random(0,1);
							cpt = ((params[node_names[i]])["Parameters"])[pa_index];
							r_i = Columns(cpt);
							for (k = 0; k < r_i; k = k+1) {
								if ( urn <= cpt[k] ) {
									(params[node_names[i]])["State"] = k;
									break;
								}
								urn = urn - cpt[k];
							}
						} else {
							em = ( ((params[node_names[i]])["Parameters"])[pa_index] )["EM"];
							sigma = ( ((params[node_names[i]])["Parameters"])[pa_index] )["SIGMA"];
							zvec = {Columns(em), 1};
							zvec[0] = 1;
							
							// get states of continuous parents
							cpar = 0;
							for (p = 0; p < Abs(Rows(parents)); p += 1) {
								pid = parents[p];
								if ( (params[pid])["NodeType"] == 1 ) {
									zvec[cpar+1] = (params[pid])["State"];
									cpar += 1;
								}
							}
							
							// conditional mean 
							cond_mean = em * zvec;
							(params[node_names[i]])["State"] = (Random(cond_mean, {"PDF":"Gaussian", "ARG0":sigma}))[0];
						}
					}
				}
			}
			/* end for loop */
			
			if (all_done) break;
		}
		/* end while */
		
		/* add case to result */
		for (i = 0; i < Abs(params); i = i+1) {
			result[case][i] = (params[node_names[i]])["State"];
		}
	}
	
	return result;
}


/* 
	Example:
		import_xmlbif("/Users/apoon/svn/hyphy/HBL/art/BGM/alarm/alarm.xml", "Alarm"); 
*/
function import_xmlbif (filename, newname)
{
	ExecuteCommands(newname+"={};");
	
	fscanf (filename, "Raw", input);
	
	var_tags = input||"<VARIABLE";
	if (var_tags[0] < 0)
	{
		fprintf (stdout, "ERROR: <VARIABLE> tag absent from XML, exiting..");
		return 1;
	}
	
	ntags = Rows(var_tags)$2;
	
	
	for (tag = 0; tag < ntags; tag = tag+1)
	{
		/*
			search for <NAME> tag - note that we use an arbitrary character limit (1000)
			for the last entry because if we use the rest of the XML file, it causes the
			regular expression search to fail! - afyp, October 26, 2011
		*/
		start_char = var_tags[tag*2+1];
		if (tag == ntags-1) { end_char = start_char+1000; }
		else { end_char = var_tags[(tag+1)*2]; }
		substr = input[start_char][end_char];
		
		/* create node */
		name_tag = substr||"<NAME>.+</NAME>";
		node_name = substr[name_tag[0]+6][name_tag[1]-7];
		
		
		ExecuteCommands(newname+"[\""+node_name+"\"]= {};");
		
		outcome_tags = substr||"<OUTCOME>";
		ExecuteCommands("("+newname+"[\""+node_name+"\"])[\"Levels\"]= "+Rows(outcome_tags)$2+";");
	}
	
	
	def_tags = input||"<DEFINITION>";
	if (def_tags[0] < 0)
	{
		fprintf (stdout, "ERROR: <DEFINITION> tag absent from XML, exiting..");
		return 1;
	}
	
	ntags = Rows(def_tags)$2;
	for (tag = 0; tag < ntags; tag = tag+1)
	{
		/* parse definition tags */
		start_char = def_tags[tag*2+1];
		if (tag == ntags-1) { end_char = Abs(input); }
		else { end_char = def_tags[(tag+1)*2]; }
		substr = input[start_char][end_char];
		
		/* start a new node */
		for_tag = substr||"<FOR>.+</FOR>";
		node_name = substr[for_tag[0]+5][for_tag[1]-6];
		
		/* assign parents */
		exec_str = "";
		exec_str * 256;
		exec_str * "(";
		exec_str * newname;
		exec_str * "[\"";
		exec_str * node_name;
		exec_str * "\"])[\"Parents\"]={";
		given_tags = substr||"<?GIVEN>";
		if (given_tags[0] >= 0)
		{
			for (gt = 1; gt < Rows(given_tags); gt = gt+4)
			{
				exec_str * "{\"";
				exec_str * substr[given_tags[gt]+1][given_tags[gt+1]-3];
				exec_str * "\"}";
				if (gt < Rows(given_tags)-4) { exec_str * ","; }
			}
		}
		exec_str * "};";
		exec_str * 0;
		ExecuteCommands(exec_str);
		
		
		/* assign conditional probability table - child state cycles fastest, then parents */
		table_tag = substr||"<TABLE>.+</TABLE>";
		table_str = substr[table_tag[0]+7][table_tag[1]-8];
		prob_tags = table_str||"[01]\.[0-9]+";
		
		n_parent_combos = 1;
		ExecuteCommands("parents = ("+newname+"[\""+node_name+"\"])[\"Parents\"];");
		for (par = 0; par < Abs(Rows(parents)); par=par+1)
		{
			ExecuteCommands("n_parent_combos = n_parent_combos * ("+newname+"[\""+parents[par]+"\"])[\"Levels\"];");
		}
		ExecuteCommands("n_levels = ("+newname+"[node_name])[\"Levels\"];");
		
		ExecuteCommands("("+newname+"[\""+node_name+"\"])[\"Parameters\"]= {};");
		
		for (pa = 0; pa < n_parent_combos; pa = pa+1)
		{
			ExecuteCommands("(("+newname+"[\""+node_name+"\"])[\"Parameters\"])[\""+pa+"\"]={1,n_levels};");
			for (lev = 0; lev < n_levels; lev=lev+1)
			{
				foo = lev * n_parent_combos + pa;
				/* fprintf (stdout, lev, ",", pa, ",", table_str[prob_tags[foo*2]][prob_tags[foo*2+1]], "\n"); */
				ExecuteCommands("((("+newname+"[\""+node_name+"\"])[\"Parameters\"])[\""+pa+"\"])["+lev+"]="+table_str[prob_tags[foo*2]][prob_tags[foo*2+1]]+";");
			}
		}
		
		
	}
	
	return 0;
}



function list2adjmat (alist) {
/*
	convert associative list returned by import_xmlbif into an adjacency matrix
*/
	num_nodes = Abs(alist);
	res = {num_nodes, num_nodes};
	node_names = Rows(alist);
	name2index = {};
	
	// for indexing into adjacency matrix
	for (node = 0; node < num_nodes; node += 1) {
		name2index[node_names[node]] = node;
	}
	
	for (child = 0; child < num_nodes; child += 1) {
		parents = (alist[node_names[child]])["Parents"];
		if (Type(parents) == "Matrix") {
			for (par = 0; par < Rows(parents); par += 1) {
				parent = name2index[parents[par]];
				res[parent][child] = 1;
			}
		}
	}
	
	return res;
}


function check_edgelist (results, adjmat, cutoff) {
	// extract edge marginal posteriors vector from results matrix (in column 1)
	edgep = results[-1][1];
	num_nodes = Rows(adjmat);
	true_pos = 0;
	false_pos = 0;
	true_neg = 0;
	false_neg = 0;
	
	for (parent = 0; parent < (num_nodes-1); parent += 1) {
		for (child = (parent+1); child < num_nodes; child += 1) {
			x = edgep[parent * num_nodes + child] + edgep[child * num_nodes + parent];
			
			if (adjmat[parent][child] > 0 || adjmat[child][parent] > 0) {
				if ( x > cutoff ) {
					true_pos += 1;
				} else { 
					false_neg += 1;
				}
			} else {
				if ( x > cutoff ) {
					false_pos += 1;
				} else { 
					true_neg += 1;
				}
			}
		}
	}
	
	result = {4,1}; /* TP, FN, FP, TN */
	result[0] = true_pos;
	result[1] = false_neg;
	result[2] = false_pos;
	result[3] = true_neg;
	
	return (result);
}