/usr/include/asio/basic_waitable_timer.hpp is in libasio-dev 1:1.10.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 | //
// basic_waitable_timer.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2016 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_WAITABLE_TIMER_HPP
#define ASIO_BASIC_WAITABLE_TIMER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/basic_io_object.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/wait_traits.hpp"
#include "asio/waitable_timer_service.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Provides waitable timer functionality.
/**
* The basic_waitable_timer class template provides the ability to perform a
* blocking or asynchronous wait for a timer to expire.
*
* A waitable timer is always in one of two states: "expired" or "not expired".
* If the wait() or async_wait() function is called on an expired timer, the
* wait operation will complete immediately.
*
* Most applications will use one of the asio::steady_timer,
* asio::system_timer or asio::high_resolution_timer typedefs.
*
* @note This waitable timer functionality is for use with the C++11 standard
* library's @c <chrono> facility, or with the Boost.Chrono library.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Examples
* Performing a blocking wait (C++11):
* @code
* // Construct a timer without setting an expiry time.
* asio::steady_timer timer(io_service);
*
* // Set an expiry time relative to now.
* timer.expires_from_now(std::chrono::seconds(5));
*
* // Wait for the timer to expire.
* timer.wait();
* @endcode
*
* @par
* Performing an asynchronous wait (C++11):
* @code
* void handler(const asio::error_code& error)
* {
* if (!error)
* {
* // Timer expired.
* }
* }
*
* ...
*
* // Construct a timer with an absolute expiry time.
* asio::steady_timer timer(io_service,
* std::chrono::steady_clock::now() + std::chrono::seconds(60));
*
* // Start an asynchronous wait.
* timer.async_wait(handler);
* @endcode
*
* @par Changing an active waitable timer's expiry time
*
* Changing the expiry time of a timer while there are pending asynchronous
* waits causes those wait operations to be cancelled. To ensure that the action
* associated with the timer is performed only once, use something like this:
* used:
*
* @code
* void on_some_event()
* {
* if (my_timer.expires_from_now(seconds(5)) > 0)
* {
* // We managed to cancel the timer. Start new asynchronous wait.
* my_timer.async_wait(on_timeout);
* }
* else
* {
* // Too late, timer has already expired!
* }
* }
*
* void on_timeout(const asio::error_code& e)
* {
* if (e != asio::error::operation_aborted)
* {
* // Timer was not cancelled, take necessary action.
* }
* }
* @endcode
*
* @li The asio::basic_waitable_timer::expires_from_now() function
* cancels any pending asynchronous waits, and returns the number of
* asynchronous waits that were cancelled. If it returns 0 then you were too
* late and the wait handler has already been executed, or will soon be
* executed. If it returns 1 then the wait handler was successfully cancelled.
*
* @li If a wait handler is cancelled, the asio::error_code passed to
* it contains the value asio::error::operation_aborted.
*/
template <typename Clock,
typename WaitTraits = asio::wait_traits<Clock>,
typename WaitableTimerService = waitable_timer_service<Clock, WaitTraits> >
class basic_waitable_timer
: public basic_io_object<WaitableTimerService>
{
public:
/// The clock type.
typedef Clock clock_type;
/// The duration type of the clock.
typedef typename clock_type::duration duration;
/// The time point type of the clock.
typedef typename clock_type::time_point time_point;
/// The wait traits type.
typedef WaitTraits traits_type;
/// Constructor.
/**
* This constructor creates a timer without setting an expiry time. The
* expires_at() or expires_from_now() functions must be called to set an
* expiry time before the timer can be waited on.
*
* @param io_service The io_service object that the timer will use to dispatch
* handlers for any asynchronous operations performed on the timer.
*/
explicit basic_waitable_timer(asio::io_service& io_service)
: basic_io_object<WaitableTimerService>(io_service)
{
}
/// Constructor to set a particular expiry time as an absolute time.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param io_service The io_service object that the timer will use to dispatch
* handlers for any asynchronous operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, expressed
* as an absolute time.
*/
basic_waitable_timer(asio::io_service& io_service,
const time_point& expiry_time)
: basic_io_object<WaitableTimerService>(io_service)
{
asio::error_code ec;
this->service.expires_at(this->implementation, expiry_time, ec);
asio::detail::throw_error(ec, "expires_at");
}
/// Constructor to set a particular expiry time relative to now.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param io_service The io_service object that the timer will use to dispatch
* handlers for any asynchronous operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, relative to
* now.
*/
basic_waitable_timer(asio::io_service& io_service,
const duration& expiry_time)
: basic_io_object<WaitableTimerService>(io_service)
{
asio::error_code ec;
this->service.expires_from_now(this->implementation, expiry_time, ec);
asio::detail::throw_error(ec, "expires_from_now");
}
/// Cancel any asynchronous operations that are waiting on the timer.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the timer. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when cancel() is called, then the
* handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel()
{
asio::error_code ec;
std::size_t s = this->service.cancel(this->implementation, ec);
asio::detail::throw_error(ec, "cancel");
return s;
}
/// Cancel any asynchronous operations that are waiting on the timer.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the timer. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*
* @note If the timer has already expired when cancel() is called, then the
* handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel(asio::error_code& ec)
{
return this->service.cancel(this->implementation, ec);
}
/// Cancels one asynchronous operation that is waiting on the timer.
/**
* This function forces the completion of one pending asynchronous wait
* operation against the timer. Handlers are cancelled in FIFO order. The
* handler for the cancelled operation will be invoked with the
* asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @return The number of asynchronous operations that were cancelled. That is,
* either 0 or 1.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when cancel_one() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel_one()
{
asio::error_code ec;
std::size_t s = this->service.cancel_one(this->implementation, ec);
asio::detail::throw_error(ec, "cancel_one");
return s;
}
/// Cancels one asynchronous operation that is waiting on the timer.
/**
* This function forces the completion of one pending asynchronous wait
* operation against the timer. Handlers are cancelled in FIFO order. The
* handler for the cancelled operation will be invoked with the
* asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled. That is,
* either 0 or 1.
*
* @note If the timer has already expired when cancel_one() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel_one(asio::error_code& ec)
{
return this->service.cancel_one(this->implementation, ec);
}
/// Get the timer's expiry time as an absolute time.
/**
* This function may be used to obtain the timer's current expiry time.
* Whether the timer has expired or not does not affect this value.
*/
time_point expires_at() const
{
return this->service.expires_at(this->implementation);
}
/// Set the timer's expiry time as an absolute time.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when expires_at() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_at(const time_point& expiry_time)
{
asio::error_code ec;
std::size_t s = this->service.expires_at(
this->implementation, expiry_time, ec);
asio::detail::throw_error(ec, "expires_at");
return s;
}
/// Set the timer's expiry time as an absolute time.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*
* @note If the timer has already expired when expires_at() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_at(const time_point& expiry_time,
asio::error_code& ec)
{
return this->service.expires_at(this->implementation, expiry_time, ec);
}
/// Get the timer's expiry time relative to now.
/**
* This function may be used to obtain the timer's current expiry time.
* Whether the timer has expired or not does not affect this value.
*/
duration expires_from_now() const
{
return this->service.expires_from_now(this->implementation);
}
/// Set the timer's expiry time relative to now.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when expires_from_now() is called,
* then the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_from_now(const duration& expiry_time)
{
asio::error_code ec;
std::size_t s = this->service.expires_from_now(
this->implementation, expiry_time, ec);
asio::detail::throw_error(ec, "expires_from_now");
return s;
}
/// Set the timer's expiry time relative to now.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*
* @note If the timer has already expired when expires_from_now() is called,
* then the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_from_now(const duration& expiry_time,
asio::error_code& ec)
{
return this->service.expires_from_now(
this->implementation, expiry_time, ec);
}
/// Perform a blocking wait on the timer.
/**
* This function is used to wait for the timer to expire. This function
* blocks and does not return until the timer has expired.
*
* @throws asio::system_error Thrown on failure.
*/
void wait()
{
asio::error_code ec;
this->service.wait(this->implementation, ec);
asio::detail::throw_error(ec, "wait");
}
/// Perform a blocking wait on the timer.
/**
* This function is used to wait for the timer to expire. This function
* blocks and does not return until the timer has expired.
*
* @param ec Set to indicate what error occurred, if any.
*/
void wait(asio::error_code& ec)
{
this->service.wait(this->implementation, ec);
}
/// Start an asynchronous wait on the timer.
/**
* This function may be used to initiate an asynchronous wait against the
* timer. It always returns immediately.
*
* For each call to async_wait(), the supplied handler will be called exactly
* once. The handler will be called when:
*
* @li The timer has expired.
*
* @li The timer was cancelled, in which case the handler is passed the error
* code asio::error::operation_aborted.
*
* @param handler The handler to be called when the timer expires. Copies
* will be made of the handler as required. The function signature of the
* handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* asio::io_service::post().
*/
template <typename WaitHandler>
ASIO_INITFN_RESULT_TYPE(WaitHandler,
void (asio::error_code))
async_wait(ASIO_MOVE_ARG(WaitHandler) handler)
{
// If you get an error on the following line it means that your handler does
// not meet the documented type requirements for a WaitHandler.
ASIO_WAIT_HANDLER_CHECK(WaitHandler, handler) type_check;
return this->service.async_wait(this->implementation,
ASIO_MOVE_CAST(WaitHandler)(handler));
}
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BASIC_WAITABLE_TIMER_HPP
|