/usr/share/perl5/Crypt/SaltedHash.pm is in libcrypt-saltedhash-perl 0.09-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 | package Crypt::SaltedHash;
use strict;
use MIME::Base64 ();
use Digest ();
use vars qw($VERSION);
$VERSION = '0.09';
=encoding latin1
=head1 NAME
Crypt::SaltedHash - Perl interface to functions that assist in working
with salted hashes.
=head1 SYNOPSIS
use Crypt::SaltedHash;
my $csh = Crypt::SaltedHash->new(algorithm => 'SHA-1');
$csh->add('secret');
my $salted = $csh->generate;
my $valid = Crypt::SaltedHash->validate($salted, 'secret');
=head1 DESCRIPTION
The C<Crypt::SaltedHash> module provides an object oriented interface to
create salted (or seeded) hashes of clear text data. The original
formalization of this concept comes from RFC-3112 and is extended by the use
of different digital agorithms.
=head1 ABSTRACT
=head2 Setting the data
The process starts with 2 elements of data:
=over
=item *
a clear text string (this could represent a password for instance).
=item *
the salt, a random seed of data. This is the value used to augment a hash in order to
ensure that 2 hashes of identical data yield different output.
=back
For the purposes of this abstract we will analyze the steps within code that perform the necessary actions
to achieve the endresult hashes. Cryptographers call this hash a digest. We will not however go into an explanation
of a one-way encryption scheme. Readers of this abstract are encouraged to get information on that subject by
their own.
Theoretically, an implementation of a one-way function as an algorithm takes input, and provides output, that are both
in binary form; realistically though digests are typically encoded and stored in a database or in a flat text or XML file.
Take slappasswd5 for instance, it performs the exact functionality described above. We will use it as a black box compiled
piece of code for our analysis.
In pseudocode we generate a salted hash as follows:
Get the source string and salt as separate binary objects
Concatenate the 2 binary values
Hash the concatenation into SaltedPasswordHash
Base64Encode(concat(SaltedPasswordHash, Salt))
We take a clear text string and hash this into a binary object representing the hashed value of the clear text string plus the random salt.
Then we have the Salt value, which are typically 4 bytes of purely random binary data represented as hexadecimal notation (Base16 as 8 bytes).
Using SHA-1 as the hashing algorithm, SaltedPasswordHash is of length 20 (bytes) in raw binary form
(40 bytes if we look at it in hex). Salt is then 4 bytes in raw binary form. The SHA-1 algorithm generates
a 160 bit hash string. Consider that 8 bits = 1 byte. So 160 bits = 20 bytes, which is exactly what the
algorithm gives us.
The Base64 encoding of the binary result looks like:
{SSHA}B0O0XSYdsk7g9K229ZEr73Lid7HBD9DX
Take note here that the final output is a 32-byte string of data. The Base64 encoding process uses bit shifting, masking, and padding as per RFC-3548.
A couple of examples of salted hashes using on the same exact clear-text string:
slappasswd -s testing123
{SSHA}72uhy5xc1AWOLwmNcXALHBSzp8xt4giL
slappasswd -s testing123
{SSHA}zmIAVaKMmTngrUi4UlS0dzYwVAbfBTl7
slappasswd -s testing123
{SSHA}Be3F12VVvBf9Sy6MSqpOgAdEj6JCZ+0f
slappasswd -s testing123
{SSHA}ncHs4XYmQKJqL+VuyNQzQjwRXfvu6noa
4 runs of slappasswd against the same clear text string each yielded unique endresult hashes.
The random salt is generated silently and never made visible.
=head2 Extracting the data
One of the keys to note is that the salt is dealt with twice in the process. It is used once for the actual application of randomness to the
given clear text string, and then it is stored within the final output as purely Base64 encoded data. In order to perform an authentication
query for instance, we must break apart the concatenation that was created for storage of the data. We accomplish this by splitting
up the binary data we get after Base64 decoding the stored hash.
In pseudocode we would perform the extraction and verification operations as such:
Strip the hash identifier from the Digest
Base64Decode(Digest, 20)
Split Digest into 2 byte arrays, one for bytes 0 � 20(pwhash), one for bytes 21 � 32 (salt)
Get the target string and salt as separate binary object
Concatenate the 2 binary values
SHA hash the concatenation into targetPasswordHash
Compare targetPasswordHash with pwhash
Return corresponding Boolean value
Our job is to split the original digest up into 2 distinct byte arrays, one of the left 20 (0 - 20 including the null terminator) bytes and
the other for the rest of the data. The left 0 � 20 bytes will represent the salted binary value we will use for a byte-by-byte data
match against the new clear text presented for verification. The string presented for verification will have to be salted as well. The rest
of the bytes (21 � 32) represent the random salt which when decoded will show the exact hex characters that make up the once randomly
generated seed.
We are now ready to verify some data. Let's start with the 4 hashes presented earlier. We will run them through our code to extract the
random salt and then using that verify the clear text string hashed by slappasswd. First, let's do a verification test with an erroneous
password; this should fail the matching test:
{SSHA}72uhy5xc1AWOLwmNcXALHBSzp8xt4giL Test123
Hash extracted (in hex): ef6ba1cb9c5cd4058e2f098d71700b1c14b3a7cc
Salt extracted (in hex): 6de2088b
Hash length is: 20 Salt length is: 4
Hash presented in hex: 256bc48def0ce04b0af90dfd2808c42588bf9542
Hashes DON'T match: Test123
The match failure test was successful as expected. Now let's use known valid data through the same exact code:
{SSHA}72uhy5xc1AWOLwmNcXALHBSzp8xt4giL testing123
Hash extracted (in hex): ef6ba1cb9c5cd4058e2f098d71700b1c14b3a7cc
Salt extracted (in hex): 6de2088b
Hash length is: 20 Salt length is: 4
Hash presented in hex: ef6ba1cb9c5cd4058e2f098d71700b1c14b3a7cc
Hashes match: testing123
The process used for salted passwords should now be clear. We see that salting hashed data does indeed add another layer of security to the
clear text one-way hashing process. But we also see that salted hashes should also be protected just as if the data was in clear text form.
Now that we have seen salted hashes actually work you should also realize that in code it is possible to extract salt values and use them
for various purposes. Obviously the usage can be on either side of the colored hat line, but the data is there.
=head1 METHODS
=over 4
=item B<new( [%options] )>
Returns a new Crypt::SaltedHash object.
Possible keys for I<%options> are:
=over
=item *
I<algorithm>: It's also possible to use common string representations of the
algorithm (e.g. "sha256", "SHA-384"). If the argument is missing, SHA-1 will
be used by default.
=item *
I<salt>: You can specify your on salt. You can either specify it as a sequence
of charactres or as a hex encoded string of the form "HEX{...}". If the argument is missing,
a random seed is provided for you (recommended).
=item *
I<salt_len>: By default, the module assumes a salt length of 4 bytes (or 8, if it is encoded in hex).
If you choose a different length, you have to tell the I<validate> function how long your seed was.
=back
=cut
sub new {
my ( $class, %options ) = @_;
$options{algorithm} ||= 'SHA-1';
$options{salt_len} ||= 4;
$options{salt} ||= &__generate_hex_salt( $options{salt_len} * 2 );
$options{algorithm} = uc( $options{algorithm} );
$options{algorithm} .= '-1'
if $options{algorithm} =~ m!SHA$!; # SHA => SHA-1, HMAC-SHA => HMAC-SHA-1
my $digest = Digest->new( $options{algorithm} );
my $self = {
salt => $options{salt},
algorithm => $options{algorithm},
digest => $digest,
scheme => &__make_scheme( $options{algorithm} ),
};
return bless $self, $class;
}
=item B<add( $data, ... )>
Logically joins the arguments into a single string, and uses it to
update the current digest state. For more details see L<Digest>.
=cut
sub add {
my $self = shift;
$self->obj->add(@_);
return $self;
}
=item B<clear()>
Resets the digest.
=cut
sub clear {
my $self = shift;
$self->{digest} = Digest->new( $self->{algorithm} );
return $self;
}
=item B<salt_bin()>
Returns the salt in binary form.
=cut
sub salt_bin {
my $self = shift;
return $self->{salt} =~ m!^HEX\{(.*)\}$!i ? pack( "H*", $1 ) : $self->{salt};
}
=item B<salt_hex()>
Returns the salt in hexadecimal form ('HEX{...}')
=cut
sub salt_hex {
my $self = shift;
return $self->{salt} =~ m!^HEX\{(.*)\}$!i
? $self->{salt}
: 'HEX{' . join( '', unpack( 'H*', $self->{salt} ) ) . '}';
}
=item B<generate()>
Generates the seeded hash. Uses the I<clone>-method of L<Digest> before actually performing
the digest calculation, so adding more cleardata after a call of I<generate> to an instance of
I<Crypt::SaltedHash> has the same effect as adding the data before the call of I<generate>.
=cut
sub generate {
my $self = shift;
my $clone = $self->obj->clone;
my $salt = $self->salt_bin;
$clone->add($salt);
my $gen = &MIME::Base64::encode_base64( $clone->digest . $salt, '' );
my $scheme = $self->{scheme};
return "{$scheme}$gen";
}
=item B<validate( $hasheddata, $cleardata, [$salt_len] )>
Validates a hasheddata previously generated against cleardata. I<$salt_len> defaults to 4 if not set.
Returns 1 if the validation is successful, 0 otherwise.
=cut
sub validate {
my ( undef, $hasheddata, $cleardata, $salt_len ) = @_;
# trim white-spaces
$hasheddata =~ s!^\s+!!;
$hasheddata =~ s!\s+$!!;
my $scheme = &__get_pass_scheme($hasheddata);
$scheme = uc( $scheme ) if $scheme;
my $algorithm = &__make_algorithm($scheme);
my $hash = &__get_pass_hash($hasheddata) || '';
my $salt = &__extract_salt( $hash, $salt_len );
my $obj = __PACKAGE__->new(
algorithm => $algorithm,
salt => $salt,
salt_len => $salt_len
);
$obj->add($cleardata);
my $gen_hasheddata = $obj->generate;
my $gen_hash = &__get_pass_hash($gen_hasheddata);
return $gen_hash eq $hash;
}
=item B<obj()>
Returns a handle to L<Digest> object.
=cut
sub obj {
return shift->{digest};
}
=back
=head1 FUNCTIONS
I<none yet.>
=cut
sub __make_scheme {
my $scheme = shift;
my @parts = split /-/, $scheme;
pop @parts if $parts[-1] eq '1'; # SHA-1 => SHA
$scheme = join '', @parts;
return uc("S$scheme");
}
sub __make_algorithm {
my ( $algorithm ) = @_;
$algorithm ||= '';
local $1;
if ( $algorithm =~ m!^S(.*)$! ) {
$algorithm = $1;
# print STDERR "algorithm: $algorithm\n";
if ( $algorithm =~ m!([a-zA-Z]+)([0-9]+)! ) {
my $name = uc($1);
my $digits = $2;
# print STDERR "name: $name\n";
# print STDERR "digits: $digits\n";
$name = "HMAC-$2" if $name =~ m!^HMAC(.*)$!; # HMAC-SHA-1
$digits = "-$digits" unless $name =~ m!MD$!; # MD2, MD4, MD5
$algorithm = "$name$digits";
}
}
return $algorithm;
}
sub __get_pass_scheme {
local $1;
return unless $_[0] =~ m/{([^}]*)/;
return $1;
}
sub __get_pass_hash {
local $1;
return unless $_[0] =~ m/}(.*)/;
return $1;
}
sub __generate_hex_salt {
my @keychars = (
"0", "1", "2", "3", "4", "5", "6", "7",
"8", "9", "a", "b", "c", "d", "e", "f"
);
my $length = shift || 8;
my $salt = '';
my $max = scalar @keychars;
for my $i ( 0 .. $length - 1 ) {
my $skip = $i == 0 ? 1 : 0; # don't let the first be 0
$salt .= $keychars[ $skip + int( rand( $max - $skip ) ) ];
}
return "HEX{$salt}";
}
sub __extract_salt {
my ( $hash, $salt_len ) = @_;
my $binhash = &MIME::Base64::decode_base64($hash);
my $binsalt = substr( $binhash, length($binhash) - ( $salt_len || 4 ) );
return $binsalt;
}
=head1 SEE ALSO
L<Digest>, L<MIME::Base64>
=head1 AUTHOR
Sascha Kiefer, L<esskar@cpan.org>
=head1 ACKNOWLEDGMENTS
The author is particularly grateful to Andres Andreu for his article: Salted
hashes demystified - A Primer (L<http://www.securitydocs.com/library/3439>)
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2010 Sascha Kiefer
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
=cut
1;
|