/usr/include/csound/ChordLindenmayer.hpp is in libcsoundac-dev 1:6.10.0~dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | /*
* C S O U N D
*
* L I C E N S E
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this software; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef CHORDLINDENMAYER_TO_SOUND_H
#define CHORDLINDENMAYER_TO_SOUND_H
#include "Platform.hpp"
#ifdef SWIG
%module CsoundAC
%include "std_string.i"
%include "std_vector.i"
%include "std_map.i"
%{
#include "Conversions.hpp"
#include "Event.hpp"
#include "Score.hpp"
#include "Node.hpp"
#include "Voicelead.hpp"
#include "VoiceleadingNode.hpp"
#include "System.hpp"
#include <sstream>
#include <stack>
#include <string>
#include <map>
#include <vector>
#include <eigen3/Eigen/Dense>
%}
%template(StringMap) std::map<std::string, std::string>;
#else
#include "Conversions.hpp"
#include "Event.hpp"
#include "Score.hpp"
#include "Node.hpp"
#include "Voicelead.hpp"
#include "VoiceleadingNode.hpp"
#include "System.hpp"
#include <sstream>
#include <stack>
#include <string>
#include <map>
#include <vector>
#include <eigen3/Eigen/Dense>
#endif
namespace csound
{
extern void SILENCE_PUBLIC printChord(std::ostream &stream, std::string label, const std::vector<double> &chord);
struct SILENCE_PUBLIC Turtle
{
Event note;
Event step;
Event orientation;
std::vector<double> chord;
double rangeBass;
double rangeSize;
double voicing;
std::vector<double> modality;
Turtle()
{
initialize();
}
Turtle(const Turtle &other)
{
*this = other;
}
void initialize()
{
note = csound::Event();
step = csound::Event();
for(size_t i = 0; i < Event::HOMOGENEITY; i++)
{
step[i] = 1.0;
}
orientation = csound::Event();
orientation[Event::TIME] = 1.0;
chord.clear();
modality.clear();
rangeBass = 36;
rangeSize = 60;
voicing = 0;
modality = Conversions::nameToPitches("C Major");
}
Turtle &operator = (const Turtle &other)
{
note = other.note;
step = other.step;
orientation = other.orientation;
chord = other.chord;
rangeBass = other.rangeBass;
rangeSize = other.rangeSize;
voicing = other.voicing;
modality = other.modality;
return *this;
}
#if __cpplusplus >= 201103L
Turtle &operator = (Turtle &&other) = default;
#endif
bool operator < (const Turtle &other) const
{
if (note < other.note) {
return true;
} else if (other.note < note) {
return false;
}
if (step < other.step) {
return true;
} else if (other.step < step) {
return false;
}
if (orientation < other.orientation) {
return true;
} else if (other.orientation < orientation) {
return false;
}
if (chord < other.chord) {
return true;
} else if (other.chord < chord) {
return false;
}
if (rangeBass < other.rangeBass) {
return false;
} else if (other.rangeBass < rangeBass) {
return true;
}
if (rangeSize < other.rangeSize) {
return true;
} else if (other.rangeSize < rangeSize) {
return false;
}
if (voicing < other.voicing) {
return true;
} else if (other.voicing < voicing) {
return false;
}
if (modality < other.modality) {
return true;
}
return false;
}
virtual std::string __str__() const
{
std::stringstream stream;
stream << "Turtle: " << std::endl;
stream << " note: " << note.toString() << std::endl;
stream << " step: " << step.toString() << std::endl;
stream << " orientation: " << orientation.toString() << std::endl;
printChord(stream, " chord: ", chord);
stream << " rangeBass: " << rangeBass << std::endl;
stream << " rangeSize: " << rangeSize << std::endl;
stream << " voicing: " << voicing << std::endl;
printChord(stream, " modality: ", modality);
return stream.str();
}
};
struct SILENCE_PUBLIC Command
{
char operation;
char target;
char equivalence;
int dimension;
double x;
std::vector<double> v;
};
/**
* This class implements a Lindenmayer system that generates a score
* by moving a turtle around in various implicit music spaces.
*
* The turtle consists of:
* <ul>
* <li> N, a note, i.e. a vector of real numbers in score space.</li>
* <li> S, a step, i.e. an increment by which to move N
* (also a vector in score space).</li>
* <li> O, an orientation, i.e. a direction to move N
* (also a vector).</li>
* <li> C, a chord, i.e. a vector of voices in chord space.</li>
* <li> M, a modality used as a reference for neo-Riemannian
* operations upon chords (also a vector).</li>
* <li> V, a chord voicing, i.e. the index of the octavewise
* permutation of C within a range.</li>
* <li> B, the bass of the range.</li>
* <li> R, the size of the range.</li>
* </ul>
*
* In accordance with both mathematical music theory and the practice
* of composers, operations on elements of music take place in spaces
* whose geometry changes fluidly depending upon the musical context.
* A paradigmatic example is transposition, which may apply
* to individual notes, or to chords, or to larger parts of scores;
* as an even more indicative example, transposition may apply
* to pitch under octave equivalence (pitch-classes), to pitch under
* range equivalence (transposition on a staff), or simply to pitch
* as a real number.
*
* Consequently, the independent parts of an operation in this
* Lindenmayer system are specified by commands in the format
* OTEDX, where:
* <ul>
* <li>O = the operation proper (e.g. sum or product).</li>
* <li>T = the target, or part of the turtle to which the
* operation applies, and which has an implicit rank
* (e.g. scalar, vector, tensor).</li>
* <li>E = its equivalence class (e.g. octave or range).</li>
* <li>D = the individual dimension of the operation
* (e.g. pitch or time).</li>
* <li>X = the operand.</li>
* </ul>
*
* Of course, some operations apply in all ranks, dimensions, and
* equivalence classes; other operations, only to one dimension
* or one class.
*
* Commands are as follows (x is a real scalar;
* for chords, v is a real vector "(x1,..,xn)" or a jazz-style chord name ("F#7b9")):
* <ul>
* <li> [ = Push the active turtle onto a stack (start a branch).</li>
* <li> ] = Pop the active turtle from the stack (return to the branching point).</li>
* <li> Fx = Move the turtle "forward" x steps along its current orientation:
* N := N + (S * O) * x.</li>
* <li> ROdex = Rotate the turtle orientation from dimension d to dimension e by angle x:</li>
* R = makeRotation(d, e, x); O := R * O.</li>
* <li> oNEdx = Apply algebraic operation o to turtle note dimension d with operand x:
* N[d] := N[d] + S[d] o x.</li>
* <li> oSEdx = Apply algebraic operation o to turtle step dimension d with operand x:
* S[d] := S[d] o x.</li>
* <li> oCEix = Apply algebraic operation o to voice i of the turtle chord with operand x:
* C[i] := C[i] o x.</li>
* <li> oCEv = Apply algebraic operation o to the turtle chord with operand x:
* C := C o x (x may be a vector or chord name).</li>
* <li> oMEv = Apply algebraic operation o to the turtle modality with operand x:
* M := M o x (x may be a vector or chord name).</li>
* <li> oVx = Apply algebraic operation o to the voicing index of the turtle chord with operand x:
* V := V o x. Of necessity the equivalence class is the range of the score.</li>
* <li> ICOx = Invert the turtle chord by reflecting it around pitch-class x.</li>
* <li> KCO = Apply Neo-Riemannian inversion by exchange to the turtle chord.</li>
* <li> QCOx = Apply Neo-Riemannian contextual transposition by x pitch-classes
* (with reference to the turtle's modality) to the turtle chord.</li>
* <li> VC+ = Add a voice (doubling the root) to the turtle chord.</li>
* <li> VC- = Remove a voice from the turtle chord.</li>
* <li> WN = Write the current turtle note to the score.</li>
* <li> WCV = Write the current turtle chord and voicing to the score.</li>
* <li> WCNV = Write the current turtle chord and voicing to the score,
* after first applying the turtle note to each voice in the chord.</li>
* <li> AC = Apply the current turtle chord to the score, starting
* at the current time and continuing to the next A command.</li>
* <li> ACN = Apply the current turtle chord to the score,
* after first applying the turtle note to each voice in the chord, starting
* at the current time and continuing to the next A command.</li>
* <li> ACL = Apply the current turtle chord to the score, using the closest voice-leading
* from the previous chord (if any), starting
* at the current time and continuing to the next A command.</li>
* <li> ACNL = Apply the current turtle chord to the score, after first applying the turtle
* note to each voice in the chord, using the closest voice-leading from the
* previous chord (if any), starting
* at the current time and continuing to the next A command.</li>
* <li> A0 = End application of the previous A command.</li>
* </ul>
* Dimensions of notes:
* <ol>
* <li>i = instrument.</li>
* <li>t = time.</li>
* <li>d = duration.</li>
* <li>k = MIDI key number.</li>
* <li>v = MIDI velocity number.</li>
* <li>p = phase.</li>
* <li>x = pan.</li>
* <li>y = height.</li>
* <li>z = depth.</li>
* <li>s = pitch-class set as Mason number (deprecated here).</li>
* </ol>
* Algebraic operations:
* <ul>
* <li>= = Assign.</li>
* <li>+ = Add.</li>
* <li>- = Subtract.</li>
* <li>* = Multiply.</li>
* <li>/ = Divide.</li>
* </ul>
* Equivalence classes:
* <ul>
* <li>0 = None.</li>
* <li>O = The octave (12).</li>
* <li>R = The range of the turtle.</li>
* </ul>
*/
class SILENCE_PUBLIC ChordLindenmayer :
public VoiceleadingNode
{
public:
ChordLindenmayer();
virtual ~ChordLindenmayer();
virtual int getIterationCount() const;
virtual void setIterationCount(int count);
virtual double getAngle() const;
virtual void setAngle(double angle);
virtual std::string getAxiom() const;
virtual void setAxiom(std::string axiom);
virtual void addRule(std::string command, std::string replacement);
virtual std::string getReplacement(std::string command);
/**
* Scores are generated as follows:
* <ol>
* <li> The initial value of the turtle is set by the Lindenmayer system.<\li>
* <li> The Lindenmayer system is rewritten by taking the axiom, parsing it into words,
* and replacing each word with the product of a rewriting rule, if one exists, or itself,
* if there is no rule. This procedure is iterated for a specified number of times.</li>
* <li> The finished, rewritten Lindenmayer system is interpreted as a series of commands for
* moving a turtle around in various music spaces to write a score.</li><ol>
* <li> Notes (N operations) are written directly into the score.</li>
* <li> Chords (C operations) are written into the score as notes.</li>
* <li> L and A operations are written into the score as voice-leading operations,
* to be applied after all notes have been generated.</li></ol>
* <li> Overlapping and directly abutting notes in the score are joined.</li>
* <li> The L and A operations are actually applied to the score.
* <li> Overlapping and abutting notes in the score are again joined.</li>
* </ol>
*/
virtual void generate();
virtual void clear();
Score score;
int iterationCount;
double angle;
std::string axiom;
std::string production;
Turtle turtle;
std::map<std::string, std::string> rules;
std::stack<Turtle> turtleStack;
clock_t beganAt;
clock_t endedAt;
clock_t elapsed;
virtual void initialize();
virtual void generateLindenmayerSystem();
virtual void writeScore();
virtual void fixStatus();
virtual void tieOverlappingNotes();
virtual void applyVoiceleadingOperations();
virtual void interpret(std::string command);
virtual int getDimension (char dimension) const;
virtual char parseCommand(const std::string &command,
std::string &operation,
char &target,
char &equivalenceClass,
size_t &dimension,
size_t &dimension1,
double &scalar,
std::vector<double> &vector);
virtual Eigen::MatrixXd createRotation (int dimension1, int dimension2, double angle) const;
/**
* Returns the result of applying the equivalence class to the value,
* both in the argument and as the return value; there may be no effect.
*/
virtual double equivalence(double &value, char equivalenceClass) const;
virtual void produceOrTransform(Score &score,
size_t beginAt,
size_t endAt,
const Eigen::MatrixXd &compositeCordinates);
};
}
#endif
|