This file is indexed.

/usr/share/perl5/Data/Integer.pm is in libdata-integer-perl 0.006-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
=head1 NAME

Data::Integer - details of the native integer data type

=head1 SYNOPSIS

    use Data::Integer qw(natint_bits);

    $n = natint_bits;

    # and other constants; see text

    use Data::Integer qw(nint sint uint nint_is_sint nint_is_uint);

    $ni = nint($ni);
    $si = sint($si);
    $ui = uint($ui);
    if(nint_is_sint($ni)) { ...
    if(nint_is_uint($ni)) { ...

    use Data::Integer qw(
	nint_sgn sint_sgn uint_sgn
	nint_abs sint_abs uint_abs
	nint_cmp sint_cmp uint_cmp
	nint_min sint_min uint_min
	nint_max sint_max uint_max
	nint_neg sint_neg uint_neg
	nint_add sint_add uint_add
	nint_sub sint_sub uint_sub);

    $sn = nint_sgn($ni);
    $sn = sint_sgn($si);
    $sn = uint_sgn($ui);
    $ni = nint_abs($ni);
    $si = sint_abs($si);
    $ui = uint_abs($ui);
    @sorted_nints = sort { nint_cmp($a, $b) } @nints;
    @sorted_sints = sort { sint_cmp($a, $b) } @sints;
    @sorted_uints = sort { uint_cmp($a, $b) } @uints;
    $ni = nint_min($na, $nb);
    $si = sint_min($sa, $sb);
    $ui = uint_min($ua, $ub);
    $ni = nint_max($na, $nb);
    $si = sint_max($sa, $sb);
    $ui = uint_max($ua, $ub);
    $ni = nint_neg($ni);
    $si = sint_neg($si);
    $ui = uint_neg($ui);
    $ni = nint_add($na, $nb);
    $si = sint_add($sa, $sb);
    $ui = uint_add($ua, $ub);
    $ni = nint_sub($na, $nb);
    $si = sint_sub($sa, $sb);
    $ui = uint_sub($ua, $ub);

    use Data::Integer qw(
	sint_shl uint_shl
	sint_shr uint_shr
	sint_rol uint_rol
	sint_ror uint_ror);

    $si = sint_shl($si, $dist);
    $ui = uint_shl($ui, $dist);
    $si = sint_shr($si, $dist);
    $ui = uint_shr($ui, $dist);
    $si = sint_rol($si, $dist);
    $ui = uint_rol($ui, $dist);
    $si = sint_ror($si, $dist);
    $ui = uint_ror($ui, $dist);

    use Data::Integer qw(
	nint_bits_as_sint nint_bits_as_uint
	sint_bits_as_uint uint_bits_as_sint);

    $si = nint_bits_as_sint($ni);
    $ui = nint_bits_as_uint($ni);
    $ui = sint_bits_as_uint($si);
    $si = uint_bits_as_sint($ui);

    use Data::Integer qw(
	sint_not uint_not
	sint_and uint_and
	sint_nand uint_nand
	sint_andn uint_andn
	sint_or uint_or
	sint_nor uint_nor
	sint_orn uint_orn
	sint_xor uint_xor
	sint_nxor uint_nxor
	sint_mux uint_mux);

    $si = sint_not($si);
    $ui = uint_not($ui);
    $si = sint_and($sa, $sb);
    $ui = uint_and($ua, $ub);
    $si = sint_nand($sa, $sb);
    $ui = uint_nand($ua, $ub);
    $si = sint_andn($sa, $sb);
    $ui = uint_andn($ua, $ub);
    $si = sint_or($sa, $sb);
    $ui = uint_or($ua, $ub);
    $si = sint_nor($sa, $sb);
    $ui = uint_nor($ua, $ub);
    $si = sint_orn($sa, $sb);
    $ui = uint_orn($ua, $ub);
    $si = sint_xor($sa, $sb);
    $ui = uint_xor($ua, $ub);
    $si = sint_nxor($sa, $sb);
    $ui = uint_nxor($ua, $ub);
    $si = sint_mux($sa, $sb, $sc);
    $ui = uint_mux($ua, $ub, $uc);

    use Data::Integer qw(
	sint_madd uint_madd
	sint_msub uint_msub
	sint_cadd uint_cadd
	sint_csub uint_csub
	sint_sadd uint_sadd
	sint_ssub uint_ssub);

    $si = sint_madd($sa, $sb);
    $ui = uint_madd($ua, $ub);
    $si = sint_msub($sa, $sb);
    $ui = uint_msub($ua, $ub);
    ($carry, $si) = sint_cadd($sa, $sb, $carry);
    ($carry, $ui) = uint_cadd($ua, $ub, $carry);
    ($carry, $si) = sint_csub($sa, $sb, $carry);
    ($carry, $ui) = uint_csub($ua, $ub, $carry);
    $si = sint_sadd($sa, $sb);
    $ui = uint_sadd($ua, $ub);
    $si = sint_ssub($sa, $sb);
    $ui = uint_ssub($ua, $ub);

    use Data::Integer qw(natint_hex hex_natint);

    print natint_hex($value);
    $value = hex_natint($string);

=head1 DESCRIPTION

This module is about the native integer numerical data type.  A native
integer is one of the types of datum that can appear in the numeric part
of a Perl scalar.  This module supplies constants describing the native
integer type.

There are actually two native integer representations: signed and
unsigned.  Both are handled by this module.

=head1 NATIVE INTEGERS

Each native integer format represents a value using binary place
value, with some fixed number of bits.  The number of bits is the
same for both signed and unsigned representations.  In each case
the least-significant bit has the value 1, the next 2, the next 4,
and so on.  In the unsigned representation, this pattern continues up
to and including the most-significant bit, which for a 32-bit machine
therefore has the value 2^31 (2147483648).  The unsigned format cannot
represent any negative numbers.

In the signed format, the most-significant bit is exceptional, having
the negation of the value that it does in the unsigned format.  Thus on
a 32-bit machine this has the value -2^31 (-2147483648).  Values with
this bit set are negative, and those with it clear are non-negative;
this bit is also known as the "sign bit".

It is usual in machine arithmetic to use one of these formats at a
time, for example to add two signed numbers yielding a signed result.
However, Perl has a trick: a scalar with a native integer value contains
an additional flag bit which indicates whether the signed or unsigned
format is being used.  It is therefore possible to mix signed and unsigned
numbers in arithmetic, at some extra expense.

=cut

package Data::Integer;

{ use 5.006; }
use warnings;
use strict;

use Carp qw(croak);

our $VERSION = "0.006";

use parent "Exporter";
our @EXPORT_OK = qw(
	natint_bits
	min_nint max_nint min_natint max_natint
	min_sint max_sint min_signed_natint max_signed_natint
	min_uint max_uint min_unsigned_natint max_unsigned_natint
	nint sint uint
	nint_is_sint nint_is_uint
	nint_sgn sint_sgn uint_sgn
	nint_abs sint_abs uint_abs
	nint_cmp sint_cmp uint_cmp
	nint_min sint_min uint_min
	nint_max sint_max uint_max
	nint_neg sint_neg uint_neg
	nint_add sint_add uint_add
	nint_sub sint_sub uint_sub
	sint_shl uint_shl
	sint_shr uint_shr
	sint_rol uint_rol
	sint_ror uint_ror
	nint_bits_as_sint nint_bits_as_uint
	sint_bits_as_uint uint_bits_as_sint
	sint_not uint_not
	sint_and uint_and
	sint_nand uint_nand
	sint_andn uint_andn
	sint_or uint_or
	sint_nor uint_nor
	sint_orn uint_orn
	sint_xor uint_xor
	sint_nxor uint_nxor
	sint_mux uint_mux
	sint_madd uint_madd
	sint_msub uint_msub
	sint_cadd uint_cadd
	sint_csub uint_csub
	sint_sadd uint_sadd
	sint_ssub uint_ssub
	natint_hex hex_natint
);

=head1 CONSTANTS

Each of the extreme-value constants has two names, a short one and a
long one.  The short names are more convenient to use, but the long
names are clearer in a context where other similar constants exist.

Due to the risks of Perl changing the behaviour of a native integer value
that has been involved in floating point arithmetic (see L</BUGS>),
the extreme-value constants are actually non-constant functions that
always return a fresh copy of the appropriate value.  The returned value
is always a pure native integer value, unsullied by floating point or
string operations.

=over

=item natint_bits

The width, in bits, of the native integer data types.

=cut

# Count the number of bits in native integers by repeatedly shifting a bit
# left until it turns into the sign bit.  "use integer" forces the use of a
# signed integer representation.
BEGIN {
	use integer;
	my $bit_count = 1;
	my $test_bit = 1;
	while($test_bit > 0) {
		$bit_count += 1;
		$test_bit <<= 1;
	}
	my $natint_bits = $bit_count;
	*natint_bits = sub () { $natint_bits };
}

=item min_nint

=item min_natint

The minimum representable value in either representation.  This is
-2^(natint_bits - 1).

=cut

BEGIN {
	my $min_nint = do { use integer; 1 << (natint_bits - 1) };
	*min_natint = *min_nint = sub() { my $ret = $min_nint };
}

=item max_nint

=item max_natint

The maximum representable value in either representation.  This is
2^natint_bits - 1.

=cut

BEGIN {
	my $max_nint = ~0;
	*max_natint = *max_nint = sub() { my $ret = $max_nint };
}

=item min_sint

=item min_signed_natint

The minimum representable value in the signed representation.  This is
-2^(natint_bits - 1).

=cut

BEGIN { *min_signed_natint = *min_sint = \&min_nint; }

=item max_sint

=item max_signed_natint

The maximum representable value in the signed representation.  This is
2^(natint_bits - 1) - 1.

=cut

BEGIN {
	my $max_sint = ~min_sint;
	*max_signed_natint = *max_sint = sub() { my $ret = $max_sint };
}

=item min_uint

=item min_unsigned_natint

The minimum representable value in the unsigned representation.
This is zero.

=cut

BEGIN {
	my $min_uint = 0;
	*min_unsigned_natint = *min_uint = sub() { my $ret = $min_uint };
}

=item max_uint

=item max_unsigned_natint

The maximum representable value in the unsigned representation.  This is
2^natint_bits - 1.

=cut

BEGIN { *max_unsigned_natint = *max_uint = \&max_nint; }

=back

=head1 FUNCTIONS

Each "nint_", "sint_", or "uint_" function operates on one of the three
integer formats.  "nint_" functions operate on Perl's union of signed
and unsigned; "sint_" functions operate on signed integers; and "uint_"
functions operate on unsigned integers.  Except where indicated otherwise,
the function returns a value of its primary type.

Parameters I<A>, I<B>, and I<C>, where present, must be numbers of
the appropriate type: specifically, with a numerical value that can be
represented in that type.  If there are multiple flavours of zero, due
to floating point funkiness, all zeroes are treated the same.  Parameters
with other names have other requirements, explained with each function.

The functions attempt to detect unsuitable arguments, and C<die> if
an invalid argument is detected, but they can't notice some kinds of
incorrect argument.  Generally, it is the caller's responsibility to
provide a sane numerical argument, and supplying an invalid argument will
cause mayhem.  Only the numeric value of plain scalar arguments is used;
the string value is completely ignored, so dualvars are not a problem.

=head2 Canonicalisation and classification

These are basic glue functions.

=over

=item nint(A)

=item sint(A)

=item uint(A)

These functions each take an argument in a specific integer format and
return its numerical value.  This is the argument canonicalisation that is
performed by all of the functions in this module, presented in isolation.

=cut

sub nint($) {
	my $tval = $_[0];
	croak "not a native integer"
		unless int($tval) == $tval && $tval >= min_nint &&
			$tval <= max_nint;
	return ($tval = $_[0]) < 0 ? do { use integer; 0 | $_[0] } : 0 | $_[0];
}

sub sint($) {
	my $tval = $_[0];
	croak "not a signed native integer"
		unless int($tval) == $tval && $tval >= min_sint &&
			$tval <= max_sint;
	my $val = do { use integer; 0 | $_[0] };
	croak "not a signed native integer"
		if $tval >= 0 && do { use integer; $val < 0 };
	return $val;
}

sub uint($) {
	my $tval = $_[0];
	croak "not an unsigned native integer"
		unless int($tval) == $tval && $tval >= min_uint &&
			$tval <= max_uint;
	return 0 | $_[0];
}

=item nint_is_sint(A)

Takes a native integer of either type.  Returns a truth value indicating
whether this value can be exactly represented as a signed native integer.

=cut

sub nint_is_sint($) {
	my $val = nint($_[0]);
	return (my $tval = $val) < 0 ||
		do { use integer; ($val & min_sint) == 0 };
}

=item nint_is_uint(A)

Takes a native integer of either type.  Returns a truth value indicating
whether this value can be exactly represented as an unsigned native
integer.

=cut

sub nint_is_uint($) { nint($_[0]) >= 0 }

=back

=head2 Arithmetic

These functions operate on numerical values rather than just bit patterns.
They will all C<die> if the true numerical result doesn't fit into the
result format, rather than give a wrong answer.

=over

=item nint_sgn(A)

=item sint_sgn(A)

=item uint_sgn(A)

Returns +1 if the argument is positive, 0 if the argument is zero,
or -1 if the argument is negative.

=cut

sub nint_sgn($) { nint($_[0]) <=> 0 }

sub sint_sgn($) { use integer; sint($_[0]) <=> 0 }

sub uint_sgn($) { use integer; uint($_[0]) == 0 ? 0 : +1 }

=item nint_abs(A)

=item sint_abs(A)

=item uint_abs(A)

Absolute value (magnitude, discarding sign).

=cut

sub nint_abs($) {
	my $a = nint($_[0]);
	if((my $tval = $a) >= 0) {
		return $a;
	} elsif(do { use integer; $a == min_sint }) {
		return 0 | min_sint;
	} else {
		use integer;
		return -$a;
	}
}

sub sint_abs($) {
	my $a = sint($_[0]);
	use integer;
	croak "integer overflow" if $a == min_sint;
	return $a < 0 ? -$a : $a;
}

*uint_abs = \&uint;

=item nint_cmp(A, B)

=item sint_cmp(A, B)

=item uint_cmp(A, B)

Arithmetic comparison.  Returns -1, 0, or +1, indicating whether A is
less than, equal to, or greater than B.

=cut

sub nint_cmp($$) {
	my($a, $b) = (nint($_[0]), nint($_[1]));
	if((my $ta = $a) < 0) {
		if((my $tb = $b) < 0) {
			use integer;
			return $a <=> $b;
		} else {
			return -1;
		}
	} else {
		if((my $tb = $b) < 0) {
			return 1;
		} else {
			use integer;
			return ($a ^ min_sint) <=> ($b ^ min_sint);
		}
	}
}

sub sint_cmp($$) { use integer; sint($_[0]) <=> sint($_[1]) }

sub uint_cmp($$) {
	use integer;
	return (uint($_[0]) ^ min_sint) <=> (uint($_[1]) ^ min_sint);
}

=item nint_min(A, B)

=item sint_min(A, B)

=item uint_min(A, B)

Arithmetic minimum.  Returns the arithmetically lesser of the two
arguments.

=cut

sub nint_min($$) {
	my($a, $b) = (nint($_[0]), nint($_[1]));
	if((my $ta = $a) < 0) {
		if((my $tb = $b) < 0) {
			use integer;
			return $a < $b ? $a : $b;
		} else {
			return $a;
		}
	} else {
		if((my $tb = $b) < 0) {
			return $b;
		} else {
			use integer;
			return ($a ^ min_sint) < ($b ^ min_sint) ? $a : $b;
		}
	}
}

sub sint_min($$) {
	my($a, $b) = (sint($_[0]), sint($_[1]));
	use integer;
	return $a < $b ? $a : $b;
}

sub uint_min($$) {
	my($a, $b) = (uint($_[0]), uint($_[1]));
	use integer;
	return ($a ^ min_sint) < ($b ^ min_sint) ? $a : $b;
}

=item nint_max(A, B)

=item sint_max(A, B)

=item uint_max(A, B)

Arithmetic maximum.  Returns the arithmetically greater of the two
arguments.

=cut

sub nint_max($$) {
	my($a, $b) = (nint($_[0]), nint($_[1]));
	if((my $ta = $a) < 0) {
		if((my $tb = $b) < 0) {
			use integer;
			return $a < $b ? $b : $a;
		} else {
			return $b;
		}
	} else {
		if((my $tb = $b) < 0) {
			return $a;
		} else {
			use integer;
			return ($a ^ min_sint) < ($b ^ min_sint) ? $b : $a;
		}
	}
}

sub sint_max($$) {
	my($a, $b) = (sint($_[0]), sint($_[1]));
	use integer;
	return $a < $b ? $b : $a;
}

sub uint_max($$) {
	my($a, $b) = (uint($_[0]), uint($_[1]));
	use integer;
	return ($a ^ min_sint) < ($b ^ min_sint) ? $b : $a;
}

=item nint_neg(A)

=item sint_neg(A)

=item uint_neg(A)

Negation: returns -A.

=cut

sub nint_neg($) {
	my $a = nint($_[0]);
	if((my $ta = $a) <= 0) {
		return 0 | do { use integer; -$a };
	} else {
		use integer;
		my $neg = -$a;
		croak "integer overflow" if $neg >= 0;
		return $neg;
	}
}

sub sint_neg($) {
	my $a = sint($_[0]);
	use integer;
	croak "integer overflow" if $a == min_sint;
	return -$a;
}

sub uint_neg($) {
	use integer;
	croak "integer overflow" unless uint($_[0]) == 0;
	return my $zero = 0;
}

=item nint_add(A, B)

=item sint_add(A, B)

=item uint_add(A, B)

Addition: returns A + B.

=cut

sub nint_add($$) {
	my($a, $b) = (nint($_[0]), nint($_[1]));
	if((my $ta = $a) < 0) {
		if((my $tb = $b) < 0) {
			use integer;
			my $r = $a + $b;
			croak "integer overflow" if $r > $a;
			return $r;
		} else {
			use integer;
			my $r = $a + $b;
			$r = do { no integer; 0 | $r } if $r < $a;
			return $r;
		}
	} else {
		if((my $tb = $b) < 0) {
			use integer;
			my $r = $a + $b;
			$r = do { no integer; 0 | $r } if $r < $b;
			return $r;
		} else {
			use integer;
			my $r = $a + $b;
			croak "integer overflow"
				if ($r ^ min_sint) < ($a ^ min_sint);
			return do { no integer; 0 | $r };
		}
	}
}

sub sint_add($$) {
	my($a, $b) = (sint($_[0]), sint($_[1]));
	use integer;
	my $r = $a + $b;
	croak "integer overflow" if $b < 0 ? $r > $a : $r < $a;
	return $r;
}

sub uint_add($$) {
	my($a, $b) = (uint($_[0]), uint($_[1]));
	use integer;
	my $r = $a + $b;
	croak "integer overflow" if ($r ^ min_sint) < ($a ^ min_sint);
	return do { no integer; 0 | $r };
}

=item nint_sub(A, B)

=item sint_sub(A, B)

=item uint_sub(A, B)

Subtraction: returns A - B.

=cut

sub nint_sub($$) {
	my($a, $b) = (nint($_[0]), nint($_[1]));
	if((my $ta = $a) < 0) {
		if((my $tb = $b) < 0) {
			use integer;
			return $a - $b;
		} elsif(!($b & min_sint)) {
			use integer;
			my $r = $a - $b;
			croak "integer overflow" if $r >= 0;
			return $r;
		} else {
			croak "integer overflow";
		}
	} elsif(!($a & min_sint)) {
		if((my $tb = $b) < 0) {
			return 0 | do { use integer; $a - $b };
		} elsif(!($b & min_sint)) {
			use integer;
			return $a - $b;
		} else {
			use integer;
			my $r = $a - $b;
			croak "integer overflow" if $r >= 0;
			return $r;
		}
	} else {
		if((my $tb = $b) < 0) {
			use integer;
			my $r = $a - $b;
			croak "integer overflow" if $r >= 0;
			return do { no integer; 0 | $r };
		} elsif(!($b & min_sint)) {
			return 0 | do { use integer; $a - $b };
		} else {
			use integer;
			return $a - $b;
		}
	}
}

sub sint_sub($$) {
	my($a, $b) = (sint($_[0]), sint($_[1]));
	use integer;
	my $r = $a - $b;
	croak "integer overflow" if $b > 0 ? $r > $a : $r < $a;
	return $r;
}

sub uint_sub($$) {
	my($a, $b) = (uint($_[0]), uint($_[1]));
	use integer;
	my $r = $a - $b;
	croak "integer overflow" if ($r ^ min_sint) > ($a ^ min_sint);
	return do { no integer; 0 | $r };
}

=back

=head2 Bit shifting

These functions all operate on the bit patterns representing integers,
mostly ignoring the numerical values represented.  In most cases the
results for particular numerical arguments are influenced by the word
size, because that determines where a bit being left-shifted will drop
off the end of the word and where a bit will be shifted in during a
rightward shift.

With the exception of rightward shifts (see below), each pair of
functions performs exactly the same operations on the bit sequences.
There inevitably can't be any functions here that operate on Perl's union
of signed and unsigned; you must choose, by which function you call,
which type the result is to be tagged as.

=over

=item sint_shl(A, DIST)

=item uint_shl(A, DIST)

Bitwise left shift (towards more-significant bits).  I<DIST> is the
distance to shift, in bits, and must be an integer in the range [0,
natint_bits).  Zeroes are shifted in from the right.

=cut

sub sint_shl($$) {
	my($val, $dist) = @_;
	$dist = uint($dist);
	croak "shift distance exceeds word size" if $dist >= natint_bits;
	use integer;
	return sint($val) << $dist;
}

sub uint_shl($$) {
	my($val, $dist) = @_;
	$dist = uint($dist);
	croak "shift distance exceeds word size" if $dist >= natint_bits;
	no integer;
	return uint($val) << $dist;
}

=item sint_shr(A, DIST)

=item uint_shr(A, DIST)

Bitwise right shift (towards less-significant bits).  I<DIST> is the
distance to shift, in bits, and must be an integer in the range [0,
natint_bits).

When performing an unsigned right shift, zeroes are shifted in from the
left.  A signed right shift is different: the sign bit gets duplicated,
so right-shifting a negative number always gives a negative result.

=cut

sub sint_shr($$) {
	my($val, $dist) = @_;
	$dist = uint($dist);
	croak "shift distance exceeds word size" if $dist >= natint_bits;
	use integer;
	return sint($val) >> $dist;
}

sub uint_shr($$) {
	my($val, $dist) = @_;
	$dist = uint($dist);
	croak "shift distance exceeds word size" if $dist >= natint_bits;
	no integer;
	return uint($val) >> $dist;
}

=item sint_rol(A, DIST)

=item uint_rol(A, DIST)

Bitwise left rotation (towards more-significant bits, with the
most-significant bit wrapping round to the least-significant bit).
I<DIST> is the distance to rotate, in bits, and must be an integer in
the range [0, natint_bits).

=cut

sub sint_rol($$) {
	my($val, $dist) = @_;
	$dist = uint($dist);
	croak "shift distance exceeds word size" if $dist >= natint_bits;
	$val = sint($val);
	return $val if $dist == 0;
	my $low_val = $val >> (natint_bits - $dist);
	use integer;
	return $low_val | ($val << $dist);
}

sub uint_rol($$) {
	my($val, $dist) = @_;
	$dist = uint($dist);
	croak "shift distance exceeds word size" if $dist >= natint_bits;
	$val = uint($val);
	return $val if $dist == 0;
	return ($val >> (natint_bits - $dist)) | ($val << $dist);
}

=item sint_ror(A, DIST)

=item uint_ror(A, DIST)

Bitwise right rotation (towards less-significant bits, with the
least-significant bit wrapping round to the most-significant bit).
I<DIST> is the distance to rotate, in bits, and must be an integer in
the range [0, natint_bits).

=cut

sub sint_ror($$) {
	my($val, $dist) = @_;
	$dist = uint($dist);
	croak "shift distance exceeds word size" if $dist >= natint_bits;
	$val = sint($val);
	return $val if $dist == 0;
	my $low_val = $val >> $dist;
	use integer;
	return $low_val | ($val << (natint_bits - $dist));
}

sub uint_ror($$) {
	my($val, $dist) = @_;
	$dist = uint($dist);
	croak "shift distance exceeds word size" if $dist >= natint_bits;
	$val = uint($val);
	return $val if $dist == 0;
	return ($val >> $dist) | ($val << (natint_bits - $dist));
}

=back

=head2 Format conversion

These functions convert between the various native integer formats
by reinterpreting the bit patterns used to represent the integers.
The bit pattern remains unchanged; its meaning changes, and so the
numerical value changes.  Perl scalars preserve the numerical value,
rather than just the bit pattern, so from the Perl point of view these
are functions that change numbers into other numbers.

=over

=item nint_bits_as_sint(A)

Converts a native integer of either type to a signed integer, by
reinterpreting the bits.  The most-significant bit (whether a sign bit
or not) becomes a sign bit.

=cut

sub nint_bits_as_sint($) { use integer; nint($_[0]) | 0 }

=item nint_bits_as_uint(A)

Converts a native integer of either type to an unsigned integer, by
reinterpreting the bits.  The most-significant bit (whether a sign bit
or not) becomes an ordinary most-significant bit.

=cut

sub nint_bits_as_uint($) { no integer; nint($_[0]) | 0 }

=item sint_bits_as_uint(A)

Converts a signed integer to an unsigned integer, by reinterpreting
the bits.  The sign bit becomes an ordinary most-significant bit.

=cut

sub sint_bits_as_uint($) { no integer; sint($_[0]) | 0 }

=item uint_bits_as_sint(A)

Converts an unsigned integer to a signed integer, by reinterpreting
the bits.  The most-significant bit becomes a sign bit.

=cut

sub uint_bits_as_sint($) { use integer; uint($_[0]) | 0 }

=back

=head2 Bitwise operations

These functions all operate on the bit patterns representing integers,
completely ignoring the numerical values represented.  They are mostly
not influenced by the word size, in the sense that they will produce
the same numerical result for the same numerical arguments regardless
of word size.  However, a few are affected by the word size: those on
unsigned operands that return a non-zero result if given zero arguments.

Each pair of functions performs exactly the same operations on the bit
sequences.  There inevitably can't be any functions here that operate on
Perl's union of signed and unsigned; you must choose, by which function
you call, which type the result is to be tagged as.

=over

=item sint_not(A)

=item uint_not(A)

Bitwise complement (NOT).

=cut

sub sint_not($) { use integer; ~sint($_[0]) }

sub uint_not($) { no integer; ~uint($_[0]) }

=item sint_and(A, B)

=item uint_and(A, B)

Bitwise conjunction (AND).

=cut

sub sint_and($$) { use integer; sint($_[0]) & sint($_[1]) }

sub uint_and($$) { no integer; uint($_[0]) & uint($_[1]) }

=item sint_nand(A, B)

=item uint_nand(A, B)

Bitwise inverted conjunction (NAND).

=cut

sub sint_nand($$) { use integer; ~(sint($_[0]) & sint($_[1])) }

sub uint_nand($$) { no integer; ~(uint($_[0]) & uint($_[1])) }

=item sint_andn(A, B)

=item uint_andn(A, B)

Bitwise conjunction with inverted argument (A AND (NOT B)).

=cut

sub sint_andn($$) { use integer; sint($_[0]) & ~sint($_[1]) }

sub uint_andn($$) { no integer; uint($_[0]) & ~uint($_[1]) }

=item sint_or(A, B)

=item uint_or(A, B)

Bitwise disjunction (OR).

=cut

sub sint_or($$) { use integer; sint($_[0]) | sint($_[1]) }

sub uint_or($$) { no integer; uint($_[0]) | uint($_[1]) }

=item sint_nor(A, B)

=item uint_nor(A, B)

Bitwise inverted disjunction (NOR).

=cut

sub sint_nor($$) { use integer; ~(sint($_[0]) | sint($_[1])) }

sub uint_nor($$) { no integer; ~(uint($_[0]) | uint($_[1])) }

=item sint_orn(A, B)

=item uint_orn(A, B)

Bitwise disjunction with inverted argument (A OR (NOT B)).

=cut

sub sint_orn($$) { use integer; sint($_[0]) | ~sint($_[1]) }

sub uint_orn($$) { no integer; uint($_[0]) | ~uint($_[1]) }

=item sint_xor(A, B)

=item uint_xor(A, B)

Bitwise symmetric difference (XOR).

=cut

sub sint_xor($$) { use integer; sint($_[0]) ^ sint($_[1]) }

sub uint_xor($$) { no integer; uint($_[0]) ^ uint($_[1]) }

=item sint_nxor(A, B)

=item uint_nxor(A, B)

Bitwise symmetric similarity (NXOR).

=cut

sub sint_nxor($$) { use integer; ~(sint($_[0]) ^ sint($_[1])) }

sub uint_nxor($$) { no integer; ~(uint($_[0]) ^ uint($_[1])) }

=item sint_mux(A, B, C)

=item uint_mux(A, B, C)

Bitwise multiplex.  The output has a bit from B wherever A has a 1 bit,
and a bit from C wherever A has a 0 bit.  That is, the result is (A AND B)
OR ((NOT A) AND C).

=cut

sub sint_mux($$$) {
	my $a = sint($_[0]);
	use integer;
	return ($a & sint($_[1])) | (~$a & sint($_[2]));
}

sub uint_mux($$$) {
	my $a = uint($_[0]);
	no integer;
	return ($a & uint($_[1])) | (~$a & uint($_[2]));
}

=back

=head2 Machine arithmetic

These functions perform arithmetic operations that are inherently
influenced by the word size.  They always produce a well-defined output
if given valid inputs.  There inevitably can't be any functions here
that operate on Perl's union of signed and unsigned; you must choose,
by which function you call, which type the result is to be tagged as.

=over

=item sint_madd(A, B)

=item uint_madd(A, B)

Modular addition.  The result for unsigned addition is (A + B)
mod 2^natint_bits.  The signed version behaves similarly, but with a
different result range.

=cut

sub sint_madd($$) { use integer; sint($_[0]) + sint($_[1]) }

sub uint_madd($$) { 0 | do { use integer; uint($_[0]) + uint($_[1]) } }

=item sint_msub(A, B)

=item uint_msub(A, B)

Modular subtraction.  The result for unsigned subtraction is (A - B)
mod 2^natint_bits.  The signed version behaves similarly, but with a
different result range.

=cut

sub sint_msub($$) { use integer; sint($_[0]) - sint($_[1]) }

sub uint_msub($$) { 0 | do { use integer; uint($_[0]) - uint($_[1]) } }

=item sint_cadd(A, B, CARRY_IN)

=item uint_cadd(A, B, CARRY_IN)

Addition with carry.  Two word arguments (A and B) and an input carry
bit (CARRY_IN, which must have the value 0 or 1) are all added together.
Returns a list of two items: an output carry and an output word (of the
same signedness as the inputs).  Precisely, the output list (CARRY_OUT,
R) is such that CARRY_OUT*2^natint_bits + R = A + B + CARRY_IN.

=cut

sub sint_cadd($$$) {
	my($a, $b, $cin) = map { sint($_) } @_;
	use integer;
	croak "invalid carry" unless $cin == 0 || $cin == 1;
	my $r = $a + $b + $cin;
	my $cout = $b < 0 ? $r > $a ? -1 : 0 : $r < $a ? +1 : 0;
	return ($cout, $r);
}

sub uint_cadd($$$) {
	my($a, $b, $cin) = map { uint($_) } @_;
	use integer;
	croak "invalid carry" unless $cin == 0 || $cin == 1;
	my $r = $a + $b;
	my $cout = ($r ^ min_sint) < ($a ^ min_sint) ? 1 : 0;
	if($cin) {
		$r += 1;
		$cout = 1 if $r == 0;
	}
	return ($cout, do { no integer; 0 | $r });
}

=item sint_csub(A, B, CARRY_IN)

=item uint_csub(A, B, CARRY_IN)

Subtraction with carry (borrow).  The second word argument (B) and
an input carry bit (CARRY_IN, which must have the value 0 or 1) are
subtracted from the first word argument (A).  Returns a list of two
items: an output carry and an output word (of the same signedness as
the inputs).  Precisely, the output list (CARRY_OUT, R) is such that R -
CARRY_OUT*2^natint_bits = A - B - CARRY_IN.

=cut

sub sint_csub($$$) {
	my($a, $b, $cin) = map { sint($_) } @_;
	use integer;
	croak "invalid carry" unless $cin == 0 || $cin == 1;
	my $r = $a - $b - $cin;
	my $cout = $b < 0 ? $r < $a ? -1 : 0 : $r > $a ? +1 : 0;
	return ($cout, $r);
}

sub uint_csub($$$) {
	my($a, $b, $cin) = map { uint($_) } @_;
	use integer;
	croak "invalid carry" unless $cin == 0 || $cin == 1;
	my $r = $a - $b;
	my $cout = ($r ^ min_sint) > ($a ^ min_sint) ? 1 : 0;
	if($cin) {
		$cout = 1 if $r == 0;
		$r -= 1;
	}
	return ($cout, do { no integer; 0 | $r });
}

=item sint_sadd(A, B)

=item uint_sadd(A, B)

Saturating addition.  The result is A + B if that will fit into the result
format, otherwise the minimum or maximum value of the result format is
returned depending on the direction in which the addition overflowed.

=cut

sub sint_sadd($$) {
	my($a, $b) = map { sint($_) } @_;
	use integer;
	my $r = $a + $b;
	if($b < 0) {
		$r = min_sint if $r > $a;
	} else {
		$r = max_sint if $r < $a;
	}
	return $r;
}

sub uint_sadd($$) {
	my($a, $b) = map { uint($_) } @_;
	use integer;
	my $r = $a + $b;
	$r = max_uint if ($r ^ min_sint) < ($a ^ min_sint);
	return do { no integer; 0 | $r };
}

=item sint_ssub(A, B)

=item uint_ssub(A, B)

Saturating subtraction.  The result is A - B if that will fit into the
result format, otherwise the minimum or maximum value of the result
format is returned depending on the direction in which the subtraction
overflowed.

=cut

sub sint_ssub($$) {
	my($a, $b) = map { sint($_) } @_;
	use integer;
	my $r = $a - $b;
	if($b >= 0) {
		$r = min_sint if $r > $a;
	} else {
		$r = max_sint if $r < $a;
	}
	return $r;
}

sub uint_ssub($$) {
	my($a, $b) = map { uint($_) } @_;
	use integer;
	my $r = ($a ^ min_sint) <= ($b ^ min_sint) ? 0 : $a - $b;
	return do { no integer; 0 | $r };
}

=back

=head2 String conversion

=over

=item natint_hex(VALUE)

VALUE must be a native integer value.  The function encodes VALUE in
hexadecimal, returning that representation as a string.  Specifically,
the output is of the form "I<s>B<0x>I<dddd>", where "I<s>" is the sign
and "I<dddd>" is a sequence of hexadecimal digits.

=cut

sub natint_hex($) {
	my $val = nint($_[0]);
	my $sgn = nint_sgn($val);
	$val = nint_abs($val);
	my $digits = "";
	my $i = (natint_bits+3) >> 2;
	for(; $i >= 7; $i -= 7) {
		$digits = sprintf("%07x", $val & 0xfffffff).$digits;
		$val >>= 28;
	}
	for(; $i--; ) {
		$digits = sprintf("%01x", $val & 0xf).$digits;
		$val >>= 4;
	}
	return ($sgn == -1 ? "-" : "+")."0x".$digits;
}

=item hex_natint(STRING)

Generates and returns a native integer value from a string encoding it in
hexadecimal.  Specifically, the input format is "[I<s>][B<0x>]I<dddd>",
where "I<s>" is the sign and "I<dddd>" is a sequence of one or more
hexadecimal digits.  The input is interpreted case insensitively.
If the value given in the string cannot be exactly represented in the
native integer type, the function C<die>s.

The core Perl function C<hex> (see L<perlfunc/hex>) does a similar job
to this function, but differs in several ways.  Principally, C<hex>
doesn't handle negative values, and it gives the wrong answer for values
that don't fit into the native integer type.  In Perl 5.6 it also gives
the wrong answer for values that don't fit into the native floating
point type.  It also doesn't enforce strict syntax on the input string.

=cut

my %hexdigit_value;
{
	use integer;
	$hexdigit_value{chr(ord("0") + $_)} = $_ foreach 0..9;
	$hexdigit_value{chr(ord("a") + $_)} = 10+$_ foreach 0..5;
	$hexdigit_value{chr(ord("A") + $_)} = 10+$_ foreach 0..5;
}

sub hex_natint($) {
	my($str) = @_;
	$str =~ /\A([-+]?)(?:0x)?([0-9a-f]+)\z/i
		or croak "bad syntax for hexadecimal integer value";
	my($sign, $digits) = ($1, $2);
	use integer;
	$digits =~ /\A0*/g;
	return my $zero = 0 if $digits =~ /\G\z/gc;
	$digits =~ /\G(.)/g;
	my $value = $hexdigit_value{$1};
	my $bits_to_go = (length($digits)-pos($digits)) << 2;
	croak "integer value too large"
		if $bits_to_go >= natint_bits ||
			($bits_to_go + 4 > natint_bits &&
				(max_uint >> $bits_to_go) < $value);
	while($digits =~ /\G(.)/g) {
		$value = ($value << 4) | $hexdigit_value{$1};
	}
	if($sign eq "-") {
		$value = -$value;
		croak "integer value too large" if $value >= 0;
		return $value;
	} else {
		no integer;
		return 0 | $value;
	}
}

=back

=head1 BUGS

In Perl 5.6, when a native integer scalar is used in any arithmetic other
than specifically integer arithmetic, it gets partially transformed into
a floating point scalar.  Even if its numerical value can be represented
exactly in floating point, so that floating point arithmetic uses the
correct numerical value, some operations are affected by the floatness.
In particular, the stringification of the scalar doesn't necessarily
represent its exact value if it is tagged as floating point.

Because of this transforming behaviour, if you need to stringify a native
integer it is best to ensure that it doesn't get used in any non-integer
arithmetic first.  If an integer scalar must be used in standard Perl
arithmetic, it may be copied first and the copy operated upon to avoid
causing side effects on the original.  If an integer scalar might have
already been transformed, it can be cleaned by passing it through the
canonicalisation function C<nint>.  The functions in this module all
avoid modifying their arguments, and always return pristine integers.

Perl 5.8+ still internally modifies integer scalars in the same
circumstances, but seems to have corrected all the misbehaviour that
resulted from it.

Also in Perl 5.6, default Perl arithmetic doesn't necessarily work
correctly on native integers.  (This is part of the motivation for
the myriad arithmetic functions in this module.)  Default arithmetic
here is strictly floating point, so if there are native integers that
cannot be exactly represented in floating point then the arithmetic will
approximate the values before operating on them.  Perl 5.8+ attempts to
use native integer operations where possible in its default arithmetic,
but as of Perl 5.8.8 it doesn't always succeed.  For reliable integer
arithmetic, integer operations must still be requested explicitly.

=head1 SEE ALSO

L<Data::Float>,
L<Scalar::Number>,
L<perlnumber(1)>

=head1 AUTHOR

Andrew Main (Zefram) <zefram@fysh.org>

=head1 COPYRIGHT

Copyright (C) 2007, 2010, 2015, 2017
Andrew Main (Zefram) <zefram@fysh.org>

=head1 LICENSE

This module is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut

1;