/usr/include/dune/functions/common/indexaccess.hh is in libdune-functions-dev 2.5.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_FUNCTIONS_COMMON_INDEX_ACCESS_HH
#define DUNE_FUNCTIONS_COMMON_INDEX_ACCESS_HH
#include <dune/common/concept.hh>
#include <dune/common/hybridutilities.hh>
namespace Dune {
namespace Functions {
namespace Imp {
namespace Concept {
template<class size_type>
struct HasDynamicIndexAccess
{
template<class C>
auto require(C&& c) -> decltype(
c[std::declval<size_type>()]
);
};
} // namespace Concept
} // namespace Imp
/**
* \brief Provide operator[] index-access for containers
*
* \ingroup Utility
*
* This is the overload for types providing a operator[]
* for dynamic std::size_t arguments.
*
* \param c Container to access
* \param i The index to use for accessing the container
* \param f A functor to call with the result of operator[]
*/
template<class C, class I, class F,
typename std::enable_if< Dune::models<Imp::Concept::HasDynamicIndexAccess<I>, C>(), int>::type = 0>
auto hybridIndexAccess(C&& c, const I& i, F&& f)
-> decltype(f(c[i]))
{
return f(c[i]);
}
/**
* \brief Provide operator[] index-access for containers
*
* \ingroup Utility
*
* This is the overload for types providing a operator[]
* only for static arguments of type std::integral_constant<std::size_t,k>.
* This does a static linear search until a static index
* matching the given dynamic index is found.
* Since the result type will in general be different
* for different indices the method does not return
* the result directly but passes it to a given functor.
*
* \param c Container to access
* \param i The index to use for accessing the container
* \param f A functor to call with the result of operator[]
*/
template<class C, class I, class F,
typename std::enable_if< not Dune::models<Imp::Concept::HasDynamicIndexAccess<I>, C>(), int>::type = 0>
decltype(auto) hybridIndexAccess(C&& c, const I& i, F&& f)
{
using Size = decltype(Hybrid::size(c));
return Hybrid::switchCases(std::make_index_sequence<Size::value>(), i,
[&](const auto& ii) -> decltype(auto){
return f(c[ii]);
}, [&]() -> decltype(auto){
return f(c[Dune::Indices::_0]);
});
}
/**
* \brief Class representing a shifted multi index
*
* \tparam Index Type of the base multi index
* \tparam offset Number of positions to shift left
*
* For a given multi index of size n this
* represents a multi index with the first
* offset entries removed.
*
* Notice that this does only store a reference to
* the passed multi index.
*/
template<class Index, std::size_t offset=1>
class ShiftedMultiIndex
{
public:
ShiftedMultiIndex(const Index& index) :
index_(index)
{}
template<class P>
decltype(auto) operator[](const P& position) const
{
return index_[position+offset];
}
/**
* \brief Return multi index with one more position truncated
*/
ShiftedMultiIndex<Index, offset+1> pop() const
{
return {index_};
}
auto size() const
{
return index_.size() - offset;
}
private:
const Index& index_;
};
/**
* \brief Create a ShiftedMultiIndex
*
* \tparam offset Number of positions to shift left
*/
template<std::size_t offset, class Index>
ShiftedMultiIndex<Index, offset> shiftedMultiIndex(const Index& index)
{
return {index};
}
/**
* \brief Create a ShiftedMultiIndex with one position truncated
*
* \tparam offset Number of positions to shift left
*/
template<class Index>
ShiftedMultiIndex<Index, 1> shiftedMultiIndex(const Index& index)
{
return {index};
}
namespace Imp {
template<class Result, class Index>
struct MultiIndexResolver
{
MultiIndexResolver(const Index& index) :
index_(index)
{}
template<class C,
typename std::enable_if<not std::is_convertible<C&, Result>::value, int>::type = 0>
Result operator()(C&& c)
{
auto&& subIndex = shiftedMultiIndex(index_);
auto&& subIndexResolver = MultiIndexResolver<Result, decltype(subIndex)>(subIndex);
return (Result)(hybridIndexAccess(c, index_[Dune::Indices::_0], subIndexResolver));
}
template<class C,
typename std::enable_if<std::is_convertible<C&, Result>::value, int>::type = 0>
Result operator()(C&& c)
{
return (Result)(std::forward<C>(c));
}
const Index& index_;
};
} // namespace Imp
/**
* \brief Provide multi-index access by chaining operator[]
*
* \ingroup Utility
*
* This provides access to a nested container by given
* multi-index. Internally this is resolved by recusive
* operator[]-calls with static or dynamic indices.
* Because this recursion must be terminated using a
* compile-time criterion, the result type must explicitly
* be provided. The recursion will terminate once the
* result can be converted to this result type.
*
* \tparam Result Type of result
*
* \param c Container to access
* \param index Multi-index
*/
template<class Result, class C, class MultiIndex>
Result hybridMultiIndexAccess(C&& c, const MultiIndex& index)
{
Imp::MultiIndexResolver<Result, MultiIndex> multiIndexResolver(index);
return multiIndexResolver(c);
}
} // namespace Dune::Functions
} // namespace Dune
#endif // DUNE_FUNCTIONS_COMMON_INDEX_ACCESS_HH
|