This file is indexed.

/usr/include/dune/istl/eigenvalue/arpackpp.hh is in libdune-istl-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ISTL_EIGENVALUE_ARPACKPP_HH
#define DUNE_ISTL_EIGENVALUE_ARPACKPP_HH

#if HAVE_ARPACKPP

#include <cmath>  // provides std::abs, std::pow, std::sqrt

#include <iostream>  // provides std::cout, std::endl
#include <string>    // provides std::string

#include <dune/common/fvector.hh>     // provides Dune::FieldVector
#include <dune/common/exceptions.hh>  // provides DUNE_THROW(...)

#include <dune/istl/bvector.hh>        // provides Dune::BlockVector
#include <dune/istl/istlexception.hh>  // provides Dune::ISTLError
#include <dune/istl/io.hh>             // provides Dune::printvector(...)

#ifdef Status
#undef Status        // prevent preprocessor from damaging the ARPACK++
                     // code when "X11/Xlib.h" is included (the latter
                     // defines Status as "#define Status int" and
                     // ARPACK++ provides a class with a method called
                     // Status)
#endif
#include "arssym.h"  // provides ARSymStdEig


namespace Dune
{

  /**
   * \brief Wrapper for a DUNE-ISTL BCRSMatrix which can be used
   *        together with those algorithms of the ARPACK++ library
   *        which solely perform the products A*v and/or A^T*A*v
   *        and/or A*A^T*v.
   *
   * \todo The current implementation is limited to DUNE-ISTL
   *       BCRSMatrix types with blocklevel 2. An extension to
   *       blocklevel >= 2 might be provided in a future version.
   *
   * \tparam BCRSMatrix Type of a DUNE-ISTL BCRSMatrix;
   *                    is assumed to have blocklevel 2.
   *
   * \author Sebastian Westerheide.
   */
  template <class BCRSMatrix>
  class ArPackPlusPlus_BCRSMatrixWrapper
  {
  public:
    //! Type of the underlying field of the matrix
    typedef typename BCRSMatrix::field_type Real;

  public:
    //! Construct from BCRSMatrix A
    ArPackPlusPlus_BCRSMatrixWrapper (const BCRSMatrix& A)
      : A_(A),
        m_(A_.M() * mBlock), n_(A_.N() * nBlock)
    {
      // assert that BCRSMatrix type has blocklevel 2
      static_assert
        (BCRSMatrix::blocklevel == 2,
         "Only BCRSMatrices with blocklevel 2 are supported.");

      // allocate memory for auxiliary block vector objects
      // which are compatible to matrix rows / columns
      domainBlockVector.resize(A_.N(),false);
      rangeBlockVector.resize(A_.M(),false);
    }

    //! Perform matrix-vector product w = A*v
    inline void multMv (Real* v, Real* w)
    {
      // get vector v as an object of appropriate type
      arrayToDomainBlockVector(v,domainBlockVector);

      // perform matrix-vector product
      A_.mv(domainBlockVector,rangeBlockVector);

      // get vector w from object of appropriate type
      rangeBlockVectorToArray(rangeBlockVector,w);
    };

    //! Perform matrix-vector product w = A^T*A*v
    inline void multMtMv (Real* v, Real* w)
    {
      // get vector v as an object of appropriate type
      arrayToDomainBlockVector(v,domainBlockVector);

      // perform matrix-vector product
      A_.mv(domainBlockVector,rangeBlockVector);
      A_.mtv(rangeBlockVector,domainBlockVector);

      // get vector w from object of appropriate type
      domainBlockVectorToArray(domainBlockVector,w);
    };

    //! Perform matrix-vector product w = A*A^T*v
    inline void multMMtv (Real* v, Real* w)
    {
      // get vector v as an object of appropriate type
      arrayToRangeBlockVector(v,rangeBlockVector);

      // perform matrix-vector product
      A_.mtv(rangeBlockVector,domainBlockVector);
      A_.mv(domainBlockVector,rangeBlockVector);

      // get vector w from object of appropriate type
      rangeBlockVectorToArray(rangeBlockVector,w);
    };

    //! Return number of rows in the matrix
    inline int nrows () const { return m_; }

    //! Return number of columns in the matrix
    inline int ncols () const { return n_; }

  protected:
    // Number of rows and columns in each block of the matrix
    constexpr static int mBlock = BCRSMatrix::block_type::rows;
    constexpr static int nBlock = BCRSMatrix::block_type::cols;

    // Type of vectors in the domain of the linear map associated with
    // the matrix, i.e. block vectors compatible to matrix rows
    constexpr static int dbvBlockSize = nBlock;
    typedef Dune::FieldVector<Real,dbvBlockSize> DomainBlockVectorBlock;
    typedef Dune::BlockVector<DomainBlockVectorBlock> DomainBlockVector;

    // Type of vectors in the range of the linear map associated with
    // the matrix, i.e. block vectors compatible to matrix columns
    constexpr static int rbvBlockSize = mBlock;
    typedef Dune::FieldVector<Real,rbvBlockSize> RangeBlockVectorBlock;
    typedef Dune::BlockVector<RangeBlockVectorBlock> RangeBlockVector;

    // Types for vector index access
    typedef typename DomainBlockVector::size_type dbv_size_type;
    typedef typename RangeBlockVector::size_type rbv_size_type;
    typedef typename DomainBlockVectorBlock::size_type dbvb_size_type;
    typedef typename RangeBlockVectorBlock::size_type rbvb_size_type;

    // Get vector v from a block vector object which is compatible to
    // matrix rows
    static inline void
      domainBlockVectorToArray (const DomainBlockVector& dbv, Real* v)
    {
      for (dbv_size_type block = 0; block < dbv.N(); ++block)
        for (dbvb_size_type iBlock = 0; iBlock < dbvBlockSize; ++iBlock)
          v[block*dbvBlockSize + iBlock] = dbv[block][iBlock];
    }

    // Get vector v from a block vector object which is compatible to
    // matrix columns
    static inline void
      rangeBlockVectorToArray (const RangeBlockVector& rbv, Real* v)
    {
      for (rbv_size_type block = 0; block < rbv.N(); ++block)
        for (rbvb_size_type iBlock = 0; iBlock < rbvBlockSize; ++iBlock)
          v[block*rbvBlockSize + iBlock] = rbv[block][iBlock];
    }

  public:
    //! Get vector v as a block vector object which is compatible to
    //! matrix rows
    static inline void arrayToDomainBlockVector (const Real* v,
                                                 DomainBlockVector& dbv)
    {
      for (dbv_size_type block = 0; block < dbv.N(); ++block)
        for (dbvb_size_type iBlock = 0; iBlock < dbvBlockSize; ++iBlock)
          dbv[block][iBlock] = v[block*dbvBlockSize + iBlock];
    }

    //! Get vector v as a block vector object which is compatible to
    //! matrix columns
    static inline void arrayToRangeBlockVector (const Real* v,
                                                RangeBlockVector& rbv)
    {
      for (rbv_size_type block = 0; block < rbv.N(); ++block)
        for (rbvb_size_type iBlock = 0; iBlock < rbvBlockSize; ++iBlock)
          rbv[block][iBlock] = v[block*rbvBlockSize + iBlock];
    }

  protected:
    // The DUNE-ISTL BCRSMatrix
    const BCRSMatrix& A_;

    // Number of rows and columns in the matrix
    const int m_, n_;

    // Auxiliary block vector objects which are
    // compatible to matrix rows / columns
    mutable DomainBlockVector domainBlockVector;
    mutable RangeBlockVector rangeBlockVector;
  };


  /**
   * \brief A class template for performing some eigenvalue algorithms
   *        provided by the ARPACK++ library which is based on the implicitly
   *        restarted Arnoldi/Lanczos method (IRAM/IRLM), a synthesis of the
   *        Arnoldi/Lanczos process with the implicitily shifted QR technique.
   *        The method is designed to compute eigenvalue-eigenvector pairs of
   *        large scale sparse nonsymmetric/symmetric matrices. This class
   *        template uses the algorithms to compute the dominant (i.e. largest
   *        magnitude) and least dominant (i.e. smallest magnitude) eigenvalue
   *        as well as the spectral condition number of square, symmetric
   *        matrices and to compute the largest and smallest singular value as
   *        well as the spectral condition number of nonsymmetric matrices.
   *
   * \note For a recent version of the ARPACK++ library working with recent
   *       compiler versions see "http://reuter.mit.edu/software/arpackpatch/"
   *       or the git repository "https://github.com/m-reuter/arpackpp.git".
   *
   * \note Note that the Arnoldi/Lanczos process currently is initialized
   *       using a vector which is randomly generated by ARPACK++. This
   *       could be changed in a future version, since ARPACK++ supports
   *       manual initialization of this vector.
   *
   * \todo The current implementation is limited to DUNE-ISTL BCRSMatrix types
   *       with blocklevel 2. An extension to blocklevel >= 2 might be provided
   *       in a future version.
   *
   * \todo Maybe make ARPACK++ parameter ncv available to the user.
   *
   * \tparam BCRSMatrix  Type of a DUNE-ISTL BCRSMatrix whose eigenvalues
   *                     respectively singular values shall be considered;
   *                     is assumed to have blocklevel 2.
   * \tparam BlockVector Type of the associated vectors; compatible with the
   *                     rows of a BCRSMatrix object (if #rows >= #ncols) or
   *                     its columns (if #rows < #ncols).
   *
   * \author Sebastian Westerheide.
   */
  template <typename BCRSMatrix, typename BlockVector>
  class ArPackPlusPlus_Algorithms
  {
  public:
    typedef typename BlockVector::field_type Real;

  public:
    /**
     * \brief Construct from required parameters.
     *
     * \param[in] m               The DUNE-ISTL BCRSMatrix whose eigenvalues
     *                            resp. singular values shall be considered.
     * \param[in] nIterationsMax  Influences the maximum number of Arnoldi
     *                            update iterations allowed; depending on the
     *                            algorithm, c*nIterationsMax iterations may
     *                            be performed, where c is a natural number.
     * \param[in] verbosity_level Verbosity setting;
     *                            >= 1: algorithms print a preamble and
     *                                  the final result,
     *                            >= 2: algorithms print information about
     *                                  the problem solved using ARPACK++,
     *                            >= 3: the final result output includes
     *                                  the approximated eigenvector,
     *                            >= 4: sets the ARPACK(++) verbosity mode.
     */
    ArPackPlusPlus_Algorithms (const BCRSMatrix& m,
                               const unsigned int nIterationsMax = 100000,
                               const unsigned int verbosity_level = 0)
      : m_(m), nIterationsMax_(nIterationsMax),
        verbosity_level_(verbosity_level),
        nIterations_(0),
        title_("    ArPackPlusPlus_Algorithms: "),
        blank_(title_.length(),' ')
    {}

    /**
     * \brief Assume the matrix to be square, symmetric and perform IRLM
     *        to compute an approximation lambda of its dominant
     *        (i.e. largest magnitude) eigenvalue and the corresponding
     *        approximation x of an associated eigenvector.
     *
     * \param[in]  epsilon The target relative accuracy of Ritz values
     *                     (0 == machine precision).
     * \param[out] lambda  The approximated dominant eigenvalue.
     * \param[out] x       The associated approximated eigenvector.
     */
    inline void computeSymMaxMagnitude (const Real& epsilon,
                                        BlockVector& x, Real& lambda) const
    {
      // print verbosity information
      if (verbosity_level_ > 0)
        std::cout << title_ << "Computing an approximation of "
                  << "the dominant eigenvalue of a matrix which "
                  << "is assumed to be symmetric." << std::endl;

      // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
      // and to perform the product A*v (LU decomposition is not used)
      typedef ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
      WrappedMatrix A(m_);

      // get number of rows and columns in A
      const int nrows = A.nrows();
      const int ncols = A.ncols();

      // assert that A is square
      if (nrows != ncols)
        DUNE_THROW(Dune::ISTLError,"Matrix is not square ("
                   << nrows << "x" << ncols << ").");

      // allocate memory for variables, set parameters
      const int nev = 1;                     // Number of eigenvalues to compute
      const int ncv = 20;                    // Number of Arnoldi vectors generated at each iteration (0 == auto)
      const Real tol = epsilon;              // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
      const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed   (0 == 100*nev)
      Real* ev = new Real[nev];              // Computed eigenvalues of A
      const bool ivec = true;                // Flag deciding if eigenvectors shall be determined
      int nconv;                             // Number of converged eigenvalues

      // define what we need: eigenvalues with largest magnitude
      char which[] = "LM";
      ARSymStdEig<Real,WrappedMatrix>
        dprob(nrows, nev, &A, &WrappedMatrix::multMv, which, ncv, tol, maxit);

      // set ARPACK verbosity mode if requested
      if (verbosity_level_ > 3) dprob.Trace();

      // find eigenvalues and eigenvectors of A, obtain the eigenvalues
      nconv = dprob.Eigenvalues(ev,ivec);

      // obtain approximated dominant eigenvalue of A
      lambda = ev[nev-1];

      // obtain associated approximated eigenvector of A
      Real* x_raw = dprob.RawEigenvector(nev-1);
      WrappedMatrix::arrayToDomainBlockVector(x_raw,x);

      // obtain number of Arnoldi update iterations actually taken
      nIterations_ = dprob.GetIter();

      // compute residual norm
      BlockVector r(x);
      Real* Ax_raw = new Real[nrows];
      A.multMv(x_raw,Ax_raw);
      WrappedMatrix::arrayToDomainBlockVector(Ax_raw,r);
      r.axpy(-lambda,x);
      const Real r_norm = r.two_norm();

      // print verbosity information
      if (verbosity_level_ > 0)
      {
        if (verbosity_level_ > 1)
        {
          // print some information about the problem
          std::cout << blank_ << "Obtained eigenvalues of A by solving "
                    << "A*x = λ*x using the ARPACK++ class ARSym"
                    << "StdEig:" << std::endl;
          std::cout << blank_ << "       converged eigenvalues of A: "
                    << nconv << " / " << nev << std::endl;
          std::cout << blank_ << "         dominant eigenvalue of A: "
                    << lambda << std::endl;
        }
        std::cout << blank_ << "Result ("
                  << "#iterations = " << nIterations_ << ", "
                  << "║residual║_2 = " << r_norm << "): "
                  << "λ = " << lambda << std::endl;
        if (verbosity_level_ > 2)
        {
          // print approximated eigenvector via DUNE-ISTL I/O methods
          Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
        }
      }

      // free dynamically allocated memory
      delete[] Ax_raw;
      delete[] ev;
    }

    /**
     * \brief Assume the matrix to be square, symmetric and perform IRLM
     *        to compute an approximation lambda of its least dominant
     *        (i.e. smallest magnitude) eigenvalue and the corresponding
     *        approximation x of an associated eigenvector.
     *
     * \param[in]  epsilon The target relative accuracy of Ritz values
     *                     (0 == machine precision).
     * \param[out] lambda  The approximated least dominant eigenvalue.
     * \param[out] x       The associated approximated eigenvector.
     */
    inline void computeSymMinMagnitude (const Real& epsilon,
                                        BlockVector& x, Real& lambda) const
    {
      // print verbosity information
      if (verbosity_level_ > 0)
        std::cout << title_ << "Computing an approximation of the "
                  << "least dominant eigenvalue of a matrix which "
                  << "is assumed to be symmetric." << std::endl;

      // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
      // and to perform the product A*v (LU decomposition is not used)
      typedef ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
      WrappedMatrix A(m_);

      // get number of rows and columns in A
      const int nrows = A.nrows();
      const int ncols = A.ncols();

      // assert that A is square
      if (nrows != ncols)
        DUNE_THROW(Dune::ISTLError,"Matrix is not square ("
                   << nrows << "x" << ncols << ").");

      // allocate memory for variables, set parameters
      const int nev = 1;                     // Number of eigenvalues to compute
      const int ncv = 20;                    // Number of Arnoldi vectors generated at each iteration (0 == auto)
      const Real tol = epsilon;              // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
      const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed   (0 == 100*nev)
      Real* ev = new Real[nev];              // Computed eigenvalues of A
      const bool ivec = true;                // Flag deciding if eigenvectors shall be determined
      int nconv;                             // Number of converged eigenvalues

      // define what we need: eigenvalues with smallest magnitude
      char which[] = "SM";
      ARSymStdEig<Real,WrappedMatrix>
        dprob(nrows, nev, &A, &WrappedMatrix::multMv, which, ncv, tol, maxit);

      // set ARPACK verbosity mode if requested
      if (verbosity_level_ > 3) dprob.Trace();

      // find eigenvalues and eigenvectors of A, obtain the eigenvalues
      nconv = dprob.Eigenvalues(ev,ivec);

      // obtain approximated least dominant eigenvalue of A
      lambda = ev[nev-1];

      // obtain associated approximated eigenvector of A
      Real* x_raw = dprob.RawEigenvector(nev-1);
      WrappedMatrix::arrayToDomainBlockVector(x_raw,x);

      // obtain number of Arnoldi update iterations actually taken
      nIterations_ = dprob.GetIter();

      // compute residual norm
      BlockVector r(x);
      Real* Ax_raw = new Real[nrows];
      A.multMv(x_raw,Ax_raw);
      WrappedMatrix::arrayToDomainBlockVector(Ax_raw,r);
      r.axpy(-lambda,x);
      const Real r_norm = r.two_norm();

      // print verbosity information
      if (verbosity_level_ > 0)
      {
        if (verbosity_level_ > 1)
        {
          // print some information about the problem
          std::cout << blank_ << "Obtained eigenvalues of A by solving "
                    << "A*x = λ*x using the ARPACK++ class ARSym"
                    << "StdEig:" << std::endl;
          std::cout << blank_ << "       converged eigenvalues of A: "
                    << nconv << " / " << nev << std::endl;
          std::cout << blank_ << "   least dominant eigenvalue of A: "
                    << lambda << std::endl;
        }
        std::cout << blank_ << "Result ("
                  << "#iterations = " << nIterations_ << ", "
                  << "║residual║_2 = " << r_norm << "): "
                  << "λ = " << lambda << std::endl;
        if (verbosity_level_ > 2)
        {
          // print approximated eigenvector via DUNE-ISTL I/O methods
          Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
        }
      }

      // free dynamically allocated memory
      delete[] Ax_raw;
      delete[] ev;
    }

    /**
     * \brief Assume the matrix to be square, symmetric and perform IRLM
     *        to compute an approximation of its spectral condition number
     *        which, for symmetric matrices, can be expressed as the ratio
     *        of the dominant eigenvalue's magnitude and the least dominant
     *        eigenvalue's magnitude.
     *
     * \param[in]  epsilon The target relative accuracy of Ritz values
     *                     (0 == machine precision).
     * \param[out] cond_2  The approximated spectral condition number.
     */
    inline void computeSymCond2 (const Real& epsilon, Real& cond_2) const
    {
      // print verbosity information
      if (verbosity_level_ > 0)
        std::cout << title_ << "Computing an approximation of the "
                  << "spectral condition number of a matrix which "
                  << "is assumed to be symmetric." << std::endl;

      // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
      // and to perform the product A*v (LU decomposition is not used)
      typedef ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
      WrappedMatrix A(m_);

      // get number of rows and columns in A
      const int nrows = A.nrows();
      const int ncols = A.ncols();

      // assert that A is square
      if (nrows != ncols)
        DUNE_THROW(Dune::ISTLError,"Matrix is not square ("
                   << nrows << "x" << ncols << ").");

      // allocate memory for variables, set parameters
      const int nev = 2;                     // Number of eigenvalues to compute
      const int ncv = 20;                    // Number of Arnoldi vectors generated at each iteration (0 == auto)
      const Real tol = epsilon;              // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
      const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed   (0 == 100*nev)
      Real* ev = new Real[nev];              // Computed eigenvalues of A
      const bool ivec = true;                // Flag deciding if eigenvectors shall be determined
      int nconv;                             // Number of converged eigenvalues

      // define what we need: eigenvalues from both ends of the spectrum
      char which[] = "BE";
      ARSymStdEig<Real,WrappedMatrix>
        dprob(nrows, nev, &A, &WrappedMatrix::multMv, which, ncv, tol, maxit);

      // set ARPACK verbosity mode if requested
      if (verbosity_level_ > 3) dprob.Trace();

      // find eigenvalues and eigenvectors of A, obtain the eigenvalues
      nconv = dprob.Eigenvalues(ev,ivec);

      // obtain approximated dominant and least dominant eigenvalue of A
      const Real& lambda_max = ev[nev-1];
      const Real& lambda_min = ev[0];

      // obtain associated approximated eigenvectors of A
      Real* x_max_raw = dprob.RawEigenvector(nev-1);
      Real* x_min_raw = dprob.RawEigenvector(0);

      // obtain approximated spectral condition number of A
      cond_2 = std::abs(lambda_max / lambda_min);

      // obtain number of Arnoldi update iterations actually taken
      nIterations_ = dprob.GetIter();

      // compute each residual norm
      Real* Ax_max_raw = new Real[nrows];
      Real* Ax_min_raw = new Real[nrows];
      A.multMv(x_max_raw,Ax_max_raw);
      A.multMv(x_min_raw,Ax_min_raw);
      Real r_max_norm = 0.0;
      Real r_min_norm = 0.0;
      for (int i = 0; i < nrows; ++i)
      {
        r_max_norm += std::pow(Ax_max_raw[i] - lambda_max * x_max_raw[i],2);
        r_min_norm += std::pow(Ax_min_raw[i] - lambda_min * x_min_raw[i],2);
      }
      r_max_norm = std::sqrt(r_max_norm);
      r_min_norm = std::sqrt(r_min_norm);

      // print verbosity information
      if (verbosity_level_ > 0)
      {
        if (verbosity_level_ > 1)
        {
          // print some information about the problem
          std::cout << blank_ << "Obtained eigenvalues of A by solving "
                    << "A*x = λ*x using the ARPACK++ class ARSym"
                    << "StdEig:" << std::endl;
          std::cout << blank_ << "       converged eigenvalues of A: "
                    << nconv << " / " << nev << std::endl;
          std::cout << blank_ << "         dominant eigenvalue of A: "
                    << lambda_max << std::endl;
          std::cout << blank_ << "   least dominant eigenvalue of A: "
                    << lambda_min << std::endl;
          std::cout << blank_ << "   spectral condition number of A: "
                    << cond_2 << std::endl;
        }
        std::cout << blank_ << "Result ("
                  << "#iterations = " << nIterations_ << ", "
                  << "║residual║_2 = {" << r_max_norm << ","
                  << r_min_norm << "}, " << "λ = {"
                  << lambda_max << "," << lambda_min
                  << "}): cond_2 = " << cond_2 << std::endl;
      }

      // free dynamically allocated memory
      delete[] Ax_min_raw;
      delete[] Ax_max_raw;
      delete[] ev;
    }

    /**
     * \brief Assume the matrix to be nonsymmetric and perform IRLM
     *        to compute an approximation sigma of its largest
     *        singlar value and the corresponding approximation x of
     *        an associated singular vector.
     *
     * \param[in]  epsilon The target relative accuracy of Ritz values
     *                     (0 == machine precision).
     * \param[out] sigma   The approximated largest singlar value.
     * \param[out] x       The associated approximated right-singular
     *                     vector (if #rows >= #ncols) respectively
     *                     left-singular vector (if #rows < #ncols).
     */
    inline void computeNonSymMax (const Real& epsilon,
                                  BlockVector& x, Real& sigma) const
    {
      // print verbosity information
      if (verbosity_level_ > 0)
        std::cout << title_ << "Computing an approximation of the "
                  << "largest singular value of a matrix which "
                  << "is assumed to be nonsymmetric." << std::endl;

      // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
      // and to perform the product A^T*A*v (LU decomposition is not used)
      typedef ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
      WrappedMatrix A(m_);

      // get number of rows and columns in A
      const int nrows = A.nrows();
      const int ncols = A.ncols();

      // assert that A has more rows than columns (extend code later to the opposite case!)
      if (nrows < ncols)
        DUNE_THROW(Dune::ISTLError,"Matrix has less rows than "
                   << "columns (" << nrows << "x" << ncols << ")."
                   << " This case is not implemented, yet.");

      // allocate memory for variables, set parameters
      const int nev = 1;                     // Number of eigenvalues to compute
      const int ncv = 20;                    // Number of Arnoldi vectors generated at each iteration (0 == auto)
      const Real tol = epsilon;              // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
      const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed   (0 == 100*nev)
      Real* ev = new Real[nev];              // Computed eigenvalues of A^T*A
      const bool ivec = true;                // Flag deciding if eigenvectors shall be determined
      int nconv;                             // Number of converged eigenvalues

      // define what we need: eigenvalues with largest algebraic value
      char which[] = "LA";
      ARSymStdEig<Real,WrappedMatrix>
        dprob(ncols, nev, &A, &WrappedMatrix::multMtMv, which, ncv, tol, maxit);

      // set ARPACK verbosity mode if requested
      if (verbosity_level_ > 3) dprob.Trace();

      // find eigenvalues and eigenvectors of A^T*A, obtain the eigenvalues
      nconv = dprob.Eigenvalues(ev,ivec);

      // obtain approximated largest eigenvalue of A^T*A
      const Real& lambda = ev[nev-1];

      // obtain associated approximated eigenvector of A^T*A
      Real* x_raw = dprob.RawEigenvector(nev-1);
      WrappedMatrix::arrayToDomainBlockVector(x_raw,x);

      // obtain number of Arnoldi update iterations actually taken
      nIterations_ = dprob.GetIter();

      // compute residual norm
      BlockVector r(x);
      Real* AtAx_raw = new Real[ncols];
      A.multMtMv(x_raw,AtAx_raw);
      WrappedMatrix::arrayToDomainBlockVector(AtAx_raw,r);
      r.axpy(-lambda,x);
      const Real r_norm = r.two_norm();

      // calculate largest singular value of A (note that
      // x is right-singular / left-singular vector of A)
      sigma = std::sqrt(lambda);

      // print verbosity information
      if (verbosity_level_ > 0)
      {
        if (verbosity_level_ > 1)
        {
          // print some information about the problem
          std::cout << blank_ << "Obtained singular values of A by sol"
                    << "ving (A^T*A)*x = σ²*x using the ARPACK++ "
                    << "class ARSymStdEig:" << std::endl;
          std::cout << blank_ << "   converged eigenvalues of A^T*A: "
                    << nconv << " / " << nev << std::endl;
          std::cout << blank_ << "      largest eigenvalue of A^T*A: "
                    << lambda << std::endl;
          std::cout << blank_ << "   => largest singular value of A: "
                    << sigma << std::endl;
        }
        std::cout << blank_ << "Result ("
                  << "#iterations = " << nIterations_ << ", "
                  << "║residual║_2 = " << r_norm << "): "
                  << "σ = " << sigma << std::endl;
        if (verbosity_level_ > 2)
        {
          // print approximated right-singular / left-singular vector
          // via DUNE-ISTL I/O methods
          Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
        }
      }

      // free dynamically allocated memory
      delete[] AtAx_raw;
      delete[] ev;
    }

    /**
     * \brief Assume the matrix to be nonsymmetric and perform IRLM
     *        to compute an approximation sigma of its smallest
     *        singlar value and the corresponding approximation x of
     *        an associated singular vector.
     *
     * \param[in]  epsilon The target relative accuracy of Ritz values
     *                     (0 == machine precision).
     * \param[out] sigma   The approximated smallest singlar value.
     * \param[out] x       The associated approximated right-singular
     *                     vector (if #rows >= #ncols) respectively
     *                     left-singular vector (if #rows < #ncols).
     */
    inline void computeNonSymMin (const Real& epsilon,
                                  BlockVector& x, Real& sigma) const
    {
      // print verbosity information
      if (verbosity_level_ > 0)
        std::cout << title_ << "Computing an approximation of the "
                  << "smallest singular value of a matrix which "
                  << "is assumed to be nonsymmetric." << std::endl;

      // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
      // and to perform the product A^T*A*v (LU decomposition is not used)
      typedef ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
      WrappedMatrix A(m_);

      // get number of rows and columns in A
      const int nrows = A.nrows();
      const int ncols = A.ncols();

      // assert that A has more rows than columns (extend code later to the opposite case!)
      if (nrows < ncols)
        DUNE_THROW(Dune::ISTLError,"Matrix has less rows than "
                   << "columns (" << nrows << "x" << ncols << ")."
                   << " This case is not implemented, yet.");

      // allocate memory for variables, set parameters
      const int nev = 1;                     // Number of eigenvalues to compute
      const int ncv = 20;                    // Number of Arnoldi vectors generated at each iteration (0 == auto)
      const Real tol = epsilon;              // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
      const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed   (0 == 100*nev)
      Real* ev = new Real[nev];              // Computed eigenvalues of A^T*A
      const bool ivec = true;                // Flag deciding if eigenvectors shall be determined
      int nconv;                             // Number of converged eigenvalues

      // define what we need: eigenvalues with smallest algebraic value
      char which[] = "SA";
      ARSymStdEig<Real,WrappedMatrix>
        dprob(ncols, nev, &A, &WrappedMatrix::multMtMv, which, ncv, tol, maxit);

      // set ARPACK verbosity mode if requested
      if (verbosity_level_ > 3) dprob.Trace();

      // find eigenvalues and eigenvectors of A^T*A, obtain the eigenvalues
      nconv = dprob.Eigenvalues(ev,ivec);

      // obtain approximated smallest eigenvalue of A^T*A
      const Real& lambda = ev[nev-1];

      // obtain associated approximated eigenvector of A^T*A
      Real* x_raw = dprob.RawEigenvector(nev-1);
      WrappedMatrix::arrayToDomainBlockVector(x_raw,x);

      // obtain number of Arnoldi update iterations actually taken
      nIterations_ = dprob.GetIter();

      // compute residual norm
      BlockVector r(x);
      Real* AtAx_raw = new Real[ncols];
      A.multMtMv(x_raw,AtAx_raw);
      WrappedMatrix::arrayToDomainBlockVector(AtAx_raw,r);
      r.axpy(-lambda,x);
      const Real r_norm = r.two_norm();

      // calculate smallest singular value of A (note that
      // x is right-singular / left-singular vector of A)
      sigma = std::sqrt(lambda);

      // print verbosity information
      if (verbosity_level_ > 0)
      {
        if (verbosity_level_ > 1)
        {
          // print some information about the problem
          std::cout << blank_ << "Obtained singular values of A by sol"
                    << "ving (A^T*A)*x = σ²*x using the ARPACK++ "
                    << "class ARSymStdEig:" << std::endl;
          std::cout << blank_ << "   converged eigenvalues of A^T*A: "
                    << nconv << " / " << nev << std::endl;
          std::cout << blank_ << "     smallest eigenvalue of A^T*A: "
                    << lambda << std::endl;
          std::cout << blank_ << "  => smallest singular value of A: "
                    << sigma << std::endl;
        }
        std::cout << blank_ << "Result ("
                  << "#iterations = " << nIterations_ << ", "
                  << "║residual║_2 = " << r_norm << "): "
                  << "σ = " << sigma << std::endl;
        if (verbosity_level_ > 2)
        {
          // print approximated right-singular / left-singular vector
          // via DUNE-ISTL I/O methods
          Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
        }
      }

      // free dynamically allocated memory
      delete[] AtAx_raw;
      delete[] ev;
    }

    /**
     * \brief Assume the matrix to be nonsymmetric and perform IRLM
     *        to compute an approximation of its spectral condition
     *        number which can be expressed as the ratio of the
     *        largest singular value and the smallest singular value.
     *
     * \param[in]  epsilon The target relative accuracy of Ritz values
     *                     (0 == machine precision).
     * \param[out] cond_2  The approximated spectral condition number.
     */
    inline void computeNonSymCond2 (const Real& epsilon, Real& cond_2) const
    {
      // print verbosity information
      if (verbosity_level_ > 0)
        std::cout << title_ << "Computing an approximation of the "
                  << "spectral condition number of a matrix which "
                  << "is assumed to be nonsymmetric." << std::endl;

      // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
      // and to perform the product A^T*A*v (LU decomposition is not used)
      typedef ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
      WrappedMatrix A(m_);

      // get number of rows and columns in A
      const int nrows = A.nrows();
      const int ncols = A.ncols();

      // assert that A has more rows than columns (extend code later to the opposite case!)
      if (nrows < ncols)
        DUNE_THROW(Dune::ISTLError,"Matrix has less rows than "
                   << "columns (" << nrows << "x" << ncols << ")."
                   << " This case is not implemented, yet.");

      // allocate memory for variables, set parameters
      const int nev = 2;                     // Number of eigenvalues to compute
      const int ncv = 20;                    // Number of Arnoldi vectors generated at each iteration (0 == auto)
      const Real tol = epsilon;              // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
      const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed   (0 == 100*nev)
      Real* ev = new Real[nev];              // Computed eigenvalues of A^T*A
      const bool ivec = true;                // Flag deciding if eigenvectors shall be determined
      int nconv;                             // Number of converged eigenvalues

      // define what we need: eigenvalues from both ends of the spectrum
      char which[] = "BE";
      ARSymStdEig<Real,WrappedMatrix>
        dprob(ncols, nev, &A, &WrappedMatrix::multMtMv, which, ncv, tol, maxit);

      // set ARPACK verbosity mode if requested
      if (verbosity_level_ > 3) dprob.Trace();

      // find eigenvalues and eigenvectors of A^T*A, obtain the eigenvalues
      nconv = dprob.Eigenvalues(ev,ivec);

      // obtain approximated largest and smallest eigenvalue of A^T*A
      const Real& lambda_max = ev[nev-1];
      const Real& lambda_min = ev[0];

      // obtain associated approximated eigenvectors of A^T*A
      Real* x_max_raw = dprob.RawEigenvector(nev-1);
      Real* x_min_raw = dprob.RawEigenvector(0);

      // obtain number of Arnoldi update iterations actually taken
      nIterations_ = dprob.GetIter();

      // compute each residual norm
      Real* AtAx_max_raw = new Real[ncols];
      Real* AtAx_min_raw = new Real[ncols];
      A.multMtMv(x_max_raw,AtAx_max_raw);
      A.multMtMv(x_min_raw,AtAx_min_raw);
      Real r_max_norm = 0.0;
      Real r_min_norm = 0.0;
      for (int i = 0; i < ncols; ++i)
      {
        r_max_norm += std::pow(AtAx_max_raw[i] - lambda_max * x_max_raw[i],2);
        r_min_norm += std::pow(AtAx_min_raw[i] - lambda_min * x_min_raw[i],2);
      }
      r_max_norm = std::sqrt(r_max_norm);
      r_min_norm = std::sqrt(r_min_norm);

      // calculate largest and smallest singular value of A
      const Real sigma_max = std::sqrt(lambda_max);
      const Real sigma_min = std::sqrt(lambda_min);

      // obtain approximated spectral condition number of A
      cond_2 = sigma_max / sigma_min;

      // print verbosity information
      if (verbosity_level_ > 0)
      {
        if (verbosity_level_ > 1)
        {
          // print some information about the problem
          std::cout << blank_ << "Obtained singular values of A by sol"
                    << "ving (A^T*A)*x = σ²*x using the ARPACK++ "
                    << "class ARSymStdEig:" << std::endl;
          std::cout << blank_ << "   converged eigenvalues of A^T*A: "
                    << nconv << " / " << nev << std::endl;
          std::cout << blank_ << "      largest eigenvalue of A^T*A: "
                    << lambda_max << std::endl;
          std::cout << blank_ << "     smallest eigenvalue of A^T*A: "
                    << lambda_min << std::endl;
          std::cout << blank_ << "  =>  largest singular value of A: "
                    << sigma_max << std::endl;
          std::cout << blank_ << "  => smallest singular value of A: "
                    << sigma_min << std::endl;
        }
        std::cout << blank_ << "Result ("
                  << "#iterations = " << nIterations_ << ", "
                  << "║residual║_2 = {" << r_max_norm << ","
                  << r_min_norm << "}, " << "σ = {"
                  << sigma_max << "," << sigma_min
                  << "}): cond_2 = " << cond_2 << std::endl;
      }

      // free dynamically allocated memory
      delete[] AtAx_min_raw;
      delete[] AtAx_max_raw;
      delete[] ev;
    }

    /**
     * \brief Return the number of iterations in last application of
     *        an algorithm.
     */
    inline unsigned int getIterationCount () const
    {
      if (nIterations_ == 0)
        DUNE_THROW(Dune::ISTLError,"No algorithm applied, yet.");

      return nIterations_;
    }

  protected:
    // parameters related to iterative eigenvalue algorithms
    const BCRSMatrix& m_;
    const unsigned int nIterationsMax_;

    // verbosity setting
    const unsigned int verbosity_level_;

    // memory for storing temporary variables (mutable as they shall
    // just be effectless auxiliary variables of the const apply*(...)
    // methods)
    mutable unsigned int nIterations_;

    // constants for printing verbosity information
    const std::string title_;
    const std::string blank_;
  };

}  // namespace Dune


#endif  // HAVE_ARPACKPP

#endif  // DUNE_ISTL_EIGENVALUE_ARPACKPP_HH