This file is indexed.

/usr/include/dune/istl/overlappingschwarz.hh is in libdune-istl-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ISTL_OVERLAPPINGSCHWARZ_HH
#define DUNE_ISTL_OVERLAPPINGSCHWARZ_HH
#include <cassert>
#include <algorithm>
#include <functional>
#include <vector>
#include <set>
#include <dune/common/dynmatrix.hh>
#include <dune/common/sllist.hh>
#include <dune/common/unused.hh>
#include "preconditioners.hh"
#include "superlu.hh"
#include "umfpack.hh"
#include "bvector.hh"
#include "bcrsmatrix.hh"
#include "ilusubdomainsolver.hh"
#include <dune/istl/solvertype.hh>

namespace Dune
{

  /**
   * @addtogroup ISTL_Prec
   *
   * @{
   */
  /**
   * @file
   * @author Markus Blatt
   * @brief Contains one level overlapping Schwarz preconditioners
   */

  template<class M, class X, class TM, class TD, class TA>
  class SeqOverlappingSchwarz;

  /**
   * @brief Initializer for SuperLU Matrices representing the subdomains.
   */
  template<class I, class S, class D>
  class OverlappingSchwarzInitializer
  {
  public:
    /** @brief The vector type containing the subdomain to row index mapping. */
    typedef D subdomain_vector;

    typedef I InitializerList;
    typedef typename InitializerList::value_type AtomInitializer;
    typedef typename AtomInitializer::Matrix Matrix;
    typedef typename Matrix::const_iterator Iter;
    typedef typename Matrix::row_type::const_iterator CIter;

    typedef S IndexSet;
    typedef typename IndexSet::size_type size_type;

    OverlappingSchwarzInitializer(InitializerList& il,
                                  const IndexSet& indices,
                                  const subdomain_vector& domains);


    void addRowNnz(const Iter& row);

    void allocate();

    void countEntries(const Iter& row, const CIter& col) const;

    void calcColstart() const;

    void copyValue(const Iter& row, const CIter& col) const;

    void createMatrix() const;
  private:
    class IndexMap
    {
    public:
      typedef typename S::size_type size_type;
      typedef std::map<size_type,size_type> Map;
      typedef typename Map::iterator iterator;
      typedef typename Map::const_iterator const_iterator;

      IndexMap();

      void insert(size_type grow);

      const_iterator find(size_type grow) const;

      iterator find(size_type grow);

      iterator begin();

      const_iterator begin() const;

      iterator end();

      const_iterator end() const;

    private:
      std::map<size_type,size_type> map_;
      size_type row;
    };


    typedef typename InitializerList::iterator InitIterator;
    typedef typename IndexSet::const_iterator IndexIteratur;
    InitializerList* initializers;
    const IndexSet *indices;
    mutable std::vector<IndexMap> indexMaps;
    const subdomain_vector& domains;
  };

  /**
   * @brief Tag that the tells the schwarz method to be additive.
   */
  struct AdditiveSchwarzMode
  {};

  /**
   * @brief Tag that tells the Schwarz method to be multiplicative.
   */
  struct MultiplicativeSchwarzMode
  {};

  /**
   * @brief Tag that tells the Schwarz method to be multiplicative
   * and symmetric.
   */
  struct SymmetricMultiplicativeSchwarzMode
  {};

  /**
   * @brief Exact subdomain solver using Dune::DynamicMatrix<T>::solve
   * @tparam M The type of the matrix.
   */
  template<class M, class X, class Y>
  class DynamicMatrixSubdomainSolver;

  // Specialization for BCRSMatrix
  template<class K, int n, class Al, class X, class Y>
  class DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >
  {
    typedef BCRSMatrix< FieldMatrix<K,n,n>, Al> M;
  public:
    //! \brief The matrix type the preconditioner is for.
    typedef typename std::remove_const<M>::type matrix_type;
    typedef K field_type;
    typedef typename std::remove_const<M>::type rilu_type;
    //! \brief The domain type of the preconditioner.
    typedef X domain_type;
    //! \brief The range type of the preconditioner.
    typedef Y range_type;

    /**
     * @brief Apply the subdomain solver.
     * @copydoc ILUSubdomainSolver::apply
     */
    void apply (DynamicVector<field_type>& v, DynamicVector<field_type>& d)
    {
      assert(v.size() > 0);
      assert(v.size() == d.size());
      assert(A.rows() <= v.size());
      assert(A.cols() <= v.size());
      size_t sz = A.rows();
      v.resize(sz);
      d.resize(sz);
      A.solve(v,d);
      v.resize(v.capacity());
      d.resize(d.capacity());
    }

    /**
     * @brief Set the data of the local problem.
     *
     * @param BCRS The global matrix.
     * @param rowset The global indices of the local problem.
     * @tparam S The type of the set with the indices.
     */
    template<class S>
    void setSubMatrix(const M& BCRS, S& rowset)
    {
      size_t sz = rowset.size();
      A.resize(sz*n,sz*n);
      typedef typename S::const_iterator SIter;
      size_t r = 0, c = 0;
      for(SIter rowIdx = rowset.begin(), rowEnd=rowset.end();
          rowIdx!= rowEnd; ++rowIdx, r++)
      {
        c = 0;
        for(SIter colIdx = rowset.begin(), colEnd=rowset.end();
            colIdx!= colEnd; ++colIdx, c++)
        {
          if (BCRS[*rowIdx].find(*colIdx) == BCRS[*rowIdx].end())
            continue;
          for (size_t i=0; i<n; i++)
          {
            for (size_t j=0; j<n; j++)
            {
              A[r*n+i][c*n+j] = BCRS[*rowIdx][*colIdx][i][j];
            }
          }
        }
      }
    }
  private:
    DynamicMatrix<K> A;
  };

  template<typename T, bool tag>
  class OverlappingAssignerHelper
  {};

  template<typename T>
  using OverlappingAssigner = OverlappingAssignerHelper<T, Dune::StoresColumnCompressed<T>::value>;

  // specialization for DynamicMatrix
  template<class K, int n, class Al, class X, class Y>
  class OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  {
  public:
    typedef BCRSMatrix< FieldMatrix<K,n,n>, Al> matrix_type;
    typedef K field_type;
    typedef Y range_type;
    typedef typename range_type::block_type block_type;
    typedef typename matrix_type::size_type size_type;

    /**
     * @brief Constructor.
     * @param maxlength The maximum entries over all subdomains.
     * @param mat_ The global matrix.
     * @param b_ the global right hand side.
     * @param x_ the global left hand side.
     */
    OverlappingAssignerHelper(std::size_t maxlength, const BCRSMatrix<FieldMatrix<K,n,n>, Al>& mat_, const X& b_, Y& x_);

    /**
     * @brief Deallocates memory of the local vector.
     */
    inline
    void deallocate();

    /**
     * @brief Resets the local index to zero.
     */
    inline
    void resetIndexForNextDomain();

    /**
     * @brief Get the local left hand side.
     * @return The local left hand side.
     */
    inline
    DynamicVector<K> & lhs();

    /**
     * @brief Get the local right hand side.
     * @return The local right hand side.
     */
    inline
    DynamicVector<K> & rhs();

    /**
     * @brief relax the result.
     * @param relax The relaxation parameter.
     */
    inline
    void relaxResult(field_type relax);

    /**
     * @brief calculate one entry of the local defect.
     * @param domainIndex One index of the domain.
     */
    void operator()(const size_type& domainIndex);

    /**
     * @brief Assigns the block to the current local
     * index.
     * At the same time the local defect is calculated
     * for the index and stored in the rhs.
     * Afterwards the is incremented for the next block.
     */
    inline
    void assignResult(block_type& res);

  private:
    /**
     * @brief The global matrix for the defect calculation.
     */
    const matrix_type* mat;
    /** @brief The local right hand side. */
    // we need a pointer, because we have to avoid deep copies
    DynamicVector<field_type> * rhs_;
    /** @brief The local left hand side. */
    // we need a pointer, because we have to avoid deep copies
    DynamicVector<field_type> * lhs_;
    /** @brief The global right hand side for the defect calculation. */
    const range_type* b;
    /** @brief The global right hand side for adding the local update to. */
    range_type* x;
    /** @brief The current local index. */
    std::size_t i;
    /** @brief The maximum entries over all subdomains. */
    std::size_t maxlength_;
  };

#if HAVE_SUPERLU || HAVE_SUITESPARSE_UMFPACK
  template<template<class> class S, int n, int m, typename T, typename A>
  struct OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>, A> >, true>
  {
    typedef BCRSMatrix<FieldMatrix<T,n,m>, A> matrix_type;
    typedef typename S<BCRSMatrix<FieldMatrix<T,n,m>, A> >::range_type range_type;
    typedef typename range_type::field_type field_type;
    typedef typename range_type::block_type block_type;

    typedef typename matrix_type::size_type size_type;

    /**
     * @brief Constructor.
     * @param maxlength The maximum entries over all subdomains.
     * @param mat The global matrix.
     * @param b the global right hand side.
     * @param x the global left hand side.
     */
    OverlappingAssignerHelper(std::size_t maxlength, const matrix_type& mat,
                        const range_type& b, range_type& x);
    /**
     * @brief Deallocates memory of the local vector.
     * @warning memory is released by the destructor as this Functor
     * is copied and the copy needs to still have the data.
     */
    void deallocate();

    /*
     * @brief Resets the local index to zero.
     */
    void resetIndexForNextDomain();

    /**
     * @brief Get the local left hand side.
     * @return The local left hand side.
     */
    field_type* lhs();

    /**
     * @brief Get the local right hand side.
     * @return The local right hand side.
     */
    field_type* rhs();

    /**
     * @brief relax the result.
     * @param relax The relaxation parameter.
     */
    void relaxResult(field_type relax);

    /**
     * @brief calculate one entry of the local defect.
     * @param domain One index of the domain.
     */
    void operator()(const size_type& domain);

    /**
     * @brief Assigns the block to the current local
     * index.
     * At the same time the local defect is calculated
     * for the index and stored in the rhs.
     * Afterwards the is incremented for the next block.
     */
    void assignResult(block_type& res);

  private:
    /**
     * @brief The global matrix for the defect calculation.
     */
    const matrix_type* mat;
    /** @brief The local right hand side. */
    field_type* rhs_;
    /** @brief The local left hand side. */
    field_type* lhs_;
    /** @brief The global right hand side for the defect calculation. */
    const range_type* b;
    /** @brief The global right hand side for adding the local update to. */
    range_type* x;
    /** @brief The current local index. */
    std::size_t i;
    /** @brief The maximum entries over all subdomains. */
    std::size_t maxlength_;
  };

#endif // HAVE_SUPERLU || HAVE_SUITESPARSE_UMFPACK

  template<class M, class X, class Y>
  class OverlappingAssignerILUBase
  {
  public:
    typedef M matrix_type;

    typedef typename M::field_type field_type;

    typedef typename Y::block_type block_type;

    typedef typename matrix_type::size_type size_type;
    /**
     * @brief Constructor.
     * @param maxlength The maximum entries over all subdomains.
     * @param mat The global matrix.
     * @param b the global right hand side.
     * @param x the global left hand side.
     */
    OverlappingAssignerILUBase(std::size_t maxlength, const M& mat,
                               const Y& b, X& x);
    /**
     * @brief Deallocates memory of the local vector.
     * @warning memory is released by the destructor as this Functor
     * is copied and the copy needs to still have the data.
     */
    void deallocate();

    /**
     * @brief Resets the local index to zero.
     */
    void resetIndexForNextDomain();

    /**
     * @brief Get the local left hand side.
     * @return The local left hand side.
     */
    X& lhs();

    /**
     * @brief Get the local right hand side.
     * @return The local right hand side.
     */
    Y& rhs();

    /**
     * @brief relax the result.
     * @param relax The relaxation parameter.
     */
    void relaxResult(field_type relax);

    /**
     * @brief calculate one entry of the local defect.
     * @param domain One index of the domain.
     */
    void operator()(const size_type& domain);

    /**
     * @brief Assigns the block to the current local
     * index.
     * At the same time the local defect is calculated
     * for the index and stored in the rhs.
     * Afterwards the is incremented for the next block.
     */
    void assignResult(block_type& res);

  private:
    /**
     * @brief The global matrix for the defect calculation.
     */
    const M* mat;
    /** @brief The local left hand side. */
    X* lhs_;
    /** @brief The local right hand side. */
    Y* rhs_;
    /** @brief The global right hand side for the defect calculation. */
    const Y* b;
    /** @brief The global left hand side for adding the local update to. */
    X* x;
    /** @brief The maximum entries over all subdomains. */
    size_type i;
  };

  // specialization for ILU0
  template<class M, class X, class Y>
  class OverlappingAssignerHelper<ILU0SubdomainSolver<M,X,Y>, false>
    : public OverlappingAssignerILUBase<M,X,Y>
  {
  public:
    /**
     * @brief Constructor.
     * @param maxlength The maximum entries over all subdomains.
     * @param mat The global matrix.
     * @param b the global right hand side.
     * @param x the global left hand side.
     */
    OverlappingAssignerHelper(std::size_t maxlength, const M& mat,
                        const Y& b, X& x)
      : OverlappingAssignerILUBase<M,X,Y>(maxlength, mat,b,x)
    {}
  };

  // specialization for ILUN
  template<class M, class X, class Y>
  class OverlappingAssignerHelper<ILUNSubdomainSolver<M,X,Y>,false>
    : public OverlappingAssignerILUBase<M,X,Y>
  {
  public:
    /**
     * @brief Constructor.
     * @param maxlength The maximum entries over all subdomains.
     * @param mat The global matrix.
     * @param b the global right hand side.
     * @param x the global left hand side.
     */
    OverlappingAssignerHelper(std::size_t maxlength, const M& mat,
                        const Y& b, X& x)
      : OverlappingAssignerILUBase<M,X,Y>(maxlength, mat,b,x)
    {}
  };

  template<typename S, typename T>
  struct AdditiveAdder
  {};

  template<typename S, typename T, typename A, int n>
  struct AdditiveAdder<S, BlockVector<FieldVector<T,n>,A> >
  {
    typedef typename A::size_type size_type;
    AdditiveAdder(BlockVector<FieldVector<T,n>,A>& v, BlockVector<FieldVector<T,n>,A>& x,
                  OverlappingAssigner<S>& assigner, const T& relax_);
    void operator()(const size_type& domain);
    void axpy();

  private:
    BlockVector<FieldVector<T,n>,A>* v;
    BlockVector<FieldVector<T,n>,A>* x;
    OverlappingAssigner<S>* assigner;
    T relax;
  };

  template<typename S,typename T>
  struct MultiplicativeAdder
  {};

  template<typename S, typename T, typename A, int n>
  struct MultiplicativeAdder<S, BlockVector<FieldVector<T,n>,A> >
  {
    typedef typename A::size_type size_type;
    MultiplicativeAdder(BlockVector<FieldVector<T,n>,A>& v, BlockVector<FieldVector<T,n>,A>& x,
                        OverlappingAssigner<S>& assigner_, const T& relax_);
    void operator()(const size_type& domain);
    void axpy();

  private:
    BlockVector<FieldVector<T,n>,A>* x;
    OverlappingAssigner<S>* assigner;
    T relax;
  };

  /**
   * @brief template meta program for choosing  how to add the correction.
   *
   * There are specialization for the additive, the multiplicative, and the symmetric multiplicative mode.
   *
   * \tparam T The Schwarz mode (either AdditiveSchwarzMode or MuliplicativeSchwarzMode or
   * SymmetricMultiplicativeSchwarzMode)
   * \tparam X The vector field type
   */
  template<typename T, class X, class S>
  struct AdderSelector
  {};

  template<class X, class S>
  struct AdderSelector<AdditiveSchwarzMode,X,S>
  {
    typedef AdditiveAdder<S,X> Adder;
  };

  template<class X, class S>
  struct AdderSelector<MultiplicativeSchwarzMode,X,S>
  {
    typedef MultiplicativeAdder<S,X> Adder;
  };

  template<class X, class S>
  struct AdderSelector<SymmetricMultiplicativeSchwarzMode,X,S>
  {
    typedef MultiplicativeAdder<S,X> Adder;
  };

  /**
   * @brief Helper template meta program for application of overlapping schwarz.
   *
   * The is needed because when using the multiplicative schwarz version one
   * might still want to make multigrid symmetric, i.e. forward sweep when pre-
   * and backward sweep when post-smoothing.
   *
   * @tparam T1 type of the vector with the subdomain solvers.
   * @tparam T2 type of the vector with the subdomain vector fields.
   * @tparam forward If true apply in a forward sweep.
   */
  template<typename T1, typename T2, bool forward>
  struct IteratorDirectionSelector
  {
    typedef T1 solver_vector;
    typedef typename solver_vector::iterator solver_iterator;
    typedef T2 subdomain_vector;
    typedef typename subdomain_vector::const_iterator domain_iterator;

    static solver_iterator begin(solver_vector& sv)
    {
      return sv.begin();
    }

    static solver_iterator end(solver_vector& sv)
    {
      return sv.end();
    }
    static domain_iterator begin(const subdomain_vector& sv)
    {
      return sv.begin();
    }

    static domain_iterator end(const subdomain_vector& sv)
    {
      return sv.end();
    }
  };

  template<typename T1, typename T2>
  struct IteratorDirectionSelector<T1,T2,false>
  {
    typedef T1 solver_vector;
    typedef typename solver_vector::reverse_iterator solver_iterator;
    typedef T2 subdomain_vector;
    typedef typename subdomain_vector::const_reverse_iterator domain_iterator;

    static solver_iterator begin(solver_vector& sv)
    {
      return sv.rbegin();
    }

    static solver_iterator end(solver_vector& sv)
    {
      return sv.rend();
    }
    static domain_iterator begin(const subdomain_vector& sv)
    {
      return sv.rbegin();
    }

    static domain_iterator end(const subdomain_vector& sv)
    {
      return sv.rend();
    }
  };

  /**
   * @brief Helper template meta program for application of overlapping schwarz.
   *
   * The is needed because when using the multiplicative schwarz version one
   * might still want to make multigrid symmetric, i.e. forward sweep when pre-
   * and backward sweep when post-smoothing.
   * @tparam T The smoother to apply.
   */
  template<class T>
  struct SeqOverlappingSchwarzApplier
  {
    typedef T smoother;
    typedef typename smoother::range_type range_type;

    static void apply(smoother& sm, range_type& v, const range_type& b)
    {
      sm.template apply<true>(v, b);
    }
  };

  template<class M, class X, class TD, class TA>
  struct SeqOverlappingSchwarzApplier<SeqOverlappingSchwarz<M,X,SymmetricMultiplicativeSchwarzMode,TD,TA> >
  {
    typedef SeqOverlappingSchwarz<M,X,SymmetricMultiplicativeSchwarzMode,TD,TA> smoother;
    typedef typename smoother::range_type range_type;

    static void apply(smoother& sm, range_type& v, const range_type& b)
    {
      sm.template apply<true>(v, b);
      sm.template apply<false>(v, b);
    }
  };

  template<class T, bool tag>
  struct SeqOverlappingSchwarzAssemblerHelper
  {};

  template<class T>
  using SeqOverlappingSchwarzAssembler = SeqOverlappingSchwarzAssemblerHelper<T,Dune::StoresColumnCompressed<T>::value>;

  template<class K, int n, class Al, class X, class Y>
  struct SeqOverlappingSchwarzAssemblerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  {
    typedef BCRSMatrix< FieldMatrix<K,n,n>, Al> matrix_type;
    template<class RowToDomain, class Solvers, class SubDomains>
    static std::size_t assembleLocalProblems(const RowToDomain& rowToDomain, const matrix_type& mat,
                                             Solvers& solvers, const SubDomains& domains,
                                             bool onTheFly);
  };

  template<template<class> class S, typename T, typename A, int m, int n>
  struct SeqOverlappingSchwarzAssemblerHelper<S<BCRSMatrix<FieldMatrix<T,m,n>,A> >,true>
  {
    typedef BCRSMatrix<FieldMatrix<T,m,n>,A> matrix_type;
    template<class RowToDomain, class Solvers, class SubDomains>
    static std::size_t assembleLocalProblems(const RowToDomain& rowToDomain, const matrix_type& mat,
                                             Solvers& solvers, const SubDomains& domains,
                                             bool onTheFly);
  };

  template<class M,class X, class Y>
  struct SeqOverlappingSchwarzAssemblerILUBase
  {
    typedef M matrix_type;
    template<class RowToDomain, class Solvers, class SubDomains>
    static std::size_t assembleLocalProblems(const RowToDomain& rowToDomain, const matrix_type& mat,
                                             Solvers& solvers, const SubDomains& domains,
                                             bool onTheFly);
  };

  template<class M,class X, class Y>
  struct SeqOverlappingSchwarzAssemblerHelper<ILU0SubdomainSolver<M,X,Y>,false>
    : public SeqOverlappingSchwarzAssemblerILUBase<M,X,Y>
  {};

  template<class M,class X, class Y>
  struct SeqOverlappingSchwarzAssemblerHelper<ILUNSubdomainSolver<M,X,Y>,false>
    : public SeqOverlappingSchwarzAssemblerILUBase<M,X,Y>
  {};

  /**
   * @brief Sequential overlapping Schwarz preconditioner
   *
   * @tparam M The matrix type.
   * @tparam X The range and domain type.
   * @tparam TM The Schwarz mode. Currently supported modes are AdditiveSchwarzMode,
   * MultiplicativeSchwarzMode, and SymmetricMultiplicativeSchwarzMode. (Default values is AdditiveSchwarzMode)
   * @tparam TD The type of the local subdomain solver to be used.
   * @tparam TA The type of the allocator to use.
   */
  template<class M, class X, class TM=AdditiveSchwarzMode,
      class TD=ILU0SubdomainSolver<M,X,X>, class TA=std::allocator<X> >
  class SeqOverlappingSchwarz
    : public Preconditioner<X,X>
  {
  public:
    /**
     * @brief The type of the matrix to precondition.
     */
    typedef M matrix_type;

    /**
     * @brief The domain type of the preconditioner
     */
    typedef X domain_type;

    /**
     * @brief The range type of the preconditioner.
     */
    typedef X range_type;

    /**
     * @brief The mode (additive or multiplicative) of the Schwarz
     * method.
     *
     * Either AdditiveSchwarzMode or MultiplicativeSchwarzMode
     */
    typedef TM Mode;

    /**
     * @brief The field type of the preconditioner.
     */
    typedef typename X::field_type field_type;

    /** @brief The return type of the size method. */
    typedef typename matrix_type::size_type size_type;

    /** @brief The allocator to use. */
    typedef TA allocator;

    /** @brief The type for the subdomain to row index mapping. */
    typedef std::set<size_type, std::less<size_type>,
        typename TA::template rebind<size_type>::other>
    subdomain_type;

    /** @brief The vector type containing the subdomain to row index mapping. */
    typedef std::vector<subdomain_type, typename TA::template rebind<subdomain_type>::other> subdomain_vector;

    /** @brief The type for the row to subdomain mapping. */
    typedef SLList<size_type, typename TA::template rebind<size_type>::other> subdomain_list;

    /** @brief The vector type containing the row index to subdomain mapping. */
    typedef std::vector<subdomain_list, typename TA::template rebind<subdomain_list>::other > rowtodomain_vector;

    /** @brief The type for the subdomain solver in use. */
    typedef TD slu;

    /** @brief The vector type containing subdomain solvers. */
    typedef std::vector<slu, typename TA::template rebind<slu>::other> slu_vector;

    enum {
      //! \brief The category the precondtioner is part of.
      category = SolverCategory::sequential
    };

    /**
     * @brief Construct the overlapping Schwarz method.
     * @param mat The matrix to precondition.
     * @param subDomains Array of sets of rowindices belonging to an overlapping
     * subdomain
     * @param relaxationFactor relaxation factor
     * @param onTheFly_ If true the decomposition of the exact local solvers is
     * computed on the fly for each subdomain and
     * iteration step. If false all decompositions are computed in pre and
     * only forward and backward substitution takes place
     * in the iteration steps.
     * @warning Each rowindex should be part of at least one subdomain!
     */
    SeqOverlappingSchwarz(const matrix_type& mat, const subdomain_vector& subDomains,
                          field_type relaxationFactor=1, bool onTheFly_=true);

    /**
     * Construct the overlapping Schwarz method
     * @param mat The matrix to precondition.
     * @param rowToDomain The mapping of the rows onto the domains.
     * @param relaxationFactor relaxation factor
     * @param onTheFly_ If true the decomposition of the exact local solvers is
     * computed on the fly for each subdomain and
     * iteration step. If false all decompositions are computed in pre and
     * only forward and backward substitution takes place
     * in the iteration steps.
     */
    SeqOverlappingSchwarz(const matrix_type& mat, const rowtodomain_vector& rowToDomain,
                          field_type relaxationFactor=1, bool onTheFly_=true);

    /*!
       \brief Prepare the preconditioner.

       \copydoc Preconditioner::pre(X&,Y&)
     */
    virtual void pre (X& x, X& b)
    {
      DUNE_UNUSED_PARAMETER(x);
      DUNE_UNUSED_PARAMETER(b);
    }

    /*!
       \brief Apply the precondtioner

       \copydoc Preconditioner::apply(X&,const Y&)
     */
    virtual void apply (X& v, const X& d);

    /*!
       \brief Postprocess the preconditioner.

       \copydoc Preconditioner::post(X&)
     */
    virtual void post (X& x)
    {
      DUNE_UNUSED_PARAMETER(x);
    }

    template<bool forward>
    void apply(X& v, const X& d);

  private:
    const M& mat;
    slu_vector solvers;
    subdomain_vector subDomains;
    field_type relax;

    typename M::size_type maxlength;

    bool onTheFly;
  };



  template<class I, class S, class D>
  OverlappingSchwarzInitializer<I,S,D>::OverlappingSchwarzInitializer(InitializerList& il,
                                                                      const IndexSet& idx,
                                                                      const subdomain_vector& domains_)
    : initializers(&il), indices(&idx), indexMaps(il.size()), domains(domains_)
  {}


  template<class I, class S, class D>
  void OverlappingSchwarzInitializer<I,S,D>::addRowNnz(const Iter& row)
  {
    typedef typename IndexSet::value_type::const_iterator iterator;
    for(iterator domain=(*indices)[row.index()].begin(); domain != (*indices)[row.index()].end(); ++domain) {
      (*initializers)[*domain].addRowNnz(row, domains[*domain]);
      indexMaps[*domain].insert(row.index());
    }
  }

  template<class I, class S, class D>
  void OverlappingSchwarzInitializer<I,S,D>::allocate()
  {
    std::for_each(initializers->begin(), initializers->end(),
                  std::mem_fun_ref(&AtomInitializer::allocateMatrixStorage));
    std::for_each(initializers->begin(), initializers->end(),
                  std::mem_fun_ref(&AtomInitializer::allocateMarker));
  }

  template<class I, class S, class D>
  void OverlappingSchwarzInitializer<I,S,D>::countEntries(const Iter& row, const CIter& col) const
  {
    typedef typename IndexSet::value_type::const_iterator iterator;
    for(iterator domain=(*indices)[row.index()].begin(); domain != (*indices)[row.index()].end(); ++domain) {
      typename std::map<size_type,size_type>::const_iterator v = indexMaps[*domain].find(col.index());
      if(v!= indexMaps[*domain].end()) {
        (*initializers)[*domain].countEntries(indexMaps[*domain].find(col.index())->second);
      }
    }
  }

  template<class I, class S, class D>
  void OverlappingSchwarzInitializer<I,S,D>::calcColstart() const
  {
    std::for_each(initializers->begin(), initializers->end(),
                  std::mem_fun_ref(&AtomInitializer::calcColstart));
  }

  template<class I, class S, class D>
  void OverlappingSchwarzInitializer<I,S,D>::copyValue(const Iter& row, const CIter& col) const
  {
    typedef typename IndexSet::value_type::const_iterator iterator;
    for(iterator domain=(*indices)[row.index()].begin(); domain!= (*indices)[row.index()].end(); ++domain) {
      typename std::map<size_type,size_type>::const_iterator v = indexMaps[*domain].find(col.index());
      if(v!= indexMaps[*domain].end()) {
        assert(indexMaps[*domain].end()!=indexMaps[*domain].find(row.index()));
        (*initializers)[*domain].copyValue(col, indexMaps[*domain].find(row.index())->second,
                                           v->second);
      }
    }
  }

  template<class I, class S, class D>
  void OverlappingSchwarzInitializer<I,S,D>::createMatrix() const
  {
    std::vector<IndexMap>().swap(indexMaps);
    std::for_each(initializers->begin(), initializers->end(),
                  std::mem_fun_ref(&AtomInitializer::createMatrix));
  }

  template<class I, class S, class D>
  OverlappingSchwarzInitializer<I,S,D>::IndexMap::IndexMap()
    : row(0)
  {}

  template<class I, class S, class D>
  void OverlappingSchwarzInitializer<I,S,D>::IndexMap::insert(size_type grow)
  {
    assert(map_.find(grow)==map_.end());
    map_.insert(std::make_pair(grow, row++));
  }

  template<class I, class S, class D>
  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::const_iterator
  OverlappingSchwarzInitializer<I,S,D>::IndexMap::find(size_type grow) const
  {
    return map_.find(grow);
  }

  template<class I, class S, class D>
  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::iterator
  OverlappingSchwarzInitializer<I,S,D>::IndexMap::find(size_type grow)
  {
    return map_.find(grow);
  }

  template<class I, class S, class D>
  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::const_iterator
  OverlappingSchwarzInitializer<I,S,D>::IndexMap::end() const
  {
    return map_.end();
  }

  template<class I, class S, class D>
  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::iterator
  OverlappingSchwarzInitializer<I,S,D>::IndexMap::end()
  {
    return map_.end();
  }

  template<class I, class S, class D>
  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::const_iterator
  OverlappingSchwarzInitializer<I,S,D>::IndexMap::begin() const
  {
    return map_.begin();
  }

  template<class I, class S, class D>
  typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::iterator
  OverlappingSchwarzInitializer<I,S,D>::IndexMap::begin()
  {
    return map_.begin();
  }

  template<class M, class X, class TM, class TD, class TA>
  SeqOverlappingSchwarz<M,X,TM,TD,TA>::SeqOverlappingSchwarz(const matrix_type& mat_, const rowtodomain_vector& rowToDomain,
                                                             field_type relaxationFactor, bool fly)
    : mat(mat_), relax(relaxationFactor), onTheFly(fly)
  {
    typedef typename rowtodomain_vector::const_iterator RowDomainIterator;
    typedef typename subdomain_list::const_iterator DomainIterator;
#ifdef DUNE_ISTL_WITH_CHECKING
    assert(rowToDomain.size()==mat.N());
    assert(rowToDomain.size()==mat.M());

    for(RowDomainIterator iter=rowToDomain.begin(); iter != rowToDomain.end(); ++iter)
      assert(iter->size()>0);

#endif
    // calculate the number of domains
    size_type domains=0;
    for(RowDomainIterator iter=rowToDomain.begin(); iter != rowToDomain.end(); ++iter)
      for(DomainIterator d=iter->begin(); d != iter->end(); ++d)
        domains=std::max(domains, *d);
    ++domains;

    solvers.resize(domains);
    subDomains.resize(domains);

    // initialize subdomains to row mapping from row to subdomain mapping
    size_type row=0;
    for(RowDomainIterator iter=rowToDomain.begin(); iter != rowToDomain.end(); ++iter, ++row)
      for(DomainIterator d=iter->begin(); d != iter->end(); ++d)
        subDomains[*d].insert(row);

#ifdef DUNE_ISTL_WITH_CHECKING
    size_type i=0;
    typedef typename subdomain_vector::const_iterator iterator;
    for(iterator iter=subDomains.begin(); iter != subDomains.end(); ++iter) {
      typedef typename subdomain_type::const_iterator entry_iterator;
      Dune::dvverb<<"domain "<<i++<<":";
      for(entry_iterator entry = iter->begin(); entry != iter->end(); ++entry) {
        Dune::dvverb<<" "<<*entry;
      }
      Dune::dvverb<<std::endl;
    }
#endif
    maxlength = SeqOverlappingSchwarzAssembler<slu>
                ::assembleLocalProblems(rowToDomain, mat, solvers, subDomains, onTheFly);
  }

  template<class M, class X, class TM, class TD, class TA>
  SeqOverlappingSchwarz<M,X,TM,TD,TA>::SeqOverlappingSchwarz(const matrix_type& mat_,
                                                             const subdomain_vector& sd,
                                                             field_type relaxationFactor,
                                                             bool fly)
    :  mat(mat_), solvers(sd.size()), subDomains(sd), relax(relaxationFactor),
      onTheFly(fly)
  {
    typedef typename subdomain_vector::const_iterator DomainIterator;

#ifdef DUNE_ISTL_WITH_CHECKING
    size_type i=0;

    for(DomainIterator d=sd.begin(); d != sd.end(); ++d,++i) {
      //std::cout<<i<<": "<<d->size()<<std::endl;
      assert(d->size()>0);
      typedef typename DomainIterator::value_type::const_iterator entry_iterator;
      Dune::dvverb<<"domain "<<i<<":";
      for(entry_iterator entry = d->begin(); entry != d->end(); ++entry) {
        Dune::dvverb<<" "<<*entry;
      }
      Dune::dvverb<<std::endl;
    }

#endif

    // Create a row to subdomain mapping
    rowtodomain_vector rowToDomain(mat.N());

    size_type domainId=0;

    for(DomainIterator domain=sd.begin(); domain != sd.end(); ++domain, ++domainId) {
      typedef typename subdomain_type::const_iterator iterator;
      for(iterator row=domain->begin(); row != domain->end(); ++row)
        rowToDomain[*row].push_back(domainId);
    }

    maxlength = SeqOverlappingSchwarzAssembler<slu>
                ::assembleLocalProblems(rowToDomain, mat, solvers, subDomains, onTheFly);
  }

  /**
     template helper struct to determine the size of a domain for the
     SeqOverlappingSchwarz solver

     only implemented for BCRSMatrix<FieldMatrix<T,n,m>
   */
  template<class M>
  struct SeqOverlappingSchwarzDomainSize {};

  template<typename T, typename A, int n, int m>
  struct SeqOverlappingSchwarzDomainSize<BCRSMatrix<FieldMatrix<T,n,m>,A > >
  {
    template<class Domain>
    static int size(const Domain & d)
    {
      assert(n==m);
      return m*d.size();
    }
  };

  template<class K, int n, class Al, class X, class Y>
  template<class RowToDomain, class Solvers, class SubDomains>
  std::size_t
  SeqOverlappingSchwarzAssemblerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>::
  assembleLocalProblems(const RowToDomain& rowToDomain,
                        const matrix_type& mat,
                        Solvers& solvers,
                        const SubDomains& subDomains,
                        bool onTheFly)
  {
    DUNE_UNUSED_PARAMETER(onTheFly);
    DUNE_UNUSED_PARAMETER(rowToDomain);
    DUNE_UNUSED_PARAMETER(mat);
    DUNE_UNUSED_PARAMETER(solvers);
    typedef typename SubDomains::const_iterator DomainIterator;
    std::size_t maxlength = 0;

    assert(onTheFly);

    for(DomainIterator domain=subDomains.begin(); domain!=subDomains.end(); ++domain)
      maxlength=std::max(maxlength, domain->size());
    maxlength*=n;

    return maxlength;
  }

#if HAVE_SUPERLU || HAVE_SUITESPARSE_UMFPACK
  template<template<class> class S, typename T, typename A, int m, int n>
  template<class RowToDomain, class Solvers, class SubDomains>
  std::size_t SeqOverlappingSchwarzAssemblerHelper<S<BCRSMatrix<FieldMatrix<T,m,n>,A> >,true>::assembleLocalProblems(const RowToDomain& rowToDomain,
                                                                                 const matrix_type& mat,
                                                                                 Solvers& solvers,
                                                                                 const SubDomains& subDomains,
                                                                                 bool onTheFly)
  {
    typedef typename S<BCRSMatrix<FieldMatrix<T,m,n>,A> >::MatrixInitializer MatrixInitializer;
    typedef typename std::vector<MatrixInitializer>::iterator InitializerIterator;
    typedef typename SubDomains::const_iterator DomainIterator;
    typedef typename Solvers::iterator SolverIterator;
    std::size_t maxlength = 0;

    if(onTheFly) {
      for(DomainIterator domain=subDomains.begin(); domain!=subDomains.end(); ++domain)
        maxlength=std::max(maxlength, domain->size());
      maxlength*=mat[0].begin()->N();
    }else{
      // initialize the initializers
      DomainIterator domain=subDomains.begin();

      // Create the initializers list.
      std::vector<MatrixInitializer> initializers(subDomains.size());

      SolverIterator solver=solvers.begin();
      for(InitializerIterator initializer=initializers.begin(); initializer!=initializers.end();
          ++initializer, ++solver, ++domain) {
        solver->getInternalMatrix().N_=SeqOverlappingSchwarzDomainSize<matrix_type>::size(*domain);
        solver->getInternalMatrix().M_=SeqOverlappingSchwarzDomainSize<matrix_type>::size(*domain);
        //solver->setVerbosity(true);
        *initializer=MatrixInitializer(solver->getInternalMatrix());
      }

      // Set up the supermatrices according to the subdomains
      typedef OverlappingSchwarzInitializer<std::vector<MatrixInitializer>,
          RowToDomain, SubDomains> Initializer;

      Initializer initializer(initializers, rowToDomain, subDomains);
      copyToColCompMatrix(initializer, mat);

      // Calculate the LU decompositions
      std::for_each(solvers.begin(), solvers.end(), std::mem_fun_ref(&S<BCRSMatrix<FieldMatrix<T,m,n>,A> >::decompose));
      for (SolverIterator solverIt = solvers.begin(); solverIt != solvers.end(); ++solverIt)
      {
        assert(solverIt->getInternalMatrix().N() == solverIt->getInternalMatrix().M());
        maxlength = std::max(maxlength, solverIt->getInternalMatrix().N());
      }
    }
    return maxlength;
  }

#endif // HAVE_SUPERLU || HAVE_SUITESPARSE_UMFPACK

  template<class M,class X,class Y>
  template<class RowToDomain, class Solvers, class SubDomains>
  std::size_t SeqOverlappingSchwarzAssemblerILUBase<M,X,Y>::assembleLocalProblems(const RowToDomain& rowToDomain,
                                                                                  const matrix_type& mat,
                                                                                  Solvers& solvers,
                                                                                  const SubDomains& subDomains,
                                                                                  bool onTheFly)
  {
    DUNE_UNUSED_PARAMETER(rowToDomain);
    typedef typename SubDomains::const_iterator DomainIterator;
    typedef typename Solvers::iterator SolverIterator;
    std::size_t maxlength = 0;

    if(onTheFly) {
      for(DomainIterator domain=subDomains.begin(); domain!=subDomains.end(); ++domain)
        maxlength=std::max(maxlength, domain->size());
    }else{
      // initialize the solvers of the local prolems.
      SolverIterator solver=solvers.begin();
      for(DomainIterator domain=subDomains.begin(); domain!=subDomains.end();
          ++domain, ++solver) {
        solver->setSubMatrix(mat, *domain);
        maxlength=std::max(maxlength, domain->size());
      }
    }

    return maxlength;

  }


  template<class M, class X, class TM, class TD, class TA>
  void SeqOverlappingSchwarz<M,X,TM,TD,TA>::apply(X& x, const X& b)
  {
    SeqOverlappingSchwarzApplier<SeqOverlappingSchwarz>::apply(*this, x, b);
  }

  template<class M, class X, class TM, class TD, class TA>
  template<bool forward>
  void SeqOverlappingSchwarz<M,X,TM,TD,TA>::apply(X& x, const X& b)
  {
    typedef slu_vector solver_vector;
    typedef typename IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::solver_iterator iterator;
    typedef typename IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::domain_iterator
    domain_iterator;

    OverlappingAssigner<TD> assigner(maxlength, mat, b, x);

    domain_iterator domain=IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::begin(subDomains);
    iterator solver = IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::begin(solvers);
    X v(x); // temporary for the update
    v=0;

    typedef typename AdderSelector<TM,X,TD >::Adder Adder;
    Adder adder(v, x, assigner, relax);

    for(; domain != IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::end(subDomains); ++domain) {
      //Copy rhs to C-array for SuperLU
      std::for_each(domain->begin(), domain->end(), assigner);
      assigner.resetIndexForNextDomain();
      if(onTheFly) {
        // Create the subdomain solver
        slu sdsolver;
        sdsolver.setSubMatrix(mat, *domain);
        // Apply
        sdsolver.apply(assigner.lhs(), assigner.rhs());
      }else{
        solver->apply(assigner.lhs(), assigner.rhs());
        ++solver;
      }

      //Add relaxed correction to from SuperLU to v
      std::for_each(domain->begin(), domain->end(), adder);
      assigner.resetIndexForNextDomain();

    }

    adder.axpy();
    assigner.deallocate();
  }

  template<class K, int n, class Al, class X, class Y>
  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  ::OverlappingAssignerHelper(std::size_t maxlength, const BCRSMatrix<FieldMatrix<K,n,n>, Al>& mat_,
                        const X& b_, Y& x_) :
    mat(&mat_),
    rhs_( new DynamicVector<field_type>(maxlength, 42) ),
    lhs_( new DynamicVector<field_type>(maxlength, -42) ),
    b(&b_),
    x(&x_),
    i(0),
    maxlength_(maxlength)
  {}

  template<class K, int n, class Al, class X, class Y>
  void
  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  ::deallocate()
  {
    delete rhs_;
    delete lhs_;
  }

  template<class K, int n, class Al, class X, class Y>
  void
  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  ::resetIndexForNextDomain()
  {
    i=0;
  }

  template<class K, int n, class Al, class X, class Y>
  DynamicVector<K> &
  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  ::lhs()
  {
    return *lhs_;
  }

  template<class K, int n, class Al, class X, class Y>
  DynamicVector<K> &
  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  ::rhs()
  {
    return *rhs_;
  }

  template<class K, int n, class Al, class X, class Y>
  void
  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  ::relaxResult(field_type relax)
  {
    lhs() *= relax;
  }

  template<class K, int n, class Al, class X, class Y>
  void
  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  ::operator()(const size_type& domainIndex)
  {
    lhs() = 0.0;
#if 0
    //assign right hand side of current domainindex block
    for(size_type j=0; j<n; ++j, ++i) {
      assert(i<maxlength_);
      rhs()[i]=(*b)[domainIndex][j];
    }

    // loop over all Matrix row entries and calculate defect.
    typedef typename matrix_type::ConstColIterator col_iterator;

    // calculate defect for current row index block
    for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col) {
      block_type tmp(0.0);
      (*col).mv((*x)[col.index()], tmp);
      i-=n;
      for(size_type j=0; j<n; ++j, ++i) {
        assert(i<maxlength_);
        rhs()[i]-=tmp[j];
      }
    }
#else
    //assign right hand side of current domainindex block
    for(size_type j=0; j<n; ++j, ++i) {
      assert(i<maxlength_);
      rhs()[i]=(*b)[domainIndex][j];

      // loop over all Matrix row entries and calculate defect.
      typedef typename matrix_type::ConstColIterator col_iterator;

      // calculate defect for current row index block
      for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col) {
        for(size_type k=0; k<n; ++k) {
          rhs()[i]-=(*col)[j][k] * (*x)[col.index()][k];
        }
      }
    }
#endif
  }

  template<class K, int n, class Al, class X, class Y>
  void
  OverlappingAssignerHelper< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >,false>
  ::assignResult(block_type& res)
  {
    // assign the result of the local solve to the global vector
    for(size_type j=0; j<n; ++j, ++i) {
      assert(i<maxlength_);
      res[j]+=lhs()[i];
    }
  }

#if HAVE_SUPERLU || HAVE_SUITESPARSE_UMFPACK

  template<template<class> class S, int n, int m, typename T, typename A>
  OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>
  ::OverlappingAssignerHelper(std::size_t maxlength,
                        const BCRSMatrix<FieldMatrix<T,n,m>,A>& mat_,
                        const range_type& b_,
                        range_type& x_)
    : mat(&mat_),
      b(&b_),
      x(&x_), i(0), maxlength_(maxlength)
  {
    rhs_ = new field_type[maxlength];
    lhs_ = new field_type[maxlength];

  }

  template<template<class> class S, int n, int m, typename T, typename A>
  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::deallocate()
  {
    delete[] rhs_;
    delete[] lhs_;
  }

  template<template<class> class S, int n, int m, typename T, typename A>
  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::operator()(const size_type& domainIndex)
  {
    //assign right hand side of current domainindex block
    // rhs is an array of doubles!
    // rhs[starti] = b[domainindex]
    for(size_type j=0; j<n; ++j, ++i) {
      assert(i<maxlength_);
      rhs_[i]=(*b)[domainIndex][j];
    }


    // loop over all Matrix row entries and calculate defect.
    typedef typename matrix_type::ConstColIterator col_iterator;

    // calculate defect for current row index block
    for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col) {
      block_type tmp;
      (*col).mv((*x)[col.index()], tmp);
      i-=n;
      for(size_type j=0; j<n; ++j, ++i) {
        assert(i<maxlength_);
        rhs_[i]-=tmp[j];
      }

    }

  }

  template<template<class> class S, int n, int m, typename T, typename A>
  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::relaxResult(field_type relax)
  {
    for(size_type j=i+n; i<j; ++i) {
      assert(i<maxlength_);
      lhs_[i]*=relax;
    }
    i-=n;
  }

  template<template<class> class S, int n, int m, typename T, typename A>
  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::assignResult(block_type& res)
  {
    // assign the result of the local solve to the global vector
    for(size_type j=0; j<n; ++j, ++i) {
      assert(i<maxlength_);
      res[j]+=lhs_[i];
    }
  }

  template<template<class> class S, int n, int m, typename T, typename A>
  void OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::resetIndexForNextDomain()
  {
    i=0;
  }

  template<template<class> class S, int n, int m, typename T, typename A>
  typename OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::field_type*
  OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::lhs()
  {
    return lhs_;
  }

  template<template<class> class S, int n, int m, typename T, typename A>
  typename OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::field_type*
  OverlappingAssignerHelper<S<BCRSMatrix<FieldMatrix<T,n,m>,A> >,true>::rhs()
  {
    return rhs_;
  }

#endif // HAVE_SUPERLU || HAVE_SUITESPARSE_UMFPACK

  template<class M, class X, class Y>
  OverlappingAssignerILUBase<M,X,Y>::OverlappingAssignerILUBase(std::size_t maxlength,
                                                                const M& mat_,
                                                                const Y& b_,
                                                                X& x_)
    : mat(&mat_),
      b(&b_),
      x(&x_), i(0)
  {
    rhs_= new Y(maxlength);
    lhs_ = new X(maxlength);
  }

  template<class M, class X, class Y>
  void OverlappingAssignerILUBase<M,X,Y>::deallocate()
  {
    delete rhs_;
    delete lhs_;
  }

  template<class M, class X, class Y>
  void OverlappingAssignerILUBase<M,X,Y>::operator()(const size_type& domainIndex)
  {
    (*rhs_)[i]=(*b)[domainIndex];

    // loop over all Matrix row entries and calculate defect.
    typedef typename matrix_type::ConstColIterator col_iterator;

    // calculate defect for current row index block
    for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col) {
      (*col).mmv((*x)[col.index()], (*rhs_)[i]);
    }
    // Goto next local index
    ++i;
  }

  template<class M, class X, class Y>
  void OverlappingAssignerILUBase<M,X,Y>::relaxResult(field_type relax)
  {
    (*lhs_)[i]*=relax;
  }

  template<class M, class X, class Y>
  void OverlappingAssignerILUBase<M,X,Y>::assignResult(block_type& res)
  {
    res+=(*lhs_)[i++];
  }

  template<class M, class X, class Y>
  X& OverlappingAssignerILUBase<M,X,Y>::lhs()
  {
    return *lhs_;
  }

  template<class M, class X, class Y>
  Y& OverlappingAssignerILUBase<M,X,Y>::rhs()
  {
    return *rhs_;
  }

  template<class M, class X, class Y>
  void OverlappingAssignerILUBase<M,X,Y>::resetIndexForNextDomain()
  {
    i=0;
  }

  template<typename S, typename T, typename A, int n>
  AdditiveAdder<S,BlockVector<FieldVector<T,n>,A> >::AdditiveAdder(BlockVector<FieldVector<T,n>,A>& v_,
                                                                   BlockVector<FieldVector<T,n>,A>& x_,
                                                                   OverlappingAssigner<S>& assigner_,
                                                                   const T& relax_)
    : v(&v_), x(&x_), assigner(&assigner_), relax(relax_)
  {}

  template<typename S, typename T, typename A, int n>
  void AdditiveAdder<S,BlockVector<FieldVector<T,n>,A> >::operator()(const size_type& domainIndex)
  {
    // add the result of the local solve to the current update
    assigner->assignResult((*v)[domainIndex]);
  }


  template<typename S, typename T, typename A, int n>
  void AdditiveAdder<S,BlockVector<FieldVector<T,n>,A> >::axpy()
  {
    // relax the update and add it to the current guess.
    x->axpy(relax,*v);
  }


  template<typename S, typename T, typename A, int n>
  MultiplicativeAdder<S,BlockVector<FieldVector<T,n>,A> >
  ::MultiplicativeAdder(BlockVector<FieldVector<T,n>,A>& v_,
                        BlockVector<FieldVector<T,n>,A>& x_,
                        OverlappingAssigner<S>& assigner_, const T& relax_)
    : x(&x_), assigner(&assigner_), relax(relax_)
  {
    DUNE_UNUSED_PARAMETER(v_);
  }


  template<typename S,typename T, typename A, int n>
  void MultiplicativeAdder<S,BlockVector<FieldVector<T,n>,A> >::operator()(const size_type& domainIndex)
  {
    // add the result of the local solve to the current guess
    assigner->relaxResult(relax);
    assigner->assignResult((*x)[domainIndex]);
  }


  template<typename S,typename T, typename A, int n>
  void MultiplicativeAdder<S,BlockVector<FieldVector<T,n>,A> >::axpy()
  {
    // nothing to do, as the corrections already relaxed and added in operator()
  }


  /** @} */
}

#endif