This file is indexed.

/usr/include/dune/istl/paamg/aggregates.hh is in libdune-istl-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_AMG_AGGREGATES_HH
#define DUNE_AMG_AGGREGATES_HH


#include "parameters.hh"
#include "graph.hh"
#include "properties.hh"
#include "combinedfunctor.hh"

#include <dune/common/timer.hh>
#include <dune/common/stdstreams.hh>
#include <dune/common/poolallocator.hh>
#include <dune/common/sllist.hh>
#include <dune/common/unused.hh>
#include <dune/common/ftraits.hh>

#include <utility>
#include <set>
#include <algorithm>
#include <complex>
#include <limits>
#include <ostream>
#include <tuple>

namespace Dune
{
  namespace Amg
  {

    /**
     * @addtogroup ISTL_PAAMG
     *
     * @{
     */
    /** @file
     * @author Markus Blatt
     * @brief Provides classes for the Coloring process of AMG
     */

    /**
     * @brief Base class of all aggregation criterions.
     */
    template<class T>
    class AggregationCriterion : public T
    {

    public:
      /**
       * @brief The policy for calculating the dependency graph.
       */
      typedef T DependencyPolicy;

      /**
       * @brief Constructor.
       *
       * The parameters will be initialized with default values suitable
       * for 2D isotropic problems.
       *
       * If that does not fit your needs either use setDefaultValuesIsotropic
       * setDefaultValuesAnisotropic or setup the values by hand
       */
      AggregationCriterion()
        : T()
      {}

      AggregationCriterion(const Parameters& parms)
        : T(parms)
      {}
      /**
       * @brief Sets reasonable default values for an isotropic problem.
       *
       * Reasonable means that we should end up with cube aggregates of
       * diameter 2.
       *
       * @param dim The dimension of the problem.
       * @param diameter The preferred diameter for the aggregation.
       */
      void setDefaultValuesIsotropic(std::size_t dim, std::size_t diameter=2)
      {
        this->setMaxDistance(diameter-1);
        std::size_t csize=1;

        for(; dim>0; dim--) {
          csize*=diameter;
          this->setMaxDistance(this->maxDistance()+diameter-1);
        }
        this->setMinAggregateSize(csize);
        this->setMaxAggregateSize(static_cast<std::size_t>(csize*1.5));
      }

      /**
       * @brief Sets reasonable default values for an aisotropic problem.
       *
       * Reasonable means that we should end up with cube aggregates with
       * sides of diameter 2 and sides in one dimension that are longer
       * (e.g. for 3D: 2x2x3).
       *
       * @param dim The dimension of the problem.
       * @param diameter The preferred diameter for the aggregation.
       */
      void setDefaultValuesAnisotropic(std::size_t dim,std::size_t diameter=2)
      {
        setDefaultValuesIsotropic(dim, diameter);
        this->setMaxDistance(this->maxDistance()+dim-1);
      }
    };

    template<class T>
    std::ostream& operator<<(std::ostream& os, const AggregationCriterion<T>& criterion)
    {
      os<<"{ maxdistance="<<criterion.maxDistance()<<" minAggregateSize="
      <<criterion.minAggregateSize()<< " maxAggregateSize="<<criterion.maxAggregateSize()
      <<" connectivity="<<criterion.maxConnectivity()<<" debugLevel="<<criterion.debugLevel()<<"}";
      return os;
    }

    /**
     * @brief Dependency policy for symmetric matrices.
     *
     * We assume that not only the sparsity pattern is symmetric
     * but also the entries (a_ij=aji). If that is not the case
     * the resulting dependency graph might be unsymmetric.
     *
     * \tparam M The type of the matrix
     * \tparam N The type of the metric that turns matrix blocks into
     * field values
     */
    template<class M, class N>
    class SymmetricMatrixDependency : public Dune::Amg::Parameters
    {
    public:
      /**
       * @brief The matrix type we build the dependency of.
       */
      typedef M Matrix;

      /**
       * @brief The norm to use for examining the matrix entries.
       */
      typedef N Norm;

      /**
       * @brief Constant Row iterator of the matrix.
       */
      typedef typename Matrix::row_type Row;

      /**
       * @brief Constant column iterator of the matrix.
       */
      typedef typename Matrix::ConstColIterator ColIter;

      void init(const Matrix* matrix);

      void initRow(const Row& row, int index);

      void examine(const ColIter& col);

      template<class G>
      void examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col);

      bool isIsolated();


      SymmetricMatrixDependency(const Parameters& parms)
        : Parameters(parms)
      {}
      SymmetricMatrixDependency()
        : Parameters()
      {}

    protected:
      /** @brief The matrix we work on. */
      const Matrix* matrix_;
      /** @brief The current max value.*/
      typedef typename Matrix::field_type field_type;
      typedef typename FieldTraits<field_type>::real_type real_type;
      real_type maxValue_;
      /** @brief The functor for calculating the norm. */
      Norm norm_;
      /** @brief index of the currently evaluated row. */
      int row_;
      /** @brief The norm of the current diagonal. */
      real_type diagonal_;
      std::vector<real_type> vals_;
      typename std::vector<real_type>::iterator valIter_;

    };


    template<class M, class N>
    inline void SymmetricMatrixDependency<M,N>::init(const Matrix* matrix)
    {
      matrix_ = matrix;
    }

    template<class M, class N>
    inline void SymmetricMatrixDependency<M,N>::initRow(const Row& row, int index)
    {
      vals_.assign(row.size(), 0.0);
      assert(vals_.size()==row.size());
      valIter_=vals_.begin();

      maxValue_ = std::min(- std::numeric_limits<real_type>::max(), std::numeric_limits<real_type>::min());
      diagonal_=norm_(row[index]);
      row_ = index;
    }

    template<class M, class N>
    inline void SymmetricMatrixDependency<M,N>::examine(const ColIter& col)
    {
      // skip positive offdiagonals if norm preserves sign of them.
      real_type eij = norm_(*col);
      if(!N::is_sign_preserving || eij<0)  // || eji<0)
      {
        *valIter_ = eij/diagonal_*eij/norm_(matrix_->operator[](col.index())[col.index()]);
        maxValue_ = std::max(maxValue_, *valIter_);
      }else
        *valIter_ =0;
      ++valIter_;
    }

    template<class M, class N>
    template<class G>
    inline void SymmetricMatrixDependency<M,N>::examine(G&, const typename G::EdgeIterator& edge, const ColIter&)
    {
      if(*valIter_ > alpha() * maxValue_) {
        edge.properties().setDepends();
        edge.properties().setInfluences();
      }
      ++valIter_;
    }

    template<class M, class N>
    inline bool SymmetricMatrixDependency<M,N>::isIsolated()
    {
      if(diagonal_==0)
        DUNE_THROW(Dune::ISTLError, "No diagonal entry for row "<<row_<<".");
      valIter_=vals_.begin();
      return maxValue_  < beta();
    }

    /**
     * @brief Dependency policy for symmetric matrices.
     */
    template<class M, class N>
    class Dependency : public Parameters
    {
    public:
      /**
       * @brief The matrix type we build the dependency of.
       */
      typedef M Matrix;

      /**
       * @brief The norm to use for examining the matrix entries.
       */
      typedef N Norm;

      /**
       * @brief Constant Row iterator of the matrix.
       */
      typedef typename Matrix::row_type Row;

      /**
       * @brief Constant column iterator of the matrix.
       */
      typedef typename Matrix::ConstColIterator ColIter;

      void init(const Matrix* matrix);

      void initRow(const Row& row, int index);

      void examine(const ColIter& col);

      template<class G>
      void examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col);

      bool isIsolated();

      Dependency(const Parameters& parms)
        : Parameters(parms)
      {}

      Dependency()
        : Parameters()
      {}

    protected:
      /** @brief The matrix we work on. */
      const Matrix* matrix_;
      /** @brief The current max value.*/
      typedef typename Matrix::field_type field_type;
      typedef typename FieldTraits<field_type>::real_type real_type;
      real_type maxValue_;
      /** @brief The functor for calculating the norm. */
      Norm norm_;
      /** @brief index of the currently evaluated row. */
      int row_;
      /** @brief The norm of the current diagonal. */
      real_type diagonal_;
    };

    /**
     * @brief Dependency policy for symmetric matrices.
     */
    template<class M, class N>
    class SymmetricDependency : public Parameters
    {
    public:
      /**
       * @brief The matrix type we build the dependency of.
       */
      typedef M Matrix;

      /**
       * @brief The norm to use for examining the matrix entries.
       */
      typedef N Norm;

      /**
       * @brief Constant Row iterator of the matrix.
       */
      typedef typename Matrix::row_type Row;

      /**
       * @brief Constant column iterator of the matrix.
       */
      typedef typename Matrix::ConstColIterator ColIter;

      void init(const Matrix* matrix);

      void initRow(const Row& row, int index);

      void examine(const ColIter& col);

      template<class G>
      void examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col);

      bool isIsolated();


      SymmetricDependency(const Parameters& parms)
        : Parameters(parms)
      {}
      SymmetricDependency()
        : Parameters()
      {}

    protected:
      /** @brief The matrix we work on. */
      const Matrix* matrix_;
      /** @brief The current max value.*/
      typedef typename Matrix::field_type field_type;
      typedef typename FieldTraits<field_type>::real_type real_type;
      real_type maxValue_;
      /** @brief The functor for calculating the norm. */
      Norm norm_;
      /** @brief index of the currently evaluated row. */
      int row_;
      /** @brief The norm of the current diagonal. */
      real_type diagonal_;
    };

    /**
     * @brief Norm that uses only the [N][N] entry of the block to determine couplings.
     *
     */
    template<int N>
    class Diagonal
    {
    public:
      enum { /* @brief We preserve the sign.*/
        is_sign_preserving = true
      };

      /**
       * @brief compute the norm of a matrix.
       * @param m The matrix ro compute the norm of.
       */
      template<class M>
      typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
      {
        typedef typename M::field_type field_type;
        typedef typename FieldTraits<field_type>::real_type real_type;
        static_assert( std::is_convertible<field_type, real_type >::value,
                  "use of diagonal norm in AMG not implemented for complex field_type");
        return m[N][N];
        // possible implementation for complex types: return signed_abs(m[N][N]);
      }

    private:

      //! return sign * abs_value; for real numbers this is just v
      template<typename T>
      static T signed_abs(const T & v)
      {
        return v;
      }

      //! return sign * abs_value; for complex numbers this is csgn(v) * abs(v)
      template<typename T>
      static T signed_abs(const std::complex<T> & v)
      {
        // return sign * abs_value
        // in case of complex numbers this extends to using the csgn function to determine the sign
        return csgn(v) * std::abs(v);
      }

      //! sign function for complex numbers; for real numbers we assume imag(v) = 0
      template<typename T>
      static T csgn(const T & v)
      {
        return (T(0) < v) - (v < T(0));
      }

      //! sign function for complex numbers
      template<typename T>
      static T csgn(std::complex<T> a)
      {
        return csgn(a.real())+(a.real() == 0.0)*csgn(a.imag());
      }

    };

    /**
     * @brief Norm that uses only the [0][0] entry of the block to determine couplings.
     *
     */
    class FirstDiagonal : public Diagonal<0>
    {};

    /**
     * @brief Functor using the row sum (infinity) norm to determine strong couplings.
     *
     * The is proposed by several people for elasticity problems.
     */
    struct RowSum
    {

      enum { /* @brief We preserve the sign.*/
        is_sign_preserving = false
      };
      /**
       * @brief compute the norm of a matrix.
       * @param m The matrix row to compute the norm of.
       */
      template<class M>
      typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
      {
        return m.infinity_norm();
      }
    };

    struct FrobeniusNorm
    {

      enum { /* @brief We preserve the sign.*/
        is_sign_preserving = false
      };
      /**
       * @brief compute the norm of a matrix.
       * @param m The matrix row to compute the norm of.
       */
      template<class M>
      typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
      {
        return m.frobenius_norm();
      }
    };
    struct AlwaysOneNorm
    {

      enum { /* @brief We preserve the sign.*/
        is_sign_preserving = false
      };
      /**
       * @brief compute the norm of a matrix.
       * @param m The matrix row to compute the norm of.
       */
      template<class M>
      typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const
      {
        return 1;
      }
    };
    /**
     * @brief Criterion taking advantage of symmetric matrices.
     *
     * The two template parameters are:
     * <dl>
     * <dt>M</dt> <dd>The type of the matrix the amg coarsening works on, e. g. BCRSMatrix</dd>
     * <dt>Norm</dt> <dd>The norm to use to determine the strong couplings between the nodes, e.g. FirstDiagonal or RowSum.</dd>
     * </dl>
     */
    template<class M, class Norm>
    class SymmetricCriterion : public AggregationCriterion<SymmetricDependency<M,Norm> >
    {
    public:
      SymmetricCriterion(const Parameters& parms)
        : AggregationCriterion<SymmetricDependency<M,Norm> >(parms)
      {}
      SymmetricCriterion()
      {}
    };


    /**
     * @brief Criterion suited for unsymmetric matrices.
     *
     * Nevertheless the sparsity pattern has to be symmetric.
     *
     * The two template parameters are:
     * <dl>
     * <dt>M</dt> <dd>The type of the matrix the amg coarsening works on, e. g. BCRSMatrix</dd>
     * <dt>Norm</dt> <dd>The norm to use to determine the strong couplings between the nodes, e.g. FirstDiagonal or RowSum.</dd>
     * </dl>
     */
    template<class M, class Norm>
    class UnSymmetricCriterion : public AggregationCriterion<Dependency<M,Norm> >
    {
    public:
      UnSymmetricCriterion(const Parameters& parms)
        : AggregationCriterion<Dependency<M,Norm> >(parms)
      {}
      UnSymmetricCriterion()
      {}
    };
    // forward declaration
    template<class G> class Aggregator;


    /**
     * @brief Class providing information about the mapping of
     * the vertices onto aggregates.
     *
     * It is assumed that the vertices are consecutively numbered
     * from 0 to the maximum vertex number.
     */
    template<class V>
    class AggregatesMap
    {
    public:

      /**
       * @brief Identifier of not yet aggregated vertices.
       */
      static const V UNAGGREGATED;

      /**
       * @brief Identifier of isolated vertices.
       */
      static const V ISOLATED;
      /**
       * @brief The vertex descriptor type.
       */
      typedef V VertexDescriptor;

      /**
       * @brief The aggregate descriptor type.
       */
      typedef V AggregateDescriptor;

      /**
       * @brief The allocator we use for our lists and the
       * set.
       */
      typedef PoolAllocator<VertexDescriptor,100> Allocator;

      /**
       * @brief The type of a single linked list of vertex
       * descriptors.
       */
      typedef SLList<VertexDescriptor,Allocator> VertexList;

      /**
       * @brief A Dummy visitor that does nothing for each visited edge.
       */
      class DummyEdgeVisitor
      {
      public:
        template<class EdgeIterator>
        void operator()(const EdgeIterator& edge) const
        {
          DUNE_UNUSED_PARAMETER(edge);
        }
      };


      /**
       * @brief Constructs without allocating memory.
       */
      AggregatesMap();

      /**
       * @brief Constructs with allocating memory.
       * @param noVertices The number of vertices we will hold information
       * for.
       */
      AggregatesMap(std::size_t noVertices);

      /**
       * @brief Destructor.
       */
      ~AggregatesMap();

      /**
       * @brief Build the aggregates.
       * @param matrix The matrix describing the dependency.
       * @param graph The graph corresponding to the matrix.
       * @param criterion The aggregation criterion.
       * @param finestLevel Whether this the finest level. In that case rows representing
       * Dirichlet boundaries will be detected and ignored during aggregation.
       * @return A tuple of the total number of aggregates, the number of isolated aggregates, the
       *         number of isolated aggregates, the number of aggregates consisting only of one vertex, and
       *         the number of skipped aggregates built.
       */
      template<class M, class G, class C>
      std::tuple<int,int,int,int> buildAggregates(const M& matrix, G& graph, const C& criterion,
                                                  bool finestLevel);

      /**
       * @brief Breadth first search within an aggregate
       *
       * The template parameters: <br>
       * <dl><dt>reset</dt><dd>If true the visited flags of the vertices
       *  will be reset after
       * the search</dd>
       * <dt>G</dt><dd>The type of the graph we perform the search on.</dd>
       * <dt>F</dt><dd>The type of the visitor to operate on the vertices</dd>
       * </dl>
       * @param start The vertex where the search should start
       * from. This does not need to belong to the aggregate.
       * @param aggregate The aggregate id.
       * @param graph The matrix graph to perform the search on.
       * @param visitedMap A map to mark the already visited vertices
       * @param aggregateVisitor A functor that is called with
       * each G::ConstEdgeIterator with an edge pointing to the
       * aggregate. Use DummyVisitor if these are of no interest.
       */
      template<bool reset, class G, class F, class VM>
      std::size_t breadthFirstSearch(const VertexDescriptor& start,
                                     const AggregateDescriptor& aggregate,
                                     const G& graph,
                                     F& aggregateVisitor,
                                     VM& visitedMap) const;

      /**
       * @brief Breadth first search within an aggregate
       *
       * The template parameters: <br>
       * <dl><dt>L</dt><dd>A container type providing push_back(Vertex), and
       * pop_front() in case remove is true</dd>
       * <dt>remove</dt><dd> If true the entries in the visited list
       * will be removed.</dd>
       * <dt>reset</dt><dd>If true the visited flag will be reset after
       * the search</dd></dl>
       * @param start The vertex where the search should start
       * from. This does not need to belong to the aggregate.
       * @param aggregate The aggregate id.
       * @param graph The matrix graph to perform the search on.
       * @param visited A list to store the visited vertices in.
       * @param aggregateVisitor A functor that is called with
       * each G::ConstEdgeIterator with an edge pointing to the
       * aggregate. Use DummyVisitor these are of no interest.
       * @param nonAggregateVisitor A functor that is called with
       * each G::ConstEdgeIterator with an edge pointing to another
       * aggregate. Use DummyVisitor these are of no interest.
       * @param visitedMap A map to mark the already visited vertices
       */
      template<bool remove, bool reset, class G, class L, class F1, class F2, class VM>
      std::size_t breadthFirstSearch(const VertexDescriptor& start,
                                     const AggregateDescriptor& aggregate,
                                     const G& graph, L& visited, F1& aggregateVisitor,
                                     F2& nonAggregateVisitor,
                                     VM& visitedMap) const;

      /**
       * @brief Allocate memory for holding the information.
       * @param noVertices The total number of vertices to be
       * mapped.
       */
      void allocate(std::size_t noVertices);

      /**
       * @brief Get the number of vertices.
       */
      std::size_t noVertices() const;

      /**
       * @brief Free the allocated memory.
       */
      void free();

      /**
       * @brief Get the aggregate a vertex belongs to.
       * @param v The vertex we want to know the aggregate of.
       * @return The aggregate the vertex is mapped to.
       */
      AggregateDescriptor& operator[](const VertexDescriptor& v);

      /**
       * @brief Get the aggregate a vertex belongs to.
       * @param v The vertex we want to know the aggregate of.
       * @return The aggregate the vertex is mapped to.
       */
      const AggregateDescriptor& operator[](const VertexDescriptor& v) const;

      typedef const AggregateDescriptor* const_iterator;

      const_iterator begin() const
      {
        return aggregates_;
      }

      const_iterator end() const
      {
        return aggregates_+noVertices();
      }

      typedef AggregateDescriptor* iterator;

      iterator begin()
      {
        return aggregates_;
      }

      iterator end()
      {
        return aggregates_+noVertices();
      }
    private:
      /** @brief Prevent copying. */
      AggregatesMap(const AggregatesMap<V>& map)
      {
        throw "Auch!";
      }

      /** @brief Prevent assingment. */
      AggregatesMap<V>& operator=(const AggregatesMap<V>& map)
      {
        throw "Auch!";
        return this;
      }

      /**
       * @brief The aggregates the vertices belong to.
       */
      AggregateDescriptor* aggregates_;

      /**
       * @brief The number of vertices in the map.
       */
      std::size_t noVertices_;
    };

    /**
     * @brief Build the dependency of the matrix graph.
     */
    template<class G, class C>
    void buildDependency(G& graph,
                         const typename C::Matrix& matrix,
                         C criterion,
                         bool finestLevel);

    /**
     * @brief A class for temporarily storing the vertices of an
     * aggregate in.
     */
    template<class G, class S>
    class Aggregate
    {

    public:

      /***
       * @brief The type of the matrix graph we work with.
       */
      typedef G MatrixGraph;
      /**
       * @brief The vertex descriptor type.
       */
      typedef typename MatrixGraph::VertexDescriptor Vertex;

      /**
       * @brief The allocator we use for our lists and the
       * set.
       */
      typedef PoolAllocator<Vertex,100> Allocator;

      /**
       * @brief The type of a single linked list of vertex
       * descriptors.
       */
      typedef S VertexSet;

      /** @brief Const iterator over a vertex list. */
      typedef typename VertexSet::const_iterator const_iterator;

      /**
       * @brief Type of the mapping of aggregate members onto distance spheres.
       */
      typedef std::size_t* SphereMap;

      /**
       * @brief Constructor.
       * @param graph The matrix graph we work on.
       * @param aggregates The mapping of vertices onto aggregates.
       * @param connectivity The set of vertices connected to the aggregate.
       * distance spheres.
       * @param front_ The vertices of the current aggregate front.
       */
      Aggregate(MatrixGraph& graph, AggregatesMap<Vertex>& aggregates,
                VertexSet& connectivity, std::vector<Vertex>& front_);

      void invalidate()
      {
        --id_;
      }

      /**
       * @brief Reconstruct the aggregat from an seed node.
       *
       * Will determine all vertices of the same agggregate
       * and reference those.
       */
      void reconstruct(const Vertex& vertex);

      /**
       * @brief Initialize the aggregate with one vertex.
       */
      void seed(const Vertex& vertex);

      /**
       * @brief Add a vertex to the aggregate.
       */
      void add(const Vertex& vertex);

      void add(std::vector<Vertex>& vertex);
      /**
       * @brief Clear the aggregate.
       */
      void clear();

      /**
       * @brief Get the size of the aggregate.
       */
      typename VertexSet::size_type size();
      /**
       * @brief Get tne number of connections to other aggregates.
       */
      typename VertexSet::size_type connectSize();

      /**
       * @brief Get the id identifying the aggregate.
       */
      int id();

      /** @brief get an iterator over the vertices of the aggregate. */
      const_iterator begin() const;

      /** @brief get an iterator over the vertices of the aggregate. */
      const_iterator end() const;

    private:
      /**
       * @brief The vertices of the aggregate.
       */
      VertexSet vertices_;

      /**
       * @brief The number of the currently referenced
       * aggregate.
       */
      int id_;

      /**
       * @brief The matrix graph the aggregates live on.
       */
      MatrixGraph& graph_;

      /**
       * @brief The aggregate mapping we build.
       */
      AggregatesMap<Vertex>& aggregates_;

      /**
       * @brief The connections to other aggregates.
       */
      VertexSet& connected_;

      /**
       * @brief The vertices of the current aggregate front.
       */
      std::vector<Vertex>& front_;
    };

    /**
     * @brief Class for building the aggregates.
     */
    template<class G>
    class Aggregator
    {
    public:

      /**
       * @brief The matrix graph type used.
       */
      typedef G MatrixGraph;

      /**
       * @brief The vertex identifier
       */
      typedef typename MatrixGraph::VertexDescriptor Vertex;

      /** @brief The type of the aggregate descriptor. */
      typedef typename MatrixGraph::VertexDescriptor AggregateDescriptor;

      /**
       * @brief Constructor.
       */
      Aggregator();

      /**
       * @brief Destructor.
       */
      ~Aggregator();

      /**
       * @brief Build the aggregates.
       *
       * The template parameter C Is the type of the coarsening Criterion to
       * use.
       * @param m The matrix to build the aggregates accordingly.
       * @param graph A (sub) graph of the matrix.
       * @param aggregates Aggregate map we will build. All entries should be initialized
       * to UNAGGREGATED!
       * @param c The coarsening criterion to use.
       * @param finestLevel Whether this the finest level. In that case rows representing
       * Dirichlet boundaries will be detected and ignored during aggregation.
       * @return A tuple of the total number of aggregates, the number of isolated aggregates, the
       *         number of isolated aggregates, the number of aggregates consisting only of one vertex, and
       *         the number of skipped aggregates built.
       */
      template<class M, class C>
      std::tuple<int,int,int,int> build(const M& m, G& graph,
                                        AggregatesMap<Vertex>& aggregates, const C& c,
                                        bool finestLevel);
    private:
      /**
       * @brief The allocator we use for our lists and the
       * set.
       */
      typedef PoolAllocator<Vertex,100> Allocator;

      /**
       * @brief The single linked list we use.
       */
      typedef SLList<Vertex,Allocator> VertexList;

      /**
       * @brief The set of vertices we use.
       */
      typedef std::set<Vertex,std::less<Vertex>,Allocator> VertexSet;

      /**
       * @brief The type of mapping of aggregate members to spheres.
       */
      typedef std::size_t* SphereMap;

      /**
       * @brief The graph we aggregate for.
       */
      MatrixGraph* graph_;

      /**
       * @brief The vertices of the current aggregate-
       */
      Aggregate<MatrixGraph,VertexSet>* aggregate_;

      /**
       * @brief The vertices of the current aggregate front.
       */
      std::vector<Vertex> front_;

      /**
       * @brief The set of connected vertices.
       */
      VertexSet connected_;

      /**
       * @brief Number of vertices mapped.
       */
      int size_;

      /**
       * @brief Stack.
       */
      class Stack
      {
      public:
        static const Vertex NullEntry;

        Stack(const MatrixGraph& graph,
              const Aggregator<G>& aggregatesBuilder,
              const AggregatesMap<Vertex>& aggregates);
        ~Stack();
        Vertex pop();
      private:
        enum { N = 1300000 };

        /** @brief The graph we work on. */
        const MatrixGraph& graph_;
        /** @brief The aggregates builder. */
        const Aggregator<G>& aggregatesBuilder_;
        /** @brief The aggregates information. */
        const AggregatesMap<Vertex>& aggregates_;
        /** @brief The current size. */
        int size_;
        Vertex maxSize_;
        /** @brief The index of the top element. */
        typename MatrixGraph::ConstVertexIterator begin_;
        typename MatrixGraph::ConstVertexIterator end_;

        /** @brief The values on the stack. */
        Vertex* vals_;

      };

      friend class Stack;

      /**
       * @brief Visits all neighbours of vertex belonging to a
       * specific aggregate.
       *
       * @param vertex The vertex whose neighbours we want to
       * visit.
       * @param aggregate The id of the aggregate.
       * @param visitor The visitor evaluated for each EdgeIterator
       * (by its method operator()(ConstEdgeIterator edge)
       */
      template<class V>
      void visitAggregateNeighbours(const Vertex& vertex, const AggregateDescriptor& aggregate,
                                    const AggregatesMap<Vertex>& aggregates,
                                    V& visitor) const;

      /**
       * @brief An Adaptor for vsitors that only
       * evaluates edges pointing to a specific aggregate.
       */
      template<class V>
      class AggregateVisitor
      {
      public:
        /**
         * @brief The type of the adapted visitor
         */
        typedef V Visitor;
        /**
         * @brief Constructor.
         * @param aggregates The aggregate numbers of the
         * vertices.
         * @param  aggregate The id of the aggregate to visit.
         * @param visitor The visitor.
         */
        AggregateVisitor(const AggregatesMap<Vertex>& aggregates, const AggregateDescriptor& aggregate,
                         Visitor& visitor);

        /**
         * @brief Examine an edge.
         *
         * The edge will be examined by the adapted visitor if
         * it belongs to the right aggregate.
         */
        void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);

      private:
        /** @brief Mapping of vertices to aggregates. */
        const AggregatesMap<Vertex>& aggregates_;
        /** @brief The aggregate id we want to visit. */
        AggregateDescriptor aggregate_;
        /** @brief The visitor to use on the aggregate. */
        Visitor* visitor_;
      };

      /**
       * @brief A simple counter functor.
       */
      class Counter
      {
      public:
        /** @brief Constructor */
        Counter();
        /** @brief Access the current count. */
        int value();

      protected:
        /** @brief Increment counter */
        void increment();
        /** @brief Decrement counter */
        void decrement();

      private:
        int count_;
      };


      /**
       * @brief Counts the number of edges to vertices belonging
       * to the aggregate front.
       */
      class FrontNeighbourCounter : public Counter
      {
      public:
        /**
         * @brief Constructor.
         * @param front The vertices of the front.
         */
        FrontNeighbourCounter(const MatrixGraph& front);

        void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);

      private:
        const MatrixGraph& graph_;
      };

      /**
       * @brief Count the number of neighbours of a vertex that belong
       * to the aggregate front.
       */
      int noFrontNeighbours(const Vertex& vertex) const;

      /**
       * @brief Counter of TwoWayConnections.
       */
      class TwoWayCounter : public Counter
      {
      public:
        void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
      };

      /**
       * @brief Count the number of twoway connection from
       * a vertex to an aggregate.
       *
       * @param vertex The vertex whose connections are counted.
       * @param aggregate The id of the aggregate the connections
       * should point to.
       * @param aggregates The mapping of the vertices onto aggregates.
       * @return The number of one way connections from the vertex to
       * the aggregate.
       */
      int twoWayConnections(const Vertex&, const AggregateDescriptor& aggregate,
                            const AggregatesMap<Vertex>& aggregates) const;

      /**
       * @brief Counter of OneWayConnections.
       */
      class OneWayCounter : public Counter
      {
      public:
        void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
      };

      /**
       * @brief Count the number of oneway connection from
       * a vertex to an aggregate.
       *
       * @param vertex The vertex whose connections are counted.
       * @param aggregate The id of the aggregate the connections
       * should point to.
       * @param aggregates The mapping of the vertices onto aggregates.
       * @return The number of one way connections from the vertex to
       * the aggregate.
       */
      int oneWayConnections(const Vertex&, const AggregateDescriptor& aggregate,
                            const AggregatesMap<Vertex>& aggregates) const;

      /**
       * @brief Connectivity counter
       *
       * Increments count if the neighbour is already known as
       * connected or is not yet aggregated.
       */
      class ConnectivityCounter : public Counter
      {
      public:
        /**
         * @brief Constructor.
         * @param connected The set of connected aggregates.
         * @param aggregates Mapping of the vertices onto the aggregates.
         * @param aggregates The mapping of aggregates to vertices.
         */
        ConnectivityCounter(const VertexSet& connected, const AggregatesMap<Vertex>& aggregates);

        void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);

      private:
        /** @brief The connected aggregates. */
        const VertexSet& connected_;
        /** @brief The mapping of vertices to aggregates. */
        const AggregatesMap<Vertex>& aggregates_;

      };

      /**
       * @brief Get the connectivity of a vertex.
       *
       * For each unaggregated neighbour or neighbour of an aggregate
       * that is already known as connected the count is increased by
       * one. In all other cases by two.
       *
       * @param vertex The vertex whose connectivity we want.
       * @param aggregates The mapping of the vertices onto the aggregates.
       * @return The value of the connectivity.
       */
      double connectivity(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const;
      /**
       * @brief Test whether the vertex is connected to the aggregate.
       * @param vertex The vertex descriptor.
       * @param aggregate The aggregate descriptor.
       * @param aggregates The mapping of the vertices onto the aggregates.
       * @return True if there is a connection to the aggregate.
       */
      bool connected(const Vertex& vertex, const AggregateDescriptor& aggregate,
                     const AggregatesMap<Vertex>& aggregates) const;

      /**
       * @brief Test whether the vertex is connected to an aggregate of a list.
       * @param vertex The vertex descriptor.
       * @param aggregateList The list of aggregate descriptors.
       * @param aggregates The mapping of the vertices onto the aggregates.
       * @return True if there is a connection to the aggregate.
       */
      bool connected(const Vertex& vertex, const SLList<AggregateDescriptor>& aggregateList,
                     const AggregatesMap<Vertex>& aggregates) const;

      /**
       * @brief Counts the edges depending on the dependency.
       *
       * If the inluence flag of the edge is set the counter is
       * increased and/or if the depends flag is set it is
       * incremented, too.
       */
      class DependencyCounter : public Counter
      {
      public:
        /**
         * @brief Constructor.
         */
        DependencyCounter();

        void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);
      };

      /**
       * @brief Adds the targets of each edge to
       * the list of front vertices.
       *
       * Vertices already marked as front nodes will not get added.
       */
      class FrontMarker
      {
      public:
        /**
         * @brief Constructor.
         *
         * @param front The list to store the front vertices in.
         * @param graph The matrix graph we work on.
         */
        FrontMarker(std::vector<Vertex>& front, MatrixGraph& graph);

        void operator()(const typename MatrixGraph::ConstEdgeIterator& edge);

      private:
        /** @brief The list of front vertices. */
        std::vector<Vertex>& front_;
        /** @brief The matrix graph we work on. */
        MatrixGraph& graph_;
      };

      /**
       * @brief Unmarks all front vertices.
       */
      void unmarkFront();

      /**
       * @brief counts the dependency between a vertex and unaggregated
       * neighbours.
       *
       * If the inluence flag of the edge is set the counter is
       * increased and/or if the depends flag is set it is
       * incremented, too.
       *
       * @param vertex The vertex whose neighbours we count.
       * @param aggregates The mapping of the vertices onto the aggregates.
       * @return The sum of the number of unaggregated
       * neighbours the vertex depends on and the number of unaggregated
       * neighbours the vertex influences.
       */
      int unusedNeighbours(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const;

      /**
       * @brief Count connections to neighbours.
       *
       * Counts the number of strong connections of a vertex to vertices
       * that are not yet aggregated
       * and the ones that belong to specific aggregate.
       *
       * @param vertex The vertex that we count the neighbours of.
       * @param aggregates The mapping of the vertices into aggregates.
       * @param aggregate The descriptor of the aggregate.
       * @return The pair of number of connections to unaggregate vertices
       * and number of connections to vertices of the specific aggregate.
       */
      std::pair<int,int> neighbours(const Vertex& vertex,
                                    const AggregateDescriptor& aggregate,
                                    const AggregatesMap<Vertex>& aggregates) const;
      /**
       * @brief Counts the number of neighbours belonging to an aggregate.
       *
       *
       * If the inluence flag of the edge is set the counter is
       * increased and/or if the depends flag is set it is
       * incremented, too.
       *
       * @param vertex The vertex whose neighbours we count.
       * @param aggregate The aggregate id.
       * @param aggregates The mapping of the vertices onto the aggregates.
       * @return The sum of the number of
       * neighbours belonging to the aggregate
       * the vertex depends on and the number of
       * neighbours of the aggregate the vertex influences.
       */
      int aggregateNeighbours(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const;

      /**
       * @brief Checks wether a vertex is admisible to be added to an aggregate.
       *
       * @param vertex The vertex whose admissibility id to be checked.
       * @param aggregate The id of the aggregate.
       * @param aggregates The mapping of the vertices onto aggregates.
       */
      bool admissible(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const;

      /**
       * @brief The maximum distance of the vertex to any vertex in the
       * current aggregate.
       *
       * @return The maximum of all shortest paths from the vertex to any
       * vertex of the aggregate.
       */
      std::size_t distance(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates);

      /**
       * @brief Find a strongly connected cluster of a vertex.
       *
       * @param vertex The vertex whose neighbouring aggregate we search.
       * @param aggregates The mapping of the vertices onto aggregates.
       * @return A vertex of neighbouring aggregate the vertex is allowed to
       * be added to.
       */
      Vertex mergeNeighbour(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const;

      /**
       * @brief Find a nonisolated connected aggregate.
       *
       * @param vertex The vertex whose neighbouring aggregate we search.
       * @param aggregates The mapping of the vertices onto aggregates.
       * @param[out] list to store the vertices of neighbouring aggregates the vertex is allowed to
       * be added to.
       */
      void nonisoNeighbourAggregate(const Vertex& vertex,
                                    const AggregatesMap<Vertex>& aggregates,
                                    SLList<Vertex>& neighbours) const;

      /**
       * @brief Grows the aggregate from a seed.
       *
       * @param seed The first vertex of the aggregate.
       * @param aggregates The mapping of he vertices onto the aggregates.
       * @param c The coarsen criterium.
       */
      template<class C>
      void growAggregate(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates, const C& c);
      template<class C>
      void growIsolatedAggregate(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates, const C& c);
    };

#ifndef DOXYGEN

    template<class M, class N>
    inline void SymmetricDependency<M,N>::init(const Matrix* matrix)
    {
      matrix_ = matrix;
    }

    template<class M, class N>
    inline void SymmetricDependency<M,N>::initRow(const Row& row, int index)
    {
      DUNE_UNUSED_PARAMETER(row);
      maxValue_ = std::min(- std::numeric_limits<typename Matrix::field_type>::max(), std::numeric_limits<typename Matrix::field_type>::min());
      row_ = index;
      diagonal_ = norm_(matrix_->operator[](row_)[row_]);
    }

    template<class M, class N>
    inline void SymmetricDependency<M,N>::examine(const ColIter& col)
    {
      real_type eij = norm_(*col);
      typename Matrix::ConstColIterator opposite_entry =
        matrix_->operator[](col.index()).find(row_);
      if ( opposite_entry == matrix_->operator[](col.index()).end() )
      {
        // Consider this a weak connection we disregard.
        return;
      }
      real_type eji = norm_(*opposite_entry);

      // skip positive offdiagonals if norm preserves sign of them.
      if(!N::is_sign_preserving || eij<0 || eji<0)
        maxValue_ = std::max(maxValue_,
                             eij /diagonal_ * eji/
                             norm_(matrix_->operator[](col.index())[col.index()]));
    }

    template<class M, class N>
    template<class G>
    inline void SymmetricDependency<M,N>::examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col)
    {
      real_type eij = norm_(*col);
      typename Matrix::ConstColIterator opposite_entry =
        matrix_->operator[](col.index()).find(row_);

      if ( opposite_entry == matrix_->operator[](col.index()).end() )
      {
        // Consider this as a weak connection we disregard.
        return;
      }
      real_type eji = norm_(*opposite_entry);
      // skip positve offdiagonals if norm preserves sign of them.
      if(!N::is_sign_preserving || (eij<0 || eji<0))
        if(eji / norm_(matrix_->operator[](edge.target())[edge.target()]) *
           eij/ diagonal_ > alpha() * maxValue_) {
          edge.properties().setDepends();
          edge.properties().setInfluences();
          typename G::EdgeProperties& other = graph.getEdgeProperties(edge.target(), edge.source());
          other.setInfluences();
          other.setDepends();
        }
    }

    template<class M, class N>
    inline bool SymmetricDependency<M,N>::isIsolated()
    {
      return maxValue_  < beta();
    }


    template<class M, class N>
    inline void Dependency<M,N>::init(const Matrix* matrix)
    {
      matrix_ = matrix;
    }

    template<class M, class N>
    inline void Dependency<M,N>::initRow(const Row& row, int index)
    {
      DUNE_UNUSED_PARAMETER(row);
      maxValue_ = std::min(- std::numeric_limits<real_type>::max(), std::numeric_limits<real_type>::min());
      row_ = index;
      diagonal_ = norm_(matrix_->operator[](row_)[row_]);
    }

    template<class M, class N>
    inline void Dependency<M,N>::examine(const ColIter& col)
    {
      maxValue_ = std::max(maxValue_,
                           -norm_(*col));
    }

    template<class M, class N>
    template<class G>
    inline void Dependency<M,N>::examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col)
    {
      if(-norm_(*col) >= maxValue_ * alpha()) {
        edge.properties().setDepends();
        typedef typename G::EdgeDescriptor ED;
        ED e= graph.findEdge(edge.target(), edge.source());
        if(e!=std::numeric_limits<ED>::max())
        {
          typename G::EdgeProperties& other = graph.getEdgeProperties(e);
          other.setInfluences();
        }
      }
    }

    template<class M, class N>
    inline bool Dependency<M,N>::isIsolated()
    {
      return maxValue_  < beta() * diagonal_;
    }

    template<class G,class S>
    Aggregate<G,S>::Aggregate(MatrixGraph& graph, AggregatesMap<Vertex>& aggregates,
                              VertexSet& connected, std::vector<Vertex>& front)
      : vertices_(), id_(-1), graph_(graph), aggregates_(aggregates),
        connected_(connected), front_(front)
    {}

    template<class G,class S>
    void Aggregate<G,S>::reconstruct(const Vertex& vertex)
    {
      /*
         vertices_.push_back(vertex);
         typedef typename VertexList::const_iterator iterator;
         iterator begin = vertices_.begin();
         iterator end   = vertices_.end();*/
      throw "Not yet implemented";

      //      while(begin!=end){
      //for();
      //      }

    }

    template<class G,class S>
    inline void Aggregate<G,S>::seed(const Vertex& vertex)
    {
      dvverb<<"Connected cleared"<<std::endl;
      connected_.clear();
      vertices_.clear();
      connected_.insert(vertex);
      dvverb << " Inserting "<<vertex<<" size="<<connected_.size();
      ++id_ ;
      add(vertex);
    }


    template<class G,class S>
    inline void Aggregate<G,S>::add(const Vertex& vertex)
    {
      vertices_.insert(vertex);
      aggregates_[vertex]=id_;
      if(front_.size())
        front_.erase(std::lower_bound(front_.begin(), front_.end(), vertex));


      typedef typename MatrixGraph::ConstEdgeIterator iterator;
      const iterator end = graph_.endEdges(vertex);
      for(iterator edge = graph_.beginEdges(vertex); edge != end; ++edge) {
        dvverb << " Inserting "<<aggregates_[edge.target()];
        connected_.insert(aggregates_[edge.target()]);
        dvverb <<" size="<<connected_.size();
        if(aggregates_[edge.target()]==AggregatesMap<Vertex>::UNAGGREGATED &&
           !graph_.getVertexProperties(edge.target()).front())
        {
          front_.push_back(edge.target());
          graph_.getVertexProperties(edge.target()).setFront();
        }
      }
      dvverb <<std::endl;
      std::sort(front_.begin(), front_.end());
    }

    template<class G,class S>
    inline void Aggregate<G,S>::add(std::vector<Vertex>& vertices)
    {
#ifndef NDEBUG
      std::size_t oldsize = vertices_.size();
#endif
      typedef typename std::vector<Vertex>::iterator Iterator;

      typedef typename VertexSet::iterator SIterator;

      SIterator pos=vertices_.begin();
      std::vector<Vertex> newFront;
      newFront.reserve(front_.capacity());

      std::set_difference(front_.begin(), front_.end(), vertices.begin(), vertices.end(),
                          std::back_inserter(newFront));
      front_=newFront;

      for(Iterator vertex=vertices.begin(); vertex != vertices.end(); ++vertex)
      {
        pos=vertices_.insert(pos,*vertex);
        vertices_.insert(*vertex);
        graph_.getVertexProperties(*vertex).resetFront(); // Not a front node any more.
        aggregates_[*vertex]=id_;

        typedef typename MatrixGraph::ConstEdgeIterator iterator;
        const iterator end = graph_.endEdges(*vertex);
        for(iterator edge = graph_.beginEdges(*vertex); edge != end; ++edge) {
          dvverb << " Inserting "<<aggregates_[edge.target()];
          connected_.insert(aggregates_[edge.target()]);
          if(aggregates_[edge.target()]==AggregatesMap<Vertex>::UNAGGREGATED &&
             !graph_.getVertexProperties(edge.target()).front())
          {
            front_.push_back(edge.target());
            graph_.getVertexProperties(edge.target()).setFront();
          }
          dvverb <<" size="<<connected_.size();
        }
        dvverb <<std::endl;
      }
      std::sort(front_.begin(), front_.end());
      assert(oldsize+vertices.size()==vertices_.size());
    }
    template<class G,class S>
    inline void Aggregate<G,S>::clear()
    {
      vertices_.clear();
      connected_.clear();
      id_=-1;
    }

    template<class G,class S>
    inline typename Aggregate<G,S>::VertexSet::size_type
    Aggregate<G,S>::size()
    {
      return vertices_.size();
    }

    template<class G,class S>
    inline typename Aggregate<G,S>::VertexSet::size_type
    Aggregate<G,S>::connectSize()
    {
      return connected_.size();
    }

    template<class G,class S>
    inline int Aggregate<G,S>::id()
    {
      return id_;
    }

    template<class G,class S>
    inline typename Aggregate<G,S>::const_iterator Aggregate<G,S>::begin() const
    {
      return vertices_.begin();
    }

    template<class G,class S>
    inline typename Aggregate<G,S>::const_iterator Aggregate<G,S>::end() const
    {
      return vertices_.end();
    }

    template<class V>
    const V AggregatesMap<V>::UNAGGREGATED = std::numeric_limits<V>::max();

    template<class V>
    const V AggregatesMap<V>::ISOLATED = std::numeric_limits<V>::max()-1;

    template<class V>
    AggregatesMap<V>::AggregatesMap()
      : aggregates_(0)
    {}

    template<class V>
    AggregatesMap<V>::~AggregatesMap()
    {
      if(aggregates_!=0)
        delete[] aggregates_;
    }


    template<class V>
    inline AggregatesMap<V>::AggregatesMap(std::size_t noVertices)
    {
      allocate(noVertices);
    }

    template<class V>
    inline std::size_t AggregatesMap<V>::noVertices() const
    {
      return noVertices_;
    }

    template<class V>
    inline void AggregatesMap<V>::allocate(std::size_t noVertices)
    {
      aggregates_ = new AggregateDescriptor[noVertices];
      noVertices_ = noVertices;

      for(std::size_t i=0; i < noVertices; i++)
        aggregates_[i]=UNAGGREGATED;
    }

    template<class V>
    inline void AggregatesMap<V>::free()
    {
      assert(aggregates_ != 0);
      delete[] aggregates_;
      aggregates_=0;
    }

    template<class V>
    inline typename AggregatesMap<V>::AggregateDescriptor&
    AggregatesMap<V>::operator[](const VertexDescriptor& v)
    {
      return aggregates_[v];
    }

    template<class V>
    inline const typename AggregatesMap<V>::AggregateDescriptor&
    AggregatesMap<V>::operator[](const VertexDescriptor& v) const
    {
      return aggregates_[v];
    }

    template<class V>
    template<bool reset, class G, class F,class VM>
    inline std::size_t AggregatesMap<V>::breadthFirstSearch(const V& start,
                                                            const AggregateDescriptor& aggregate,
                                                            const G& graph, F& aggregateVisitor,
                                                            VM& visitedMap) const
    {
      VertexList vlist;

      DummyEdgeVisitor dummy;
      return breadthFirstSearch<true,reset>(start, aggregate, graph, vlist, aggregateVisitor, dummy, visitedMap);
    }

    template<class V>
    template<bool remove, bool reset, class G, class L, class F1, class F2, class VM>
    std::size_t AggregatesMap<V>::breadthFirstSearch(const V& start,
                                                     const AggregateDescriptor& aggregate,
                                                     const G& graph,
                                                     L& visited,
                                                     F1& aggregateVisitor,
                                                     F2& nonAggregateVisitor,
                                                     VM& visitedMap) const
    {
      typedef typename L::const_iterator ListIterator;
      int visitedSpheres = 0;

      visited.push_back(start);
      put(visitedMap, start, true);

      ListIterator current = visited.begin();
      ListIterator end = visited.end();
      std::size_t i=0, size=visited.size();

      // visit the neighbours of all vertices of the
      // current sphere.
      while(current != end) {

        for(; i<size; ++current, ++i) {
          typedef typename G::ConstEdgeIterator EdgeIterator;
          const EdgeIterator endEdge = graph.endEdges(*current);

          for(EdgeIterator edge = graph.beginEdges(*current);
              edge != endEdge; ++edge) {

            if(aggregates_[edge.target()]==aggregate) {
              if(!get(visitedMap, edge.target())) {
                put(visitedMap, edge.target(), true);
                visited.push_back(edge.target());
                aggregateVisitor(edge);
              }
            }else
              nonAggregateVisitor(edge);
          }
        }
        end = visited.end();
        size = visited.size();
        if(current != end)
          visitedSpheres++;
      }

      if(reset)
        for(current = visited.begin(); current != end; ++current)
          put(visitedMap, *current, false);


      if(remove)
        visited.clear();

      return visitedSpheres;
    }

    template<class G>
    Aggregator<G>::Aggregator()
      : graph_(0), aggregate_(0), front_(), connected_(), size_(-1)
    {}

    template<class G>
    Aggregator<G>::~Aggregator()
    {
      size_=-1;
    }

    template<class G, class C>
    void buildDependency(G& graph,
                         const typename C::Matrix& matrix,
                         C criterion, bool firstlevel)
    {
      //      assert(graph.isBuilt());
      typedef typename C::Matrix Matrix;
      typedef typename G::VertexIterator VertexIterator;

      criterion.init(&matrix);

      for(VertexIterator vertex = graph.begin(); vertex != graph.end(); ++vertex) {
        typedef typename Matrix::row_type Row;

        const Row& row = matrix[*vertex];

        // Tell the criterion what row we will examine now
        // This might for example be used for calculating the
        // maximum offdiagonal value
        criterion.initRow(row, *vertex);

        // On a first path all columns are examined. After this
        // the calculator should know whether the vertex is isolated.
        typedef typename Matrix::ConstColIterator ColIterator;
        ColIterator end = row.end();
        typename FieldTraits<typename Matrix::field_type>::real_type absoffdiag=0.;

        if(firstlevel) {
          for(ColIterator col = row.begin(); col != end; ++col)
            if(col.index()!=*vertex) {
              criterion.examine(col);
              absoffdiag=std::max(absoffdiag, col->frobenius_norm());
            }

          if(absoffdiag==0)
            vertex.properties().setExcludedBorder();
        }
        else
          for(ColIterator col = row.begin(); col != end; ++col)
            if(col.index()!=*vertex)
              criterion.examine(col);

        // reset the vertex properties
        //vertex.properties().reset();

        // Check whether the vertex is isolated.
        if(criterion.isIsolated()) {
          //std::cout<<"ISOLATED: "<<*vertex<<std::endl;
          vertex.properties().setIsolated();
        }else{
          // Examine all the edges beginning at this vertex.
          typedef typename G::EdgeIterator EdgeIterator;
          typedef typename Matrix::ConstColIterator ColIterator;
          EdgeIterator eEnd = vertex.end();
          ColIterator col = matrix[*vertex].begin();

          for(EdgeIterator edge = vertex.begin(); edge!= eEnd; ++edge, ++col) {
            // Move to the right column.
            while(col.index()!=edge.target())
              ++col;
            criterion.examine(graph, edge, col);
          }
        }

      }
    }


    template<class G>
    template<class V>
    inline Aggregator<G>::AggregateVisitor<V>::AggregateVisitor(const AggregatesMap<Vertex>& aggregates,
                                                                const AggregateDescriptor& aggregate, V& visitor)
      : aggregates_(aggregates), aggregate_(aggregate), visitor_(&visitor)
    {}

    template<class G>
    template<class V>
    inline void Aggregator<G>::AggregateVisitor<V>::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
    {
      if(aggregates_[edge.target()]==aggregate_)
        visitor_->operator()(edge);
    }

    template<class G>
    template<class V>
    inline void Aggregator<G>::visitAggregateNeighbours(const Vertex& vertex,
                                                        const AggregateDescriptor& aggregate,
                                                        const AggregatesMap<Vertex>& aggregates,
                                                        V& visitor) const
    {
      // Only evaluates for edge pointing to the aggregate
      AggregateVisitor<V> v(aggregates, aggregate, visitor);
      visitNeighbours(*graph_, vertex, v);
    }


    template<class G>
    inline Aggregator<G>::Counter::Counter()
      : count_(0)
    {}

    template<class G>
    inline void Aggregator<G>::Counter::increment()
    {
      ++count_;
    }

    template<class G>
    inline void Aggregator<G>::Counter::decrement()
    {
      --count_;
    }
    template<class G>
    inline int Aggregator<G>::Counter::value()
    {
      return count_;
    }

    template<class G>
    inline void Aggregator<G>::TwoWayCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
    {
      if(edge.properties().isTwoWay())
        Counter::increment();
    }

    template<class G>
    int Aggregator<G>::twoWayConnections(const Vertex& vertex, const AggregateDescriptor& aggregate,
                                         const AggregatesMap<Vertex>& aggregates) const
    {
      TwoWayCounter counter;
      visitAggregateNeighbours(vertex, aggregate, aggregates, counter);
      return counter.value();
    }

    template<class G>
    int Aggregator<G>::oneWayConnections(const Vertex& vertex, const AggregateDescriptor& aggregate,
                                         const AggregatesMap<Vertex>& aggregates) const
    {
      OneWayCounter counter;
      visitAggregateNeighbours(vertex, aggregate, aggregates, counter);
      return counter.value();
    }

    template<class G>
    inline void Aggregator<G>::OneWayCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
    {
      if(edge.properties().isOneWay())
        Counter::increment();
    }

    template<class G>
    inline Aggregator<G>::ConnectivityCounter::ConnectivityCounter(const VertexSet& connected,
                                                                   const AggregatesMap<Vertex>& aggregates)
      : Counter(), connected_(connected), aggregates_(aggregates)
    {}


    template<class G>
    inline void Aggregator<G>::ConnectivityCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
    {
      if(connected_.find(aggregates_[edge.target()]) == connected_.end() || aggregates_[edge.target()]==AggregatesMap<Vertex>::UNAGGREGATED)
        // Would be a new connection
        Counter::increment();
      else{
        Counter::increment();
        Counter::increment();
      }
    }

    template<class G>
    inline double Aggregator<G>::connectivity(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const
    {
      ConnectivityCounter counter(connected_, aggregates);
      double noNeighbours=visitNeighbours(*graph_, vertex, counter);
      return (double)counter.value()/noNeighbours;
    }

    template<class G>
    inline Aggregator<G>::DependencyCounter::DependencyCounter()
      : Counter()
    {}

    template<class G>
    inline void Aggregator<G>::DependencyCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
    {
      if(edge.properties().depends())
        Counter::increment();
      if(edge.properties().influences())
        Counter::increment();
    }

    template<class G>
    int Aggregator<G>::unusedNeighbours(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const
    {
      return aggregateNeighbours(vertex, AggregatesMap<Vertex>::UNAGGREGATED, aggregates);
    }

    template<class G>
    std::pair<int,int> Aggregator<G>::neighbours(const Vertex& vertex,
                                                 const AggregateDescriptor& aggregate,
                                                 const AggregatesMap<Vertex>& aggregates) const
    {
      DependencyCounter unused, aggregated;
      typedef AggregateVisitor<DependencyCounter> Counter;
      typedef std::tuple<Counter,Counter> CounterTuple;
      CombinedFunctor<CounterTuple> visitors(CounterTuple(Counter(aggregates, AggregatesMap<Vertex>::UNAGGREGATED, unused), Counter(aggregates, aggregate, aggregated)));
      visitNeighbours(*graph_, vertex, visitors);
      return std::make_pair(unused.value(), aggregated.value());
    }


    template<class G>
    int Aggregator<G>::aggregateNeighbours(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const
    {
      DependencyCounter counter;
      visitAggregateNeighbours(vertex, aggregate, aggregates, counter);
      return counter.value();
    }

    template<class G>
    std::size_t Aggregator<G>::distance(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates)
    {
      return 0;
      typename PropertyMapTypeSelector<VertexVisitedTag,G>::Type visitedMap = get(VertexVisitedTag(), *graph_);
      VertexList vlist;
      typename AggregatesMap<Vertex>::DummyEdgeVisitor dummy;
      return aggregates.template breadthFirstSearch<true,true>(vertex,
                                                               aggregate_->id(), *graph_,
                                                               vlist, dummy, dummy, visitedMap);
    }

    template<class G>
    inline Aggregator<G>::FrontMarker::FrontMarker(std::vector<Vertex>& front, MatrixGraph& graph)
      : front_(front), graph_(graph)
    {}

    template<class G>
    inline void Aggregator<G>::FrontMarker::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
    {
      Vertex target = edge.target();

      if(!graph_.getVertexProperties(target).front()) {
        front_.push_back(target);
        graph_.getVertexProperties(target).setFront();
      }
    }

    template<class G>
    inline bool Aggregator<G>::admissible(const Vertex& vertex, const AggregateDescriptor& aggregate, const AggregatesMap<Vertex>& aggregates) const
    {
      // Todo
      Dune::dvverb<<" Admissible not yet implemented!"<<std::endl;
      return true;
      //Situation 1: front node depends on two nodes. Then these
      // have to be strongly connected to each other

      // Iterate over all all neighbours of front node
      typedef typename MatrixGraph::ConstEdgeIterator Iterator;
      Iterator vend = graph_->endEdges(vertex);
      for(Iterator edge = graph_->beginEdges(vertex); edge != vend; ++edge) {
        // if(edge.properties().depends() && !edge.properties().influences()
        if(edge.properties().isStrong()
           && aggregates[edge.target()]==aggregate)
        {
          // Search for another link to the aggregate
          Iterator edge1 = edge;
          for(++edge1; edge1 != vend; ++edge1) {
            //if(edge1.properties().depends() && !edge1.properties().influences()
            if(edge1.properties().isStrong()
               && aggregates[edge.target()]==aggregate)
            {
              //Search for an edge connecting the two vertices that is
              //strong
              bool found=false;
              Iterator v2end = graph_->endEdges(edge.target());
              for(Iterator edge2 = graph_->beginEdges(edge.target()); edge2 != v2end; ++edge2) {
                if(edge2.target()==edge1.target() &&
                   edge2.properties().isStrong()) {
                  found =true;
                  break;
                }
              }
              if(found)
              {
                return true;
              }
            }
          }
        }
      }

      // Situation 2: cluster node depends on front node and other cluster node
      /// Iterate over all all neighbours of front node
      vend = graph_->endEdges(vertex);
      for(Iterator edge = graph_->beginEdges(vertex); edge != vend; ++edge) {
        //if(!edge.properties().depends() && edge.properties().influences()
        if(edge.properties().isStrong()
           && aggregates[edge.target()]==aggregate)
        {
          // Search for a link from target that stays within the aggregate
          Iterator v1end = graph_->endEdges(edge.target());

          for(Iterator edge1=graph_->beginEdges(edge.target()); edge1 != v1end; ++edge1) {
            //if(edge1.properties().depends() && !edge1.properties().influences()
            if(edge1.properties().isStrong()
               && aggregates[edge1.target()]==aggregate)
            {
              bool found=false;
              // Check if front node is also connected to this one
              Iterator v2end = graph_->endEdges(vertex);
              for(Iterator edge2 = graph_->beginEdges(vertex); edge2 != v2end; ++edge2) {
                if(edge2.target()==edge1.target()) {
                  if(edge2.properties().isStrong())
                    found=true;
                  break;
                }
              }
              if(found)
              {
                return true;
              }
            }
          }
        }
      }
      return false;
    }

    template<class G>
    void Aggregator<G>::unmarkFront()
    {
      typedef typename std::vector<Vertex>::const_iterator Iterator;

      for(Iterator vertex=front_.begin(); vertex != front_.end(); ++vertex)
        graph_->getVertexProperties(*vertex).resetFront();

      front_.clear();
    }

    template<class G>
    inline void
    Aggregator<G>::nonisoNeighbourAggregate(const Vertex& vertex,
                                            const AggregatesMap<Vertex>& aggregates,
                                            SLList<Vertex>& neighbours) const
    {
      typedef typename MatrixGraph::ConstEdgeIterator Iterator;
      Iterator end=graph_->beginEdges(vertex);
      neighbours.clear();

      for(Iterator edge=graph_->beginEdges(vertex); edge!=end; ++edge)
      {
        if(aggregates[edge.target()]!=AggregatesMap<Vertex>::UNAGGREGATED && graph_->getVertexProperties(edge.target()).isolated())
          neighbours.push_back(aggregates[edge.target()]);
      }
    }

    template<class G>
    inline typename G::VertexDescriptor Aggregator<G>::mergeNeighbour(const Vertex& vertex, const AggregatesMap<Vertex>& aggregates) const
    {
      typedef typename MatrixGraph::ConstEdgeIterator Iterator;

      Iterator end = graph_->endEdges(vertex);
      for(Iterator edge = graph_->beginEdges(vertex); edge != end; ++edge) {
        if(aggregates[edge.target()] != AggregatesMap<Vertex>::UNAGGREGATED &&
           graph_->getVertexProperties(edge.target()).isolated() == graph_->getVertexProperties(edge.source()).isolated()) {
          if( graph_->getVertexProperties(vertex).isolated() ||
              ((edge.properties().depends() || edge.properties().influences())
               && admissible(vertex, aggregates[edge.target()], aggregates)))
            return edge.target();
        }
      }
      return AggregatesMap<Vertex>::UNAGGREGATED;
    }

    template<class G>
    Aggregator<G>::FrontNeighbourCounter::FrontNeighbourCounter(const MatrixGraph& graph)
      : Counter(), graph_(graph)
    {}

    template<class G>
    void Aggregator<G>::FrontNeighbourCounter::operator()(const typename MatrixGraph::ConstEdgeIterator& edge)
    {
      if(graph_.getVertexProperties(edge.target()).front())
        Counter::increment();
    }

    template<class G>
    int Aggregator<G>::noFrontNeighbours(const Vertex& vertex) const
    {
      FrontNeighbourCounter counter(*graph_);
      visitNeighbours(*graph_, vertex, counter);
      return counter.value();
    }
    template<class G>
    inline bool Aggregator<G>::connected(const Vertex& vertex,
                                         const AggregateDescriptor& aggregate,
                                         const AggregatesMap<Vertex>& aggregates) const
    {
      typedef typename G::ConstEdgeIterator iterator;
      const iterator end = graph_->endEdges(vertex);
      for(iterator edge = graph_->beginEdges(vertex); edge != end; ++edge)
        if(aggregates[edge.target()]==aggregate)
          return true;
      return false;
    }
    template<class G>
    inline bool Aggregator<G>::connected(const Vertex& vertex,
                                         const SLList<AggregateDescriptor>& aggregateList,
                                         const AggregatesMap<Vertex>& aggregates) const
    {
      typedef typename SLList<AggregateDescriptor>::const_iterator Iter;
      for(Iter i=aggregateList.begin(); i!=aggregateList.end(); ++i)
        if(connected(vertex, *i, aggregates))
          return true;
      return false;
    }

    template<class G>
    template<class C>
    void Aggregator<G>::growIsolatedAggregate(const Vertex& seed, const AggregatesMap<Vertex>& aggregates, const C& c)
    {
      SLList<Vertex> connectedAggregates;
      nonisoNeighbourAggregate(seed, aggregates,connectedAggregates);

      while(aggregate_->size()< c.minAggregateSize() && aggregate_->connectSize() < c.maxConnectivity()) {
        double maxCon=-1;
        std::size_t maxFrontNeighbours=0;

        Vertex candidate=AggregatesMap<Vertex>::UNAGGREGATED;

        typedef typename std::vector<Vertex>::const_iterator Iterator;

        for(Iterator vertex = front_.begin(); vertex != front_.end(); ++vertex) {
          if(distance(*vertex, aggregates)>c.maxDistance())
            continue; // distance of proposes aggregate too big

          if(connectedAggregates.size()>0) {
            // there is already a neighbour cluster
            // front node must be connected to same neighbour cluster

            if(!connected(*vertex, connectedAggregates, aggregates))
              continue;
          }

          double con = connectivity(*vertex, aggregates);

          if(con == maxCon) {
            std::size_t frontNeighbours = noFrontNeighbours(*vertex);

            if(frontNeighbours >= maxFrontNeighbours) {
              maxFrontNeighbours = frontNeighbours;
              candidate = *vertex;
            }
          }else if(con > maxCon) {
            maxCon = con;
            maxFrontNeighbours = noFrontNeighbours(*vertex);
            candidate = *vertex;
          }
        }

        if(candidate==AggregatesMap<Vertex>::UNAGGREGATED)
          break;

        aggregate_->add(candidate);
      }
    }

    template<class G>
    template<class C>
    void Aggregator<G>::growAggregate(const Vertex& seed, const AggregatesMap<Vertex>& aggregates, const C& c)
    {

      std::size_t distance_ =0;
      while(aggregate_->size() < c.minAggregateSize()&& distance_<c.maxDistance()) {
        int maxTwoCons=0, maxOneCons=0, maxNeighbours=-1;
        double maxCon=-1;

        std::vector<Vertex> candidates;
        candidates.reserve(30);

        typedef typename std::vector<Vertex>::const_iterator Iterator;

        for(Iterator vertex = front_.begin(); vertex != front_.end(); ++vertex) {
          // Only nonisolated nodes are considered
          if(graph_->getVertexProperties(*vertex).isolated())
            continue;

          int twoWayCons = twoWayConnections(*vertex, aggregate_->id(), aggregates);

          /* The case of two way connections. */
          if( maxTwoCons == twoWayCons && twoWayCons > 0) {
            double con = connectivity(*vertex, aggregates);

            if(con == maxCon) {
              int neighbours = noFrontNeighbours(*vertex);

              if(neighbours > maxNeighbours) {
                maxNeighbours = neighbours;
                candidates.clear();
                candidates.push_back(*vertex);
              }else{
                candidates.push_back(*vertex);
              }
            }else if( con > maxCon) {
              maxCon = con;
              maxNeighbours = noFrontNeighbours(*vertex);
              candidates.clear();
              candidates.push_back(*vertex);
            }
          }else if(twoWayCons > maxTwoCons) {
            maxTwoCons = twoWayCons;
            maxCon = connectivity(*vertex, aggregates);
            maxNeighbours = noFrontNeighbours(*vertex);
            candidates.clear();
            candidates.push_back(*vertex);

            // two way connections precede
            maxOneCons = std::numeric_limits<int>::max();
          }

          if(twoWayCons > 0)
          {
            continue; // THis is a two-way node, skip tests for one way nodes
          }

          /* The one way case */
          int oneWayCons = oneWayConnections(*vertex, aggregate_->id(), aggregates);

          if(oneWayCons==0)
            continue; // No strong connections, skip the tests.

          if(!admissible(*vertex, aggregate_->id(), aggregates))
            continue;

          if( maxOneCons == oneWayCons && oneWayCons > 0) {
            double con = connectivity(*vertex, aggregates);

            if(con == maxCon) {
              int neighbours = noFrontNeighbours(*vertex);

              if(neighbours > maxNeighbours) {
                maxNeighbours = neighbours;
                candidates.clear();
                candidates.push_back(*vertex);
              }else{
                if(neighbours==maxNeighbours)
                {
                  candidates.push_back(*vertex);
                }
              }
            }else if( con > maxCon) {
              maxCon = con;
              maxNeighbours = noFrontNeighbours(*vertex);
              candidates.clear();
              candidates.push_back(*vertex);
            }
          }else if(oneWayCons > maxOneCons) {
            maxOneCons = oneWayCons;
            maxCon = connectivity(*vertex, aggregates);
            maxNeighbours = noFrontNeighbours(*vertex);
            candidates.clear();
            candidates.push_back(*vertex);
          }
        }


        if(!candidates.size())
          break; // No more candidates found
        distance_=distance(seed, aggregates);
        candidates.resize(std::min(candidates.size(), c.maxAggregateSize()-
                                   aggregate_->size()));
        aggregate_->add(candidates);
      }
    }

    template<typename V>
    template<typename M, typename G, typename C>
    std::tuple<int,int,int,int> AggregatesMap<V>::buildAggregates(const M& matrix, G& graph, const C& criterion,
                                                                  bool finestLevel)
    {
      Aggregator<G> aggregator;
      return aggregator.build(matrix, graph, *this, criterion, finestLevel);
    }

    template<class G>
    template<class M, class C>
    std::tuple<int,int,int,int> Aggregator<G>::build(const M& m, G& graph, AggregatesMap<Vertex>& aggregates, const C& c,
                                                     bool finestLevel)
    {
      // Stack for fast vertex access
      Stack stack_(graph, *this, aggregates);

      graph_ = &graph;

      aggregate_ = new Aggregate<G,VertexSet>(graph, aggregates, connected_, front_);

      Timer watch;
      watch.reset();

      buildDependency(graph, m, c, finestLevel);

      dverb<<"Build dependency took "<< watch.elapsed()<<" seconds."<<std::endl;
      int noAggregates, conAggregates, isoAggregates, oneAggregates;
      std::size_t maxA=0, minA=1000000, avg=0;
      int skippedAggregates;
      noAggregates = conAggregates = isoAggregates = oneAggregates =
                                                       skippedAggregates = 0;

      while(true) {
        Vertex seed = stack_.pop();

        if(seed == Stack::NullEntry)
          // No more unaggregated vertices. We are finished!
          break;

        // Debugging output
        if((noAggregates+1)%10000 == 0)
          Dune::dverb<<"c";
        unmarkFront();

        if(graph.getVertexProperties(seed).excludedBorder()) {
          aggregates[seed]=AggregatesMap<Vertex>::ISOLATED;
          ++skippedAggregates;
          continue;
        }

        if(graph.getVertexProperties(seed).isolated()) {
          if(c.skipIsolated()) {
            // isolated vertices are not aggregated but skipped on the coarser levels.
            aggregates[seed]=AggregatesMap<Vertex>::ISOLATED;
            ++skippedAggregates;
            // skip rest as no agglomeration is done.
            continue;
          }else{
            aggregate_->seed(seed);
            growIsolatedAggregate(seed, aggregates, c);
          }
        }else{
          aggregate_->seed(seed);
          growAggregate(seed, aggregates, c);
        }

        /* The rounding step. */
        while(!(graph.getVertexProperties(seed).isolated()) && aggregate_->size() < c.maxAggregateSize()) {

          std::vector<Vertex> candidates;
          candidates.reserve(30);

          typedef typename std::vector<Vertex>::const_iterator Iterator;

          for(Iterator vertex = front_.begin(); vertex != front_.end(); ++vertex) {

            if(graph.getVertexProperties(*vertex).isolated())
              continue; // No isolated nodes here

            if(twoWayConnections( *vertex, aggregate_->id(), aggregates) == 0 &&
               (oneWayConnections( *vertex, aggregate_->id(), aggregates) == 0 ||
                !admissible( *vertex, aggregate_->id(), aggregates) ))
              continue;

            std::pair<int,int> neighbourPair=neighbours(*vertex, aggregate_->id(),
                                                        aggregates);

            //if(aggregateNeighbours(*vertex, aggregate_->id(), aggregates) <= unusedNeighbours(*vertex, aggregates))
            // continue;

            if(neighbourPair.first >= neighbourPair.second)
              continue;

            if(distance(*vertex, aggregates) > c.maxDistance())
              continue; // Distance too far
            candidates.push_back(*vertex);
            break;
          }

          if(!candidates.size()) break; // no more candidates found.

          candidates.resize(std::min(candidates.size(), c.maxAggregateSize()-
                                     aggregate_->size()));
          aggregate_->add(candidates);

        }

        // try to merge aggregates consisting of only one nonisolated vertex with other aggregates
        if(aggregate_->size()==1 && c.maxAggregateSize()>1) {
          if(!graph.getVertexProperties(seed).isolated()) {
            Vertex mergedNeighbour = mergeNeighbour(seed, aggregates);

            if(mergedNeighbour != AggregatesMap<Vertex>::UNAGGREGATED) {
              // assign vertex to the neighbouring cluster
              aggregates[seed] = aggregates[mergedNeighbour];
              aggregate_->invalidate();
            }else{
              ++avg;
              minA=std::min(minA,static_cast<std::size_t>(1));
              maxA=std::max(maxA,static_cast<std::size_t>(1));
              ++oneAggregates;
              ++conAggregates;
            }
          }else{
            ++avg;
            minA=std::min(minA,static_cast<std::size_t>(1));
            maxA=std::max(maxA,static_cast<std::size_t>(1));
            ++oneAggregates;
            ++isoAggregates;
          }
          ++avg;
        }else{
          avg+=aggregate_->size();
          minA=std::min(minA,aggregate_->size());
          maxA=std::max(maxA,aggregate_->size());
          if(graph.getVertexProperties(seed).isolated())
            ++isoAggregates;
          else
            ++conAggregates;
        }

      }

      Dune::dinfo<<"connected aggregates: "<<conAggregates;
      Dune::dinfo<<" isolated aggregates: "<<isoAggregates;
      if(conAggregates+isoAggregates>0)
        Dune::dinfo<<" one node aggregates: "<<oneAggregates<<" min size="
                   <<minA<<" max size="<<maxA
                   <<" avg="<<avg/(conAggregates+isoAggregates)<<std::endl;

      delete aggregate_;
      return std::make_tuple(conAggregates+isoAggregates,isoAggregates,
                             oneAggregates,skippedAggregates);
    }


    template<class G>
    Aggregator<G>::Stack::Stack(const MatrixGraph& graph, const Aggregator<G>& aggregatesBuilder,
                                const AggregatesMap<Vertex>& aggregates)
      : graph_(graph), aggregatesBuilder_(aggregatesBuilder), aggregates_(aggregates), begin_(graph.begin()), end_(graph.end())
    {
      //vals_ = new  Vertex[N];
    }

    template<class G>
    Aggregator<G>::Stack::~Stack()
    {
      //Dune::dverb << "Max stack size was "<<maxSize_<<" filled="<<filled_<<std::endl;
      //delete[] vals_;
    }

    template<class G>
    const typename Aggregator<G>::Vertex Aggregator<G>::Stack::NullEntry
      = std::numeric_limits<typename G::VertexDescriptor>::max();

    template<class G>
    inline typename G::VertexDescriptor Aggregator<G>::Stack::pop()
    {
      for(; begin_!=end_ && aggregates_[*begin_] != AggregatesMap<Vertex>::UNAGGREGATED; ++begin_) ;

      if(begin_!=end_)
      {
        typename G::VertexDescriptor current=*begin_;
        ++begin_;
        return current;
      }else
        return NullEntry;
    }

#endif // DOXYGEN

    template<class V>
    void printAggregates2d(const AggregatesMap<V>& aggregates, int n, int m,  std::ostream& os)
    {
      std::ios_base::fmtflags oldOpts=os.flags();

      os.setf(std::ios_base::right, std::ios_base::adjustfield);

      V max=0;
      int width=1;

      for(int i=0; i< n*m; i++)
        max=std::max(max, aggregates[i]);

      for(int i=10; i < 1000000; i*=10)
        if(max/i>0)
          width++;
        else
          break;

      for(int j=0, entry=0; j < m; j++) {
        for(int i=0; i<n; i++, entry++) {
          os.width(width);
          os<<aggregates[entry]<<" ";
        }

        os<<std::endl;
      }
      os<<std::endl;
      os.flags(oldOpts);
    }


  } // namespace Amg

} // namespace Dune


#endif