This file is indexed.

/usr/include/dune/istl/paamg/galerkin.hh is in libdune-istl-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GALERKIN_HH
#define DUNE_GALERKIN_HH

#include "aggregates.hh"
#include "pinfo.hh"
#include <dune/common/poolallocator.hh>
#include <dune/common/enumset.hh>
#include <dune/common/unused.hh>
#include <set>
#include <limits>
#include <algorithm>

namespace Dune
{
  namespace Amg
  {
    /**
     * @addtogroup ISTL_PAAMG
     *
     * @{
     */
    /** @file
     * @author Markus Blatt
     * @brief Provides a class for building the galerkin product
     * based on a aggregation scheme.
     */

    template<class T>
    struct OverlapVertex
    {
      /**
       * @brief The aggregate descriptor.
       */
      typedef T Aggregate;

      /**
       * @brief The vertex descriptor.
       */
      typedef T Vertex;

      /**
       * @brief The aggregate the vertex belongs to.
       */
      Aggregate* aggregate;

      /**
       * @brief The vertex descriptor.
       */
      Vertex vertex;
    };



    /**
     * @brief Functor for building the sparsity pattern of the matrix
     * using examineConnectivity.
     */
    template<class M>
    class SparsityBuilder
    {
    public:
      /**
       * @brief Constructor.
       * @param matrix The matrix whose sparsity pattern we
       * should set up.
       */
      SparsityBuilder(M& matrix);

      void insert(const typename M::size_type& index);

      void operator++();

      std::size_t minRowSize();

      std::size_t maxRowSize();

      std::size_t sumRowSize();
      std::size_t index()
      {
        return row_.index();
      }
    private:
      /** @brief Create iterator for the current row. */
      typename M::CreateIterator row_;
      /** @brief The minim row size. */
      std::size_t minRowSize_;
      /** @brief The maximum row size. */
      std::size_t maxRowSize_;
      std::size_t sumRowSize_;
#ifdef DUNE_ISTL_WITH_CHECKING
      bool diagonalInserted;
#endif
    };

    class BaseGalerkinProduct
    {
    public:
      /**
       * @brief Calculate the galerkin product.
       * @param fine The fine matrix.
       * @param aggregates The aggregate mapping.
       * @param coarse The coarse Matrix.
       * @param pinfo Parallel information about the fine level.
       * @param copy The attribute set identifying the copy nodes of the graph.
       */
      template<class M, class V, class I, class O>
      void calculate(const M& fine, const AggregatesMap<V>& aggregates, M& coarse,
                     const I& pinfo, const O& copy);

    };

    template<class T>
    class GalerkinProduct
      : public BaseGalerkinProduct
    {
    public:
      typedef T ParallelInformation;

      /**
       * @brief Calculates the coarse matrix via a Galerkin product.
       * @param fineGraph The graph of the fine matrix.
       * @param visitedMap Map for marking vertices as visited.
       * @param pinfo Parallel information about the fine level.
       * @param aggregates The mapping of the fine level unknowns  onto aggregates.
       * @param size The number of columns and rows of the coarse matrix.
       * @param copy The attribute set identifying the copy nodes of the graph.
       */
      template<class G, class V, class Set>
      typename G::MutableMatrix* build(G& fineGraph, V& visitedMap,
                                       const ParallelInformation& pinfo,
                                       AggregatesMap<typename G::VertexDescriptor>& aggregates,
                                       const typename G::Matrix::size_type& size,
                                       const Set& copy);
    private:

      /**
       * @brief Builds the data structure needed for rebuilding the aggregates int the overlap.
       * @param graph The graph of the matrix.
       * @param pinfo The parallel information.
       * @param aggregates The mapping onto the aggregates.
       */
      template<class G, class I, class Set>
      const OverlapVertex<typename G::VertexDescriptor>*
      buildOverlapVertices(const G& graph,  const I& pinfo,
                           AggregatesMap<typename G::VertexDescriptor>& aggregates,
                           const Set& overlap,
                           std::size_t& overlapCount);

      template<class A>
      struct OVLess
      {
        bool operator()(const OverlapVertex<A>& o1, const OverlapVertex<A>& o2)
        {
          return *o1.aggregate < *o2.aggregate;
        }
      };
    };

    template<>
    class GalerkinProduct<SequentialInformation>
      : public BaseGalerkinProduct
    {
    public:
      /**
       * @brief Calculates the coarse matrix via a Galerkin product.
       * @param fineGraph The graph of the fine matrix.
       * @param visitedMap Map for marking vertices as visited.
       * @param pinfo Parallel information about the fine level.
       * @param aggregates The mapping of the fine level unknowns  onto aggregates.
       * @param size The number of columns and rows of the coarse matrix.
       * @param copy The attribute set identifying the copy nodes of the graph.
       */
      template<class G, class V, class Set>
      typename G::MutableMatrix* build(G& fineGraph, V& visitedMap,
                                       const SequentialInformation& pinfo,
                                       const AggregatesMap<typename G::VertexDescriptor>& aggregates,
                                       const typename G::Matrix::size_type& size,
                                       const Set& copy);
    };

    struct BaseConnectivityConstructor
    {
      template<class R, class G, class V>
      static void constructOverlapConnectivity(R& row, G& graph, V& visitedMap,
                                               const AggregatesMap<typename G::VertexDescriptor>& aggregates,
                                               const OverlapVertex<typename G::VertexDescriptor>*& seed,
                                               const OverlapVertex<typename G::VertexDescriptor>* overlapEnd);

      /**
       * @brief Construct the connectivity of an aggregate in the overlap.
       */
      template<class R, class G, class V>
      static void constructNonOverlapConnectivity(R& row, G& graph, V& visitedMap,
                                                  const AggregatesMap<typename G::VertexDescriptor>& aggregates,
                                                  const typename G::VertexDescriptor& seed);


      /**
       * @brief Visitor for identifying connected aggregates during a breadthFirstSearch.
       */
      template<class G, class S, class V>
      class ConnectedBuilder
      {
      public:
        /**
         * @brief The type of the graph.
         */
        typedef G Graph;
        /**
         * @brief The constant edge iterator.
         */
        typedef typename Graph::ConstEdgeIterator ConstEdgeIterator;

        /**
         * @brief The type of the connected set.
         */
        typedef S Set;

        /**
         * @brief The type of the map for marking vertices as visited.
         */
        typedef V VisitedMap;

        /**
         * @brief The vertex descriptor of the graph.
         */
        typedef typename Graph::VertexDescriptor Vertex;

        /**
         * @brief Constructor
         * @param aggregates The mapping of the vertices onto the aggregates.
         * @param graph The graph to work on.
         * @param visitedMap The map for marking vertices as visited
         * @param connected The set to added the connected aggregates to.
         */
        ConnectedBuilder(const AggregatesMap<Vertex>& aggregates, Graph& graph,
                         VisitedMap& visitedMap, Set& connected);

        /**
         * @brief Process an edge pointing to another aggregate.
         * @param edge The iterator positioned at the edge.
         */
        void operator()(const ConstEdgeIterator& edge);

      private:
        /**
         * @brief The mapping of the vertices onto the aggregates.
         */
        const AggregatesMap<Vertex>& aggregates_;

        Graph& graph_;

        /**
         * @brief The map for marking vertices as visited.
         */
        VisitedMap& visitedMap_;

        /**
         * @brief The set to add the connected aggregates to.
         */
        Set& connected_;
      };

    };

    template<class G, class T>
    struct ConnectivityConstructor : public BaseConnectivityConstructor
    {
      typedef typename G::VertexDescriptor Vertex;

      template<class V, class O, class R>
      static void examine(G& graph,
                          V& visitedMap,
                          const T& pinfo,
                          const AggregatesMap<Vertex>& aggregates,
                          const O& overlap,
                          const OverlapVertex<Vertex>* overlapVertices,
                          const OverlapVertex<Vertex>* overlapEnd,
                          R& row);
    };

    template<class G>
    struct ConnectivityConstructor<G,SequentialInformation> : public BaseConnectivityConstructor
    {
      typedef typename G::VertexDescriptor Vertex;

      template<class V, class R>
      static void examine(G& graph,
                          V& visitedMap,
                          const SequentialInformation& pinfo,
                          const AggregatesMap<Vertex>& aggregates,
                          R& row);
    };

    template<class T>
    struct DirichletBoundarySetter
    {
      template<class M, class O>
      static void set(M& coarse, const T& pinfo, const O& copy);
    };

    template<>
    struct DirichletBoundarySetter<SequentialInformation>
    {
      template<class M, class O>
      static void set(M& coarse, const SequentialInformation& pinfo, const O& copy);
    };

    template<class R, class G, class V>
    void BaseConnectivityConstructor::constructNonOverlapConnectivity(R& row, G& graph, V& visitedMap,
                                                                      const AggregatesMap<typename G::VertexDescriptor>& aggregates,
                                                                      const typename G::VertexDescriptor& seed)
    {
      assert(row.index()==aggregates[seed]);
      row.insert(aggregates[seed]);
      ConnectedBuilder<G,R,V> conBuilder(aggregates, graph, visitedMap, row);
      typedef typename G::VertexDescriptor Vertex;
      typedef std::allocator<Vertex> Allocator;
      typedef SLList<Vertex,Allocator> VertexList;
      typedef typename AggregatesMap<Vertex>::DummyEdgeVisitor DummyVisitor;
      VertexList vlist;
      DummyVisitor dummy;
      aggregates.template breadthFirstSearch<true,false>(seed,aggregates[seed], graph, vlist, dummy,
                                                         conBuilder, visitedMap);
    }

    template<class R, class G, class V>
    void BaseConnectivityConstructor::constructOverlapConnectivity(R& row, G& graph, V& visitedMap,
                                                                   const AggregatesMap<typename G::VertexDescriptor>& aggregates,
                                                                   const OverlapVertex<typename G::VertexDescriptor>*& seed,
                                                                   const OverlapVertex<typename G::VertexDescriptor>* overlapEnd)
    {
      ConnectedBuilder<G,R,V> conBuilder(aggregates, graph, visitedMap, row);
      const typename G::VertexDescriptor aggregate=*seed->aggregate;

      if (row.index()==*seed->aggregate) {
        while(seed != overlapEnd && aggregate == *seed->aggregate) {
          row.insert(*seed->aggregate);
          // Walk over all neighbours and add them to the connected array.
          visitNeighbours(graph, seed->vertex, conBuilder);
          // Mark vertex as visited
          put(visitedMap, seed->vertex, true);
          ++seed;
        }
      }
    }

    template<class G, class S, class V>
    BaseConnectivityConstructor::ConnectedBuilder<G,S,V>::ConnectedBuilder(const AggregatesMap<Vertex>& aggregates,
                                                                           Graph& graph, VisitedMap& visitedMap,
                                                                           Set& connected)
      : aggregates_(aggregates), graph_(graph), visitedMap_(visitedMap), connected_(connected)
    {}

    template<class G, class S, class V>
    void BaseConnectivityConstructor::ConnectedBuilder<G,S,V>::operator()(const ConstEdgeIterator& edge)
    {
      typedef typename G::VertexDescriptor Vertex;
      const Vertex& vertex = aggregates_[edge.target()];
      assert(vertex!= AggregatesMap<Vertex>::UNAGGREGATED);
      if(vertex!= AggregatesMap<Vertex>::ISOLATED)
        connected_.insert(vertex);
    }

    template<class T>
    template<class G, class I, class Set>
    const OverlapVertex<typename G::VertexDescriptor>*
    GalerkinProduct<T>::buildOverlapVertices(const G& graph, const I& pinfo,
                                             AggregatesMap<typename G::VertexDescriptor>& aggregates,
                                             const Set& overlap,
                                             std::size_t& overlapCount)
    {
      // count the overlap vertices.
      typedef typename G::ConstVertexIterator ConstIterator;
      typedef typename I::GlobalLookupIndexSet GlobalLookup;
      typedef typename GlobalLookup::IndexPair IndexPair;

      const ConstIterator end = graph.end();
      overlapCount = 0;

      const GlobalLookup& lookup=pinfo.globalLookup();

      for(ConstIterator vertex=graph.begin(); vertex != end; ++vertex) {
        const IndexPair* pair = lookup.pair(*vertex);

        if(pair!=0 && overlap.contains(pair->local().attribute()))
          ++overlapCount;
      }
      // Allocate space
      typedef typename G::VertexDescriptor Vertex;

      OverlapVertex<Vertex>* overlapVertices = new OverlapVertex<Vertex>[overlapCount=0 ? 1 : overlapCount];
      if(overlapCount==0)
        return overlapVertices;

      // Initialize them
      overlapCount=0;
      for(ConstIterator vertex=graph.begin(); vertex != end; ++vertex) {
        const IndexPair* pair = lookup.pair(*vertex);

        if(pair!=0 && overlap.contains(pair->local().attribute())) {
          overlapVertices[overlapCount].aggregate = &aggregates[pair->local()];
          overlapVertices[overlapCount].vertex = pair->local();
          ++overlapCount;
        }
      }

      dverb << overlapCount<<" overlap vertices"<<std::endl;

      std::sort(overlapVertices, overlapVertices+overlapCount, OVLess<Vertex>());
      // due to the sorting the isolated aggregates (to be skipped) are at the end.

      return overlapVertices;
    }

    template<class G, class T>
    template<class V, class O, class R>
    void ConnectivityConstructor<G,T>::examine(G& graph,
                                               V& visitedMap,
                                               const T& pinfo,
                                               const AggregatesMap<Vertex>& aggregates,
                                               const O& overlap,
                                               const OverlapVertex<Vertex>* overlapVertices,
                                               const OverlapVertex<Vertex>* overlapEnd,
                                               R& row)
    {
      typedef typename T::GlobalLookupIndexSet GlobalLookup;
      const GlobalLookup& lookup = pinfo.globalLookup();

      typedef typename G::VertexIterator VertexIterator;

      VertexIterator vend=graph.end();

#ifdef DUNE_ISTL_WITH_CHECKING
      std::set<Vertex> examined;
#endif

      // The aggregates owned by the process have lower local indices
      // then those not owned. We process them in the first pass.
      // They represent the rows 0, 1, ..., n of the coarse matrix
      for(VertexIterator vertex = graph.begin(); vertex != vend; ++vertex)
        if(!get(visitedMap, *vertex)) {
          // In the first pass we only process owner nodes
          typedef typename GlobalLookup::IndexPair IndexPair;
          const IndexPair* pair = lookup.pair(*vertex);
          if(pair==0 || !overlap.contains(pair->local().attribute())) {
#ifdef DUNE_ISTL_WITH_CHECKING
            assert(examined.find(aggregates[*vertex])==examined.end());
            examined.insert(aggregates[*vertex]);
#endif
            constructNonOverlapConnectivity(row, graph, visitedMap, aggregates, *vertex);

            // only needed for ALU
            // (ghosts with same global id as owners on the same process)
            if (pinfo.getSolverCategory() == static_cast<int>(SolverCategory::nonoverlapping)) {
              if(overlapVertices != overlapEnd) {
                if(*overlapVertices->aggregate!=AggregatesMap<Vertex>::ISOLATED) {
                  constructOverlapConnectivity(row, graph, visitedMap, aggregates, overlapVertices, overlapEnd);
                }
                else{
                  ++overlapVertices;
                }
              }
            }
            ++row;
          }
        }

      dvverb<<"constructed "<<row.index()<<" non-overlapping rows"<<std::endl;

      // Now come the aggregates not owned by use.
      // They represent the rows n+1, ..., N
      while(overlapVertices != overlapEnd)
        if(*overlapVertices->aggregate!=AggregatesMap<Vertex>::ISOLATED) {

#ifdef DUNE_ISTL_WITH_CHECKING
          typedef typename GlobalLookup::IndexPair IndexPair;
          const IndexPair* pair = lookup.pair(overlapVertices->vertex);
          assert(pair!=0 && overlap.contains(pair->local().attribute()));
          assert(examined.find(aggregates[overlapVertices->vertex])==examined.end());
          examined.insert(aggregates[overlapVertices->vertex]);
#endif
          constructOverlapConnectivity(row, graph, visitedMap, aggregates, overlapVertices, overlapEnd);
          ++row;
        }else{
          ++overlapVertices;
        }
    }

    template<class G>
    template<class V, class R>
    void ConnectivityConstructor<G,SequentialInformation>::examine(G& graph,
                                                                   V& visitedMap,
                                                                   const SequentialInformation& pinfo,
                                                                   const AggregatesMap<Vertex>& aggregates,
                                                                   R& row)
    {
      DUNE_UNUSED_PARAMETER(pinfo);
      typedef typename G::VertexIterator VertexIterator;

      VertexIterator vend=graph.end();
      for(VertexIterator vertex = graph.begin(); vertex != vend; ++vertex) {
        if(!get(visitedMap, *vertex)) {
          constructNonOverlapConnectivity(row, graph, visitedMap, aggregates, *vertex);
          ++row;
        }
      }

    }

    template<class M>
    SparsityBuilder<M>::SparsityBuilder(M& matrix)
      : row_(matrix.createbegin()),
        minRowSize_(std::numeric_limits<std::size_t>::max()),
        maxRowSize_(0), sumRowSize_(0)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      diagonalInserted = false;
#endif
    }
    template<class M>
    std::size_t SparsityBuilder<M>::maxRowSize()
    {
      return maxRowSize_;
    }
    template<class M>
    std::size_t SparsityBuilder<M>::minRowSize()
    {
      return minRowSize_;
    }

    template<class M>
    std::size_t SparsityBuilder<M>::sumRowSize()
    {
      return sumRowSize_;
    }
    template<class M>
    void SparsityBuilder<M>::operator++()
    {
      sumRowSize_ += row_.size();
      minRowSize_=std::min(minRowSize_, row_.size());
      maxRowSize_=std::max(maxRowSize_, row_.size());
      ++row_;
#ifdef DUNE_ISTL_WITH_CHECKING
      assert(diagonalInserted);
      diagonalInserted = false;
#endif
    }

    template<class M>
    void SparsityBuilder<M>::insert(const typename M::size_type& index)
    {
      row_.insert(index);
#ifdef DUNE_ISTL_WITH_CHECKING
      diagonalInserted = diagonalInserted || row_.index()==index;
#endif
    }

    template<class T>
    template<class G, class V, class Set>
    typename G::MutableMatrix*
    GalerkinProduct<T>::build(G& fineGraph, V& visitedMap,
                              const ParallelInformation& pinfo,
                              AggregatesMap<typename G::VertexDescriptor>& aggregates,
                              const typename G::Matrix::size_type& size,
                              const Set& overlap)
    {
      typedef OverlapVertex<typename G::VertexDescriptor> OverlapVertex;

      std::size_t count;

      const OverlapVertex* overlapVertices = buildOverlapVertices(fineGraph,
                                                                  pinfo,
                                                                  aggregates,
                                                                  overlap,
                                                                  count);
      typedef typename G::MutableMatrix M;
      M* coarseMatrix = new M(size, size, M::row_wise);

      // Reset the visited flags of all vertices.
      // As the isolated nodes will be skipped we simply mark them as visited

      typedef typename G::VertexIterator Vertex;
      Vertex vend = fineGraph.end();
      for(Vertex vertex = fineGraph.begin(); vertex != vend; ++vertex) {
        assert(aggregates[*vertex] != AggregatesMap<typename G::VertexDescriptor>::UNAGGREGATED);
        put(visitedMap, *vertex, aggregates[*vertex]==AggregatesMap<typename G::VertexDescriptor>::ISOLATED);
      }

      typedef typename G::MutableMatrix M;
      SparsityBuilder<M> sparsityBuilder(*coarseMatrix);

      ConnectivityConstructor<G,T>::examine(fineGraph, visitedMap, pinfo,
                                            aggregates, overlap,
                                            overlapVertices,
                                            overlapVertices+count,
                                            sparsityBuilder);

      dinfo<<pinfo.communicator().rank()<<": Matrix ("<<coarseMatrix->N()<<"x"<<coarseMatrix->M()<<" row: min="<<sparsityBuilder.minRowSize()<<" max="
           <<sparsityBuilder.maxRowSize()<<" avg="
           <<static_cast<double>(sparsityBuilder.sumRowSize())/coarseMatrix->N()
           <<std::endl;

      delete[] overlapVertices;

      return coarseMatrix;
    }

    template<class G, class V, class Set>
    typename G::MutableMatrix*
    GalerkinProduct<SequentialInformation>::build(G& fineGraph, V& visitedMap,
                                                  const SequentialInformation& pinfo,
                                                  const AggregatesMap<typename G::VertexDescriptor>& aggregates,
                                                  const typename G::Matrix::size_type& size,
                                                  const Set& overlap)
    {
      DUNE_UNUSED_PARAMETER(overlap);
      typedef typename G::MutableMatrix M;
      M* coarseMatrix = new M(size, size, M::row_wise);

      // Reset the visited flags of all vertices.
      // As the isolated nodes will be skipped we simply mark them as visited

      typedef typename G::VertexIterator Vertex;
      Vertex vend = fineGraph.end();
      for(Vertex vertex = fineGraph.begin(); vertex != vend; ++vertex) {
        assert(aggregates[*vertex] != AggregatesMap<typename G::VertexDescriptor>::UNAGGREGATED);
        put(visitedMap, *vertex, aggregates[*vertex]==AggregatesMap<typename G::VertexDescriptor>::ISOLATED);
      }

      SparsityBuilder<M> sparsityBuilder(*coarseMatrix);

      ConnectivityConstructor<G,SequentialInformation>::examine(fineGraph, visitedMap, pinfo,
                                                                aggregates, sparsityBuilder);
      dinfo<<"Matrix row: min="<<sparsityBuilder.minRowSize()<<" max="
           <<sparsityBuilder.maxRowSize()<<" average="
           <<static_cast<double>(sparsityBuilder.sumRowSize())/coarseMatrix->N()<<std::endl;
      return coarseMatrix;
    }

    template<class M, class V, class P, class O>
    void BaseGalerkinProduct::calculate(const M& fine, const AggregatesMap<V>& aggregates, M& coarse,
                                        const P& pinfo, const O& copy)
    {
      DUNE_UNUSED_PARAMETER(copy);
      coarse = static_cast<typename M::field_type>(0);

      typedef typename M::ConstIterator RowIterator;
      RowIterator endRow = fine.end();

      for(RowIterator row = fine.begin(); row != endRow; ++row)
        if(aggregates[row.index()] != AggregatesMap<V>::ISOLATED) {
          assert(aggregates[row.index()]!=AggregatesMap<V>::UNAGGREGATED);
          typedef typename M::ConstColIterator ColIterator;
          ColIterator endCol = row->end();

          for(ColIterator col = row->begin(); col != endCol; ++col)
            if(aggregates[col.index()] != AggregatesMap<V>::ISOLATED) {
              assert(aggregates[row.index()]!=AggregatesMap<V>::UNAGGREGATED);
              coarse[aggregates[row.index()]][aggregates[col.index()]]+=*col;
            }
        }

      // get the right diagonal matrix values on copy lines from owner processes
      typedef typename M::block_type BlockType;
      std::vector<BlockType> rowsize(coarse.N(),BlockType(0));
      for (RowIterator row = coarse.begin(); row != coarse.end(); ++row)
        rowsize[row.index()]=coarse[row.index()][row.index()];
      pinfo.copyOwnerToAll(rowsize,rowsize);
      for (RowIterator row = coarse.begin(); row != coarse.end(); ++row)
        coarse[row.index()][row.index()] = rowsize[row.index()];

      // don't set dirichlet boundaries for copy lines to make novlp case work,
      // the preconditioner yields slightly different results now.

      // Set the dirichlet border
      //DirichletBoundarySetter<P>::template set<M>(coarse, pinfo, copy);

    }

    template<class T>
    template<class M, class O>
    void DirichletBoundarySetter<T>::set(M& coarse, const T& pinfo, const O& copy)
    {
      typedef typename T::ParallelIndexSet::const_iterator ConstIterator;
      ConstIterator end = pinfo.indexSet().end();
      typedef typename M::block_type Block;
      Block identity=Block(0.0);
      for(typename Block::RowIterator b=identity.begin(); b !=  identity.end(); ++b)
        b->operator[](b.index())=1.0;

      for(ConstIterator index = pinfo.indexSet().begin();
          index != end; ++index) {
        if(copy.contains(index->local().attribute())) {
          typedef typename M::ColIterator ColIterator;
          typedef typename M::row_type Row;
          Row row = coarse[index->local()];
          ColIterator cend = row.find(index->local());
          ColIterator col  = row.begin();
          for(; col != cend; ++col)
            *col = 0;

          cend = row.end();

          assert(col != cend); // There should be a diagonal entry
          *col = identity;

          for(++col; col != cend; ++col)
            *col = 0;
        }
      }
    }

    template<class M, class O>
    void DirichletBoundarySetter<SequentialInformation>::set(M& coarse,
                                                             const SequentialInformation& pinfo,
                                                             const O& overlap)
    {}

  } // namespace Amg
} // namespace Dune
#endif