This file is indexed.

/usr/include/dune/istl/vbvector.hh is in libdune-istl-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ISTL_VBVECTOR_HH
#define DUNE_ISTL_VBVECTOR_HH

#include <cmath>
#include <complex>
#include <iostream>
#include <memory>

#include <dune/common/iteratorfacades.hh>
#include "istlexception.hh"
#include "bvector.hh"

/** \file
 * \brief ???
 */

namespace Dune {

  /**
              @addtogroup ISTL_SPMV
              @{
   */

  /**
      \brief A Vector of blocks with different blocksizes.

          implements a vector consisting of a number of blocks (to
          be given at run-time) which themselves consist of a number
          of blocks (also given at run-time) of the given type B.

          VariableBlockVector is a container of containers!

   */
  template<class B, class A=std::allocator<B> >
  class VariableBlockVector : public block_vector_unmanaged<B,A>
                              // this derivation gives us all the blas level 1 and norms
                              // on the large array. However, access operators have to be
                              // overwritten.
  {
    // just a shorthand
    typedef BlockVectorWindow<B,A> window_type;

  public:

    //===== type definitions and constants

    //! export the type representing the field
    typedef typename B::field_type field_type;

    //! export the allocator type
    typedef A allocator_type;

    /** \brief Export type used for references to container entries
     *
     * \note This is not B&, but an internal proxy class!
     */
    typedef window_type& reference;

    /** \brief Export type used for const references to container entries
     *
     * \note This is not B&, but an internal proxy class!
     */
    typedef const window_type& const_reference;

    //! The size type for the index access
    typedef typename A::size_type size_type;

    /** \brief Type of the elements of the outer vector, i.e., dynamic vectors of B
     *
     * Note that this is *not* the type referred to by the iterators and random access operators,
     * which return proxy objects.
     */
    typedef BlockVector<B,A> value_type;

    /** \brief Same as value_type, here for historical reasons
     */
    typedef BlockVector<B,A> block_type;

    /** increment block level counter, yes, it is two levels because
            VariableBlockVector is a container of containers
     */
    enum {
      //! The number of blocklevels this vector contains.
      blocklevel = B::blocklevel+2
    };

    //===== constructors and such

    /** constructor without arguments makes empty vector,
            object cannot be used yet
     */
    VariableBlockVector () : block_vector_unmanaged<B,A>()
    {
      // nothing is known ...
      nblocks = 0;
      block = nullptr;
      initialized = false;
    }

    /** make vector with given number of blocks, but size of each block is not yet known,
            object cannot be used yet
     */
    explicit VariableBlockVector (size_type _nblocks) : block_vector_unmanaged<B,A>()
    {
      // we can allocate the windows now
      nblocks = _nblocks;
      if (nblocks>0)
      {
        block = windowAllocator_.allocate(nblocks);
        new (block) window_type[nblocks];
      }
      else
      {
        nblocks = 0;
        block = nullptr;
      }

      // Note: memory in base class still not allocated
      // the vector not usable
      initialized = false;
    }

    /** make vector with given number of blocks each having a constant size,
            object is fully usable then.

            \param _nblocks Number of blocks
            \param m Number of elements in each block
     */
    VariableBlockVector (size_type _nblocks, size_type m) : block_vector_unmanaged<B,A>()
    {
      // and we can allocate the big array in the base class
      this->n = _nblocks*m;
      if (this->n>0)
      {
        this->p = allocator_.allocate(this->n);
        new (this->p)B[this->n];
      }
      else
      {
        this->n = 0;
        this->p = nullptr;
      }

      // we can allocate the windows now
      nblocks = _nblocks;
      if (nblocks>0)
      {
        // allocate and construct the windows
        block = windowAllocator_.allocate(nblocks);
        new (block) window_type[nblocks];

        // set the windows into the big array
        for (size_type i=0; i<nblocks; ++i)
          block[i].set(m,this->p+(i*m));
      }
      else
      {
        nblocks = 0;
        block = nullptr;
      }

      // and the vector is usable
      initialized = true;
    }

    //! copy constructor, has copy semantics
    VariableBlockVector (const VariableBlockVector& a)
    {
      // allocate the big array in the base class
      this->n = a.n;
      if (this->n>0)
      {
        // allocate and construct objects
        this->p = allocator_.allocate(this->n);
        new (this->p)B[this->n];

        // copy data
        for (size_type i=0; i<this->n; i++) this->p[i]=a.p[i];
      }
      else
      {
        this->n = 0;
        this->p = nullptr;
      }

      // we can allocate the windows now
      nblocks = a.nblocks;
      if (nblocks>0)
      {
        // alloc
        block = windowAllocator_.allocate(nblocks);
        new (block) window_type[nblocks];

        // and we must set the windows
        block[0].set(a.block[0].getsize(),this->p);           // first block
        for (size_type i=1; i<nblocks; ++i)                         // and the rest
          block[i].set(a.block[i].getsize(),block[i-1].getptr()+block[i-1].getsize());
      }
      else
      {
        nblocks = 0;
        block = nullptr;
      }

      // and we have a usable vector
      initialized = true;
    }

    //! free dynamic memory
    ~VariableBlockVector ()
    {
      if (this->n>0) {
        size_type i=this->n;
        while (i)
          this->p[--i].~B();
        allocator_.deallocate(this->p,this->n);
      }
      if (nblocks>0) {
        size_type i=nblocks;
        while (i)
          block[--i].~window_type();
        windowAllocator_.deallocate(block,nblocks);
      }

    }


    //! same effect as constructor with same argument
    void resize (size_type _nblocks)
    {
      // deconstruct objects and deallocate memory if necessary
      if (this->n>0) {
        size_type i=this->n;
        while (i)
          this->p[--i].~B();
        allocator_.deallocate(this->p,this->n);
      }
      if (nblocks>0) {
        size_type i=nblocks;
        while (i)
          block[--i].~window_type();
        windowAllocator_.deallocate(block,nblocks);
      }
      this->n = 0;
      this->p = nullptr;

      // we can allocate the windows now
      nblocks = _nblocks;
      if (nblocks>0)
      {
        block = windowAllocator_.allocate(nblocks);
        new (block) window_type[nblocks];
      }
      else
      {
        nblocks = 0;
        block = nullptr;
      }

      // and the vector not fully usable
      initialized = false;
    }

    //! same effect as constructor with same argument
    void resize (size_type _nblocks, size_type m)
    {
      // deconstruct objects and deallocate memory if necessary
      if (this->n>0) {
        size_type i=this->n;
        while (i)
          this->p[--i].~B();
        allocator_.deallocate(this->p,this->n);
      }
      if (nblocks>0) {
        size_type i=nblocks;
        while (i)
          block[--i].~window_type();
        windowAllocator_.deallocate(block,nblocks);
      }

      // and we can allocate the big array in the base class
      this->n = _nblocks*m;
      if (this->n>0)
      {
        this->p = allocator_.allocate(this->n);
        new (this->p)B[this->n];
      }
      else
      {
        this->n = 0;
        this->p = nullptr;
      }

      // we can allocate the windows now
      nblocks = _nblocks;
      if (nblocks>0)
      {
        // allocate and construct objects
        block = windowAllocator_.allocate(nblocks);
        new (block) window_type[nblocks];

        // set the windows into the big array
        for (size_type i=0; i<nblocks; ++i)
          block[i].set(m,this->p+(i*m));
      }
      else
      {
        nblocks = 0;
        block = nullptr;
      }

      // and the vector is usable
      initialized = true;
    }

    //! assignment
    VariableBlockVector& operator= (const VariableBlockVector& a)
    {
      if (&a!=this)     // check if this and a are different objects
      {
        // reallocate arrays if necessary
        // Note: still the block sizes may vary !
        if (this->n!=a.n || nblocks!=a.nblocks)
        {
          // deconstruct objects and deallocate memory if necessary
          if (this->n>0) {
            size_type i=this->n;
            while (i)
              this->p[--i].~B();
            allocator_.deallocate(this->p,this->n);
          }
          if (nblocks>0) {
            size_type i=nblocks;
            while (i)
              block[--i].~window_type();
            windowAllocator_.deallocate(block,nblocks);
          }

          // allocate the big array in the base class
          this->n = a.n;
          if (this->n>0)
          {
            // allocate and construct objects
            this->p = allocator_.allocate(this->n);
            new (this->p)B[this->n];
          }
          else
          {
            this->n = 0;
            this->p = nullptr;
          }

          // we can allocate the windows now
          nblocks = a.nblocks;
          if (nblocks>0)
          {
            // alloc
            block = windowAllocator_.allocate(nblocks);
            new (block) window_type[nblocks];
          }
          else
          {
            nblocks = 0;
            block = nullptr;
          }
        }

        // copy block structure, might be different although
        // sizes are the same !
        if (nblocks>0)
        {
          block[0].set(a.block[0].getsize(),this->p);                 // first block
          for (size_type i=1; i<nblocks; ++i)                               // and the rest
            block[i].set(a.block[i].getsize(),block[i-1].getptr()+block[i-1].getsize());
        }

        // and copy the data
        for (size_type i=0; i<this->n; i++) this->p[i]=a.p[i];
      }

      // and we have a usable vector
      initialized = true;

      return *this;     // Gebe Referenz zurueck damit a=b=c; klappt
    }


    //===== assignment from scalar

    //! assign from scalar
    VariableBlockVector& operator= (const field_type& k)
    {
      (static_cast<block_vector_unmanaged<B,A>&>(*this)) = k;
      return *this;
    }


    //===== the creation interface

    //! Iterator class for sequential creation of blocks
    class CreateIterator
    {
    public:
      //! constructor
      CreateIterator (VariableBlockVector& _v, int _i) : v(_v)
      {
        i = _i;
        k = 0;
        n = 0;
      }

      //! prefix increment
      CreateIterator& operator++()
      {
        // we are at block i and the blocks size is known

        // set the blocks size to current k
        v.block[i].setsize(k);

        // accumulate total size
        n += k;

        // go to next block
        ++i;

        // reset block size
        k = 0;

        // if we are past the last block, finish off
        if (i==v.nblocks)
        {
          // now we can allocate the big array in the base class of v
          v.n = n;
          if (n>0)
          {
            // allocate and construct objects
            v.p = v.allocator_.allocate(n);
            new (v.p)B[n];
          }
          else
          {
            v.n = 0;
            v.p = nullptr;
          }

          // and we set the window pointer
          if (v.nblocks>0)
          {
            v.block[0].setptr(v.p);                       // pointer tofirst block
            for (size_type j=1; j<v.nblocks; ++j)               // and the rest
              v.block[j].setptr(v.block[j-1].getptr()+v.block[j-1].getsize());
          }

          // and the vector is ready
          v.initialized = true;

          //std::cout << "made vbvector with " << v.n << " components" << std::endl;
        }

        return *this;
      }

      //! inequality
      bool operator!= (const CreateIterator& it) const
      {
        return (i!=it.i) || (&v!=&it.v);
      }

      //! equality
      bool operator== (const CreateIterator& it) const
      {
        return (i==it.i) && (&v==&it.v);
      }

      //! dereferencing
      size_type index () const
      {
        return i;
      }

      //! set size of current block
      void setblocksize (size_type _k)
      {
        k = _k;
      }

    private:
      VariableBlockVector& v;     // my vector
      size_type i;                      // current block to be defined
      size_type k;                      // size of current block to be defined
      size_type n;                      // total number of elements to be allocated
    };

    // CreateIterator wants to set all the arrays ...
    friend class CreateIterator;

    //! get initial create iterator
    CreateIterator createbegin ()
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (initialized) DUNE_THROW(ISTLError,"no CreateIterator in initialized state");
#endif
      return CreateIterator(*this,0);
    }

    //! get create iterator pointing to one after the last block
    CreateIterator createend ()
    {
      return CreateIterator(*this,nblocks);
    }


    //===== access to components
    // has to be overwritten from base class because it must
    // return access to the windows

    //! random access to blocks
    window_type& operator[] (size_type i)
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (i>=nblocks) DUNE_THROW(ISTLError,"index out of range");
#endif
      return block[i];
    }

    //! same for read only access
    const window_type& operator[] (size_type i) const
    {
#ifdef DUNE_ISTL_WITH_CHECKING
      if (i<0 || i>=nblocks) DUNE_THROW(ISTLError,"index out of range");
#endif
      return block[i];
    }

    //! Iterator class for sequential access
    template <class T, class R>
    class RealIterator
    : public RandomAccessIteratorFacade<RealIterator<T,R>, T, R>
    {
    public:
      //! constructor, no arguments
      RealIterator ()
      {
        p = nullptr;
        i = 0;
      }

      //! constructor
      RealIterator (window_type* _p, size_type _i)
      : p(_p), i(_i)
      {}

      //! prefix increment
      void increment()
      {
        ++i;
      }

      //! prefix decrement
      void decrement()
      {
        --i;
      }

      //! equality
      bool equals (const RealIterator& it) const
      {
        return (p+i)==(it.p+it.i);
      }

      //! dereferencing
      window_type& dereference () const
      {
        return p[i];
      }

      void advance(std::ptrdiff_t d)
      {
        i+=d;
      }

      std::ptrdiff_t distanceTo(const RealIterator& o) const
      {
        return o.i-i;
      }

      // Needed for operator[] of the iterator
      window_type& elementAt (std::ptrdiff_t offset) const
      {
        return p[i+offset];
      }

      /** \brief Return the index of the entry this iterator is pointing to */
      size_type index() const
      {
        return i;
      }

    private:
      window_type* p;
      size_type i;
    };

    using Iterator = RealIterator<value_type,window_type&>;

    //! begin Iterator
    Iterator begin ()
    {
      return Iterator(block,0);
    }

    //! end Iterator
    Iterator end ()
    {
      return Iterator(block,nblocks);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector, i.e. at the last entry.
    Iterator beforeEnd ()
    {
      return Iterator(block,nblocks-1);
    }

    //! @returns an iterator that is positioned before
    //! the first entry of the vector.
    Iterator beforeBegin () const
    {
      return Iterator(block,-1);
    }

    /** \brief Export the iterator type using std naming rules */
    using iterator = Iterator;

    /** \brief Const iterator */
    using ConstIterator = RealIterator<const value_type, const window_type&>;

    /** \brief Export the const iterator type using std naming rules */
    using const_iterator = ConstIterator;

    //! begin ConstIterator
    ConstIterator begin () const
    {
      return ConstIterator(block,0);
    }

    //! end ConstIterator
    ConstIterator end () const
    {
      return ConstIterator(block,nblocks);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector. i.e. at the last element.
    ConstIterator beforeEnd() const
    {
      return ConstIterator(block,nblocks-1);
    }

    //! end ConstIterator
    ConstIterator rend () const
    {
      return ConstIterator(block,-1);
    }

    //! random access returning iterator (end if not contained)
    Iterator find (size_type i)
    {
      return Iterator(block,std::min(i,nblocks));
    }

    //! random access returning iterator (end if not contained)
    ConstIterator find (size_type i) const
    {
      return ConstIterator(block,std::min(i,nblocks));
    }

    //===== sizes

    //! number of blocks in the vector (are of variable size here)
    size_type N () const
    {
      return nblocks;
    }

    /** Number of blocks in the vector
     *
     * Returns the same value as method N(), because the vector is dense
    */
    size_type size () const
    {
      return nblocks;
    }


  private:
    size_type nblocks;            // number of blocks in vector
    window_type* block;     // array of blocks pointing to the array in the base class
    bool initialized;       // true if vector has been initialized

    A allocator_;

    typename A::template rebind<window_type>::other windowAllocator_;
  };



  /** @} end documentation */

} // end namespace

#endif