This file is indexed.

/usr/include/dune/localfunctions/common/interfaceswitch.hh is in libdune-localfunctions-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

#ifndef DUNE_LOCALFUNCTIONS_COMMON_INTERFACESWITCH_HH
#define DUNE_LOCALFUNCTIONS_COMMON_INTERFACESWITCH_HH

#include <cstddef>
#include <memory>
#include <vector>

#include <dune/common/fmatrix.hh>
#include <dune/common/std/type_traits.hh>

namespace Dune {

  //! \brief Switch for uniform treatment of finite element with either the
  //!        local or the global interface
  /**
   * \tparam FiniteElement Type of the finite element to handle.
   * \tparam Dummy         Dummy parameter for enable_if.  This must be left
   *                       at the default value of \c void.
   *
   * \note The local interface is detected by the presence of the type
   *       FiniteElement::Traits::LocalBasisType.
   */
  template<class FiniteElement, class Dummy = void>
  struct FiniteElementInterfaceSwitch {
    //! export the type of the basis
    typedef typename FiniteElement::Traits::Basis Basis;
    //! export the type of the interpolation
    typedef typename FiniteElement::Traits::Interpolation Interpolation;
    //! export the type of the coefficients
    typedef typename FiniteElement::Traits::Coefficients Coefficients;

    //! access basis
    static const Basis &basis(const FiniteElement& fe)
    { return fe.basis(); }
    //! access interpolation
    static const Interpolation &interpolation(const FiniteElement& fe)
    { return fe.interpolation(); }
    //! access coefficients
    static const Coefficients &coefficients(const FiniteElement& fe)
    { return fe.coefficients(); }

    //! Type for storing finite elements
    /**
     * Some algorithms use one variable to store (a pointer) a finite element
     * and update that pointer while iterating through the grid.  This works
     * well for local finite elements, since they exists in a finite number of
     * variants, which can be stored somewhere and don't need to change for
     * the duration of the algorithm, so we can always store a simple pointer.
     * For global finite elements we have to store the object itself however,
     * and we must make sure that we destroy the object when we are done with
     * it.  Since global finite elements are not assignable in general, we
     * needs to copy-construct them for each grid element we visit.
     *
     * To accommodate both interfaces, we define a store: for local finite
     * elements it is a simple pointer, and if we want to store a finite
     * element in it we simply store its address.  For global finite elements
     * we use a shared_ptr, and if we want to store a finite element in it we
     * allocate a new object and initialise it with the copy-constructor.  For
     * local finite elements we don't need to do anything when we are done
     * with it, global finite elements are automatically destructed by the
     * shared_ptr when we store a new one or when the shared_ptr itself is
     * destroyed.  Access to the finite element is done by simply
     * dereferencing the store in both cases.
     */
    typedef std::shared_ptr<const FiniteElement> Store;
    //! Store a finite element in the store.
    /**
     * For local finite elements this means storing the address of the passed
     * reference, for global finite element this means creating a new object
     * with allocation and copy-construction and storing that.
     */
    static void setStore(Store& store, const FiniteElement& fe)
    { store.reset(new FiniteElement(fe)); }
  };

#ifndef DOXYGEN
  //! \brief Switch for uniform treatment of finite element with either the
  //!        local or the global interface
  template<class FiniteElement>
  struct FiniteElementInterfaceSwitch<
      FiniteElement,
      typename std::enable_if<Std::to_true_type<typename FiniteElement::Traits::
              LocalBasisType>::value>::type
      >
  {
    //! export the type of the basis
    typedef typename FiniteElement::Traits::LocalBasisType Basis;
    //! export the type of the interpolation
    typedef typename FiniteElement::Traits::LocalInterpolationType
    Interpolation;
    //! export the type of the coefficients
    typedef typename FiniteElement::Traits::LocalCoefficientsType Coefficients;

    //! access basis
    static const Basis &basis(const FiniteElement& fe)
    { return fe.localBasis(); }
    //! access interpolation
    static const Interpolation &interpolation(const FiniteElement& fe)
    { return fe.localInterpolation(); }
    //! access coefficients
    static const Coefficients &coefficients(const FiniteElement& fe)
    { return fe.localCoefficients(); }

    //! Type for storing finite elements
    typedef const FiniteElement *Store;
    //! Store a finite element in the store.
    static void setStore(Store& store, const FiniteElement& fe)
    { store = &fe; }
  };
#endif // !DOXYGEN

  //! Switch for uniform treatment of local and global basis classes
  /**
   * \tparam Basis Type of the basis to handle.

   * \tparam Dummy Dummy parameter for enable_if.  This must be left at the
   *               default value of \c void.
   *
   * We don't provide any uniform access to the types and constants pertaining
   * to the global domain.  Providing this would require the Geometry as
   * template parameter as well, and the user code can build them itself if it
   * needs them with the help of the geometry.  The omitted types are \c
   * DomainGlobal and \c Jacobian, the omitted constant is \c dimDomainGlobal.
   *
   * \note The local interface is assumed if the constant
   *       Basis::Traits::dimDomain exists and has a value greater than 0.
   */
  template<class Basis, class Dummy = void>
  struct BasisInterfaceSwitch {
    //! export field types of the coordinates
    typedef typename Basis::Traits::DomainField DomainField;
    //! export dimension of local coordinates
    static const std::size_t dimDomainLocal = Basis::Traits::dimDomainLocal;
    //! export vector type of the local coordinates
    typedef typename Basis::Traits::DomainLocal DomainLocal;

    //! export field type of the values
    typedef typename Basis::Traits::RangeField RangeField;
    //! export dimension of the values
    static const std::size_t dimRange = Basis::Traits::dimRange;
    //! export vector type of the values
    typedef typename Basis::Traits::Range Range;

    //! export number of supported differentiations
    static const std::size_t diffOrder = Basis::Traits::diffOrder;

    //! Compute global gradient for scalar valued bases
    /**
     * \param basis    The basis to get the derivatives from.
     * \param geometry The geometry to use to transform the derivatives (for a
     *                 local basis, unused in the case of a global basis).
     * \param xl       The local coordinates where to evaluate the gradient.
     * \param grad     The result (will be resized to the appropriate number
     *                 of entries.
     *
     * \note This make sense only for a scalar valued basis.
     */
    template<typename Geometry>
    static void gradient(const Basis& basis, const Geometry& geometry,
                         const DomainLocal& xl,
                         std::vector<FieldMatrix<RangeField, 1,
                                 Geometry::coorddimension> >& grad)
    {
      grad.resize(basis.size());
      basis.evaluateJacobian(xl, grad);
    }
  };

#ifndef DOXYGEN
  //! Switch for uniform treatment of local and global basis classes
  template<class Basis>
  struct BasisInterfaceSwitch<Basis,
                              typename std::enable_if<
                                Std::to_true_type<
                                  std::integral_constant<
                                    std::size_t,
                                    Basis::Traits::dimDomain
                                    >
                                  >::value
                                >::type
                              >
  {
    //! export field types of the coordinates
    typedef typename Basis::Traits::DomainFieldType DomainField;
    //! export dimension of local coordinates
    static const std::size_t dimDomainLocal = Basis::Traits::dimDomain;
    //! export vector type of the local coordinates
    typedef typename Basis::Traits::DomainType DomainLocal;

    //! export field type of the values
    typedef typename Basis::Traits::RangeFieldType RangeField;
    //! export dimension of the values
    static const std::size_t dimRange = Basis::Traits::dimRange;
    //! export vector type of the values
    typedef typename Basis::Traits::RangeType Range;

    //! export number of supported differentiations
    static const std::size_t diffOrder = Basis::Traits::diffOrder;

    //! Compute global gradient for scalar valued bases
    template<typename Geometry>
    static void gradient(const Basis& basis, const Geometry& geometry,
                         const DomainLocal& xl,
                         std::vector<FieldMatrix<RangeField, 1,
                                 Geometry::coorddimension> >& grad)
    {
      std::vector<typename Basis::Traits::JacobianType> lgrad(basis.size());
      basis.evaluateJacobian(xl, lgrad);

      const typename Geometry::JacobianInverseTransposed& jac =
        geometry.jacobianInverseTransposed(xl);

      grad.resize(basis.size());
      for(std::size_t i = 0; i < basis.size(); ++i)
        jac.mv(lgrad[i][0], grad[i][0]);
    }
  };
#endif // !DOXYGEN

} // namespace Dune

#endif // DUNE_LOCALFUNCTIONS_COMMON_INTERFACESWITCH_HH