/usr/include/hpptools/logsum.hpp is in libhpptools-dev 1.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | //
// logsum -- a port of Sean Eddy's fast table-driven log sum
// This code was originally part of HMMER. This version is used with
// Sean Eddy's permission as public domain code.
//
// Modification Notice
//
// By: Matei David, Ontario Institute for Cancer Research
// When: 2015
// Reason:
// Reorganized as C++ header-only library,
// with implicit lookup table initialization.
//
/* p7_FLogsum() function used in the Forward() algorithm.
*
* Contents:
* 1. Floating point log sum.
* 2. Benchmark driver.
* 3. Unit tests.
* 4. Test driver.
* 5. Example.
* 6. Copyright and license information.
*
* Exegesis:
*
* Internally, HMMER3 profile scores are in nats: floating point
* log-odds probabilities, with the log odds taken relative to
* background residue frequencies, and the log to the base e.
*
* The Forward algorithm needs to calculate sums of probabilities.
* Given two log probabilities A and B, where s1 = \log
* \frac{a}{f}, and s2 = \log \frac{b}{g}, we need to
* calculate C = \log \frac{a + b}{h}.
*
* The Forward algorithm guarantees that the null model denominator
* terms f = g = h, because it is always concerned with summing terms
* that describe different parses of the same target sequence prefix,
* and the product of the background frequencies for the same sequence
* prefix is a constant.
*
* The naive solution is C = log(e^{A} + e^{B}), but this requires
* expensive calls to log() and exp().
*
* A better solution is C = A + log(1 + e^{-(A-B)}), for A >= B. For
* sufficiently small B << A, e^-{A-B} becomes less than the
* machine's FLT_EPSILON, and C ~= A. (This is at about (A-B) >
* -15.9, for the typical FLT_EPSILON of 1.2e-7.)
*
* With some loss of accuracy [1], we can precalculate log(1 +
* e^{-(A-B)}) for a discretized range of differences (A-B), and
* compute C = A + table_lookup(A-B). This is what HMMER's
* p7_FLogsum() function does.
*
* This only applies to the generic (serial) implementation.
* See footnote [2] for discussion of why we remain unable to
* implement an efficient log-space SIMD vector implementation of
* Forward.
*/
#ifndef __LOGSUM_HPP
#define __LOGSUM_HPP
#include <cassert>
#include <cmath>
/* p7_LOGSUM_SCALE defines the precision of the calculation; the
* default of 1000.0 means rounding differences to the nearest 0.001
* nat. p7_LOGSUM_TBL defines the size of the lookup table; the
* default of 16000 means entries are calculated for differences of 0
* to 16.000 nats (when p7_LOGSUM_SCALE is 1000.0). e^{-p7_LOGSUM_TBL /
* p7_LOGSUM_SCALE} should be on the order of the machine FLT_EPSILON,
* typically 1.2e-7.
*/
#define p7_LOGSUM_TBL 16000
#define p7_LOGSUM_SCALE 1000.f
#define ESL_MAX(a,b) (((a)>(b))?(a):(b))
#define ESL_MIN(a,b) (((a)<(b))?(a):(b))
#define eslINFINITY INFINITY
#define TRUE 1
#define FALSE 0
#define eslOK 1
namespace logsum
{
struct p7_FLogsum_Helper
{
/* Function: flogsum_lookup()
* Synposis: Holds the main lookup table used in logspace sum computations.
*
* Purpose: Encapsulate static array inside a function to avoid the need for a separate definition.
*/
static inline float*
flogsum_lookup(void)
{
static float _flogsum_lookup[p7_LOGSUM_TBL]; /* p7_LOGSUM_TBL=16000: (A-B) = 0..16 nats, steps of 0.001 */
return _flogsum_lookup;
}
/* Function: p7_FLogsumInit()
* Synopsis: Initialize the p7_Logsum() function.
*
* Purpose: Initialize the lookup table for <p7_FLogsum()>.
* This function must be called once before any
* call to <p7_FLogsum()>.
*
* The precision of the lookup table is determined
* by the compile-time <p7_LOGSUM_TBL> constant.
*
* Returns: <eslOK> on success.
*/
static int
p7_FLogsumInit(void)
{
static int firsttime = TRUE;
if (!firsttime) return eslOK;
firsttime = FALSE;
int i;
for (i = 0; i < p7_LOGSUM_TBL; i++)
{
flogsum_lookup()[i] = std::log(1. + std::exp((double) -i / p7_LOGSUM_SCALE));
}
return eslOK;
}
/* Function: p7_FLogsum()
* Synopsis: Approximate $\log(e^a + e^b)$.
*
* Purpose: Returns a fast table-driven approximation to
* $\log(e^a + e^b)$.
*
* Either <a> or <b> (or both) may be $-\infty$,
* but neither may be $+\infty$ or <NaN>.
*
* Note: This function is a critical optimization target, because
* it's in the inner loop of generic Forward() algorithms.
*/
static inline float
p7_FLogsum(float a, float b)
{
// static object whose constructor initializes the lookup table
static Table_Initializer _init;
(void)_init;
const float max = ESL_MAX(a, b);
const float min = ESL_MIN(a, b);
return (min == -eslINFINITY or max - min >= (float)(p7_LOGSUM_TBL - 1) / p7_LOGSUM_SCALE)
? max
: max + flogsum_lookup()[(int)((max - min) * p7_LOGSUM_SCALE)];
}
/* Function: p7_FLogsumError()
* Synopsis: Compute absolute error in probability from Logsum.
*
* Purpose: Compute the absolute error in probability space
* resulting from <p7_FLogsum()>'s table lookup
* approximation: approximation result - exact result.
*
* This is of course computable analytically for
* any <a,b> given <p7_LOGSUM_TBL>; but the function
* is useful for some routines that want to determine
* if <p7_FLogsum()> has been compiled in its
* exact slow mode for debugging purposes. Testing
* <p7_FLogsumError(-0.4, -0.5) > 0.0001>
* for example, suffices to detect that the function
* is compiled in its fast approximation mode given
* the defaults.
*/
static float
p7_FLogsumError(float a, float b)
{
float approx = p7_FLogsum(a,b);
float exact = std::log(std::exp(a) + std::exp(b));
return (std::exp(approx) - std::exp(exact));
}
/* Struct: Table_Initializer
* Purpose: Initialize the lookup table on construction.
*
*/
struct Table_Initializer
{
Table_Initializer()
{
p7_FLogsumInit();
}
}; // struct Table_Initializer
}; // struct p7_FLogsum_Helper
/*
* Publish main methods outside of the helper struct.
*/
inline float p7_FLogsum(float a, float b) { return p7_FLogsum_Helper::p7_FLogsum(a, b); }
inline float p7_FLogsumError(float a, float b) { return p7_FLogsum_Helper::p7_FLogsumError(a, b); }
} // namespace logsum
#endif
#ifdef SAMPLE_p7LOGSUM
/*
g++ -std=c++11 -DSAMPLE_p7LOGSUM -x c++ logsum.hpp -o sample-logsum
*/
#include <iostream>
#include <sstream>
using namespace std;
using namespace logsum;
int main(int argc, char* argv[])
{
if (argc != 3)
{
cerr << "use: " << argv[0] << " <a> <b>" << endl;
return EXIT_FAILURE;
}
float a;
float b;
float result;
istringstream(argv[1]) >> a;
istringstream(argv[2]) >> b;
result = p7_FLogsum(a, b);
cout << "p7_FLogsum(" << a << ", " << b << ") = " << result << endl;
result = log(exp(a) + exp(b));
cout << "log(exp(" << a << ") + exp(" << b << ")) = " << result << endl;
cout << "Absolute error in probability: " << p7_FLogsumError(a, b) << endl;
}
#endif
#ifdef BENCHMARK_p7LOGSUM
/*
Compare with the original logsum.{h,cpp} (not included in this repo).
Assuming they are in /somedir.
Compile:
DIR=/somedir; g++ -std=c++11 -DBENCHMARK_p7LOGSUM -x c++ -I${DIR} logsum.hpp ${DIR}/logsum.cpp -o benchmark-logsum
Run:
./benchmark-logsum 42 0
./benchmark-logsum 42 1
*/
#include <chrono>
#include <iostream>
#include <random>
#include <deque>
#include <sstream>
#include <vector>
using namespace std;
using namespace logsum;
int main(int argc, char* argv[])
{
if (argc < 3)
{
cerr << "use: " << argv[0] << " <seed> <version>" << endl
<< "where <version> means:" << endl
<< " 0: use exp&log" << endl
<< " 1: use table lookup" << endl;
return EXIT_FAILURE;
}
size_t seed = 0;
unsigned version = 0;
istringstream(argv[1]) >> seed;
istringstream(argv[2]) >> version;
if (seed == 0)
{
seed = chrono::high_resolution_clock::now().time_since_epoch().count();
}
clog << "seed: " << seed << endl;
clog << "version: " << version << endl;
const unsigned n = 100000000;
std::deque< std::pair< float, float > > s;
mt19937 rg(seed);
uniform_real_distribution< float > unif;
for (unsigned i = 0; i < n; ++i)
{
s.emplace_back(unif(rg), unif(rg));
}
float res = 0.0;
// start timer
auto start_time = chrono::high_resolution_clock::now();
if (version == 0)
{
for (unsigned i = 0; i < s.size(); ++i)
{
float& a = s[i].first;
float& b = s[i].second;
res = std::log(std::exp(a) + std::exp(b));
(void)res;
}
}
else if (version == 1)
{
for (unsigned i = 0; i < s.size(); ++i)
{
float& a = s[i].first;
float& b = s[i].second;
res = logsum::p7_FLogsum(a, b);
(void)res;
}
}
// end timer
auto end_time = chrono::high_resolution_clock::now();
cout << "time: " << chrono::duration_cast< chrono::milliseconds >(end_time - start_time).count() << endl;
}
#endif
|