/usr/share/perl5/Math/Round.pm is in libmath-round-perl 0.07-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | package Math::Round;
use strict;
use POSIX ();
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
require Exporter;
@ISA = qw(Exporter AutoLoader);
@EXPORT = qw(round nearest);
@EXPORT_OK = qw(round nearest round_even round_odd round_rand
nearest_ceil nearest_floor nearest_rand
nlowmult nhimult );
$VERSION = '0.07';
%EXPORT_TAGS = ( all => [ @EXPORT_OK ] );
#--- Default value for "one-half". This is the lowest value that
#--- gives acceptable results for test #6 in test.pl. See the pod
#--- for more information.
$Math::Round::half = 0.50000000000008;
sub round {
my $x;
my @res = map {
if ($_ >= 0) { POSIX::floor($_ + $Math::Round::half); }
else { POSIX::ceil($_ - $Math::Round::half); }
} @_;
return (wantarray) ? @res : $res[0];
}
sub round_even {
my @res = map {
my ($sign, $in, $fr) = _sepnum($_);
if ($fr == 0.5) {
$sign * (($in % 2 == 0) ? $in : $in + 1);
} else {
$sign * POSIX::floor(abs($_) + $Math::Round::half);
}
} @_;
return (wantarray) ? @res : $res[0];
}
sub round_odd {
my @res = map {
my ($sign, $in, $fr) = _sepnum($_);
if ($fr == 0.5) {
$sign * (($in % 2 == 1) ? $in : $in + 1);
} else {
$sign * POSIX::floor(abs($_) + $Math::Round::half);
}
} @_;
return (wantarray) ? @res : $res[0];
}
sub round_rand {
my @res = map {
my ($sign, $in, $fr) = _sepnum($_);
if ($fr == 0.5) {
$sign * ((rand(4096) < 2048) ? $in : $in + 1);
} else {
$sign * POSIX::floor(abs($_) + $Math::Round::half);
}
} @_;
return (wantarray) ? @res : $res[0];
}
#--- Separate a number into sign, integer, and fractional parts.
#--- Return as a list.
sub _sepnum {
my $x = shift;
my $sign = ($x >= 0) ? 1 : -1;
$x = abs($x);
my $i = int($x);
return ($sign, $i, $x - $i);
}
#------ "Nearest" routines (round to a multiple of any number)
sub nearest {
my $targ = abs(shift);
my @res = map {
if ($_ >= 0) { $targ * int(($_ + $Math::Round::half * $targ) / $targ); }
else { $targ * POSIX::ceil(($_ - $Math::Round::half * $targ) / $targ); }
} @_;
return (wantarray) ? @res : $res[0];
}
# In the next two functions, the code for positive and negative numbers
# turns out to be the same. For negative numbers, the technique is not
# exactly obvious; instead of floor(x+0.5), we are in effect taking
# ceiling(x-0.5).
sub nearest_ceil {
my $targ = abs(shift);
my @res = map { $targ * POSIX::floor(($_ + $Math::Round::half * $targ) / $targ) } @_;
return wantarray ? @res : $res[0];
}
sub nearest_floor {
my $targ = abs(shift);
my @res = map { $targ * POSIX::ceil(($_ - $Math::Round::half * $targ) / $targ) } @_;
return wantarray ? @res : $res[0];
}
sub nearest_rand {
my $targ = abs(shift);
my @res = map {
my ($sign, $in, $fr) = _sepnear($_, $targ);
if ($fr == 0.5 * $targ) {
$sign * $targ * ((rand(4096) < 2048) ? $in : $in + 1);
} else {
$sign * $targ * int((abs($_) + $Math::Round::half * $targ) / $targ);
}
} @_;
return (wantarray) ? @res : $res[0];
}
#--- Next lower multiple
sub nlowmult {
my $targ = abs(shift);
my @res = map { $targ * POSIX::floor($_ / $targ) } @_;
return wantarray ? @res : $res[0];
}
#--- Next higher multiple
sub nhimult {
my $targ = abs(shift);
my @res = map { $targ * POSIX::ceil($_ / $targ) } @_;
return wantarray ? @res : $res[0];
}
#--- Separate a number into sign, "integer", and "fractional" parts
#--- for the 'nearest' calculation. Return as a list.
sub _sepnear {
my ($x, $targ) = @_;
my $sign = ($x >= 0) ? 1 : -1;
$x = abs($x);
my $i = int($x / $targ);
return ($sign, $i, $x - $i*$targ);
}
1;
__END__
=head1 NAME
Math::Round - Perl extension for rounding numbers
=head1 SYNOPSIS
use Math::Round qw(...those desired... or :all);
$rounded = round($scalar);
@rounded = round(LIST...);
$rounded = nearest($target, $scalar);
@rounded = nearest($target, LIST...);
# and other functions as described below
=head1 DESCRIPTION
B<Math::Round> supplies functions that will round numbers in different
ways. The functions B<round> and B<nearest> are exported by
default; others are available as described below. "use ... qw(:all)"
exports all functions.
=head1 FUNCTIONS
=over 2
=item B<round> LIST
Rounds the number(s) to the nearest integer. In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded
"to infinity"; i.e., positive values are rounded up (e.g., 2.5
becomes 3) and negative values down (e.g., -2.5 becomes -3).
Starting in Perl 5.22, the POSIX module by default exports all functions,
including one named "round". If you use both POSIX and this module,
exercise due caution.
=item B<round_even> LIST
Rounds the number(s) to the nearest integer. In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded to the
nearest even number; e.g., 2.5 becomes 2, 3.5 becomes 4, and -2.5
becomes -2.
=item B<round_odd> LIST
Rounds the number(s) to the nearest integer. In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded to the
nearest odd number; e.g., 3.5 becomes 3, 4.5 becomes 5, and -3.5
becomes -3.
=item B<round_rand> LIST
Rounds the number(s) to the nearest integer. In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded up or
down in a random fashion. For example, in a large number of trials,
2.5 will become 2 half the time and 3 half the time.
=item B<nearest> TARGET, LIST
Rounds the number(s) to the nearest multiple of the target value.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are halfway between two multiples
of the target will be rounded to infinity. For example:
nearest(10, 44) yields 40
nearest(10, 46) 50
nearest(10, 45) 50
nearest(25, 328) 325
nearest(.1, 4.567) 4.6
nearest(10, -45) -50
=item B<nearest_ceil> TARGET, LIST
Rounds the number(s) to the nearest multiple of the target value.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are halfway between two multiples
of the target will be rounded to the ceiling, i.e. the next
algebraically higher multiple. For example:
nearest_ceil(10, 44) yields 40
nearest_ceil(10, 45) 50
nearest_ceil(10, -45) -40
=item B<nearest_floor> TARGET, LIST
Rounds the number(s) to the nearest multiple of the target value.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are halfway between two multiples
of the target will be rounded to the floor, i.e. the next
algebraically lower multiple. For example:
nearest_floor(10, 44) yields 40
nearest_floor(10, 45) 40
nearest_floor(10, -45) -50
=item B<nearest_rand> TARGET, LIST
Rounds the number(s) to the nearest multiple of the target value.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are halfway between two multiples
of the target will be rounded up or down in a random fashion.
For example, in a large number of trials, C<nearest(10, 45)> will
yield 40 half the time and 50 half the time.
=item B<nlowmult> TARGET, LIST
Returns the next lower multiple of the number(s) in LIST.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are between two multiples of the
target will be adjusted to the nearest multiples of LIST that are
algebraically lower. For example:
nlowmult(10, 44) yields 40
nlowmult(10, 46) 40
nlowmult(25, 328) 325
nlowmult(.1, 4.567) 4.5
nlowmult(10, -41) -50
=item B<nhimult> TARGET, LIST
Returns the next higher multiple of the number(s) in LIST.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are between two multiples of the
target will be adjusted to the nearest multiples of LIST that are
algebraically higher. For example:
nhimult(10, 44) yields 50
nhimult(10, 46) 50
nhimult(25, 328) 350
nhimult(.1, 4.512) 4.6
nhimult(10, -49) -40
=back
=head1 VARIABLE
The variable B<$Math::Round::half> is used by most routines in this
module. Its value is very slightly larger than 0.5, for reasons
explained below. If you find that your application does not deliver
the expected results, you may reset this variable at will.
=head1 STANDARD FLOATING-POINT DISCLAIMER
Floating-point numbers are, of course, a rational subset of the real
numbers, so calculations with them are not always exact.
Numbers that are supposed to be halfway between
two others may surprise you; for instance, 0.85 may not be exactly
halfway between 0.8 and 0.9, and (0.75 - 0.7) may not be the same as
(0.85 - 0.8).
In order to give more predictable results,
these routines use a value for
one-half that is slightly larger than 0.5. Nevertheless,
if the numbers to be rounded are stored as floating-point, they will
be subject as usual to the mercies of your hardware, your C
compiler, etc.
=head1 AUTHOR
Math::Round was written by Geoffrey Rommel E<lt>GROMMEL@cpan.orgE<gt>
in October 2000.
=cut
|