This file is indexed.

/usr/share/perl5/Math/Round.pm is in libmath-round-perl 0.07-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
package Math::Round;

use strict;
use POSIX ();
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);

require Exporter;

@ISA = qw(Exporter AutoLoader);
@EXPORT = qw(round nearest);
@EXPORT_OK = qw(round nearest round_even round_odd round_rand
   nearest_ceil nearest_floor nearest_rand
   nlowmult nhimult );
$VERSION = '0.07';

%EXPORT_TAGS = ( all => [ @EXPORT_OK ] );

#--- Default value for "one-half". This is the lowest value that
#--- gives acceptable results for test #6 in test.pl. See the pod
#--- for more information.

$Math::Round::half = 0.50000000000008;

sub round {
 my $x;
 my @res  = map {
  if ($_ >= 0) { POSIX::floor($_ + $Math::Round::half); }
     else { POSIX::ceil($_ - $Math::Round::half); }
 } @_;

 return (wantarray) ? @res : $res[0];
}

sub round_even {
 my @res  = map {
   my ($sign, $in, $fr) = _sepnum($_);
   if ($fr == 0.5) {
      $sign * (($in % 2 == 0) ? $in : $in + 1);
   } else {
      $sign * POSIX::floor(abs($_) + $Math::Round::half);
   }
 } @_;
 return (wantarray) ? @res : $res[0];
}

sub round_odd {
 my @res  = map {
   my ($sign, $in, $fr) = _sepnum($_);
   if ($fr == 0.5) {
      $sign * (($in % 2 == 1) ? $in : $in + 1);
   } else {
      $sign * POSIX::floor(abs($_) + $Math::Round::half);
   }
 } @_;
 return (wantarray) ? @res : $res[0];
}

sub round_rand {
 my @res  = map {
   my ($sign, $in, $fr) = _sepnum($_);
   if ($fr == 0.5) {
      $sign * ((rand(4096) < 2048) ? $in : $in + 1);
   } else {
      $sign * POSIX::floor(abs($_) + $Math::Round::half);
   }
 } @_;
 return (wantarray) ? @res : $res[0];
}

#--- Separate a number into sign, integer, and fractional parts.
#--- Return as a list.
sub _sepnum {
 my $x = shift;
 my $sign = ($x >= 0) ? 1 : -1;
 $x = abs($x);
 my $i = int($x);
 return ($sign, $i, $x - $i);
}

#------ "Nearest" routines (round to a multiple of any number)

sub nearest {
 my $targ = abs(shift);
 my @res  = map {
  if ($_ >= 0) { $targ * int(($_ + $Math::Round::half * $targ) / $targ); }
     else { $targ * POSIX::ceil(($_ - $Math::Round::half * $targ) / $targ); }
 } @_;

 return (wantarray) ? @res : $res[0];
}

# In the next two functions, the code for positive and negative numbers
# turns out to be the same.  For negative numbers, the technique is not
# exactly obvious; instead of floor(x+0.5), we are in effect taking
# ceiling(x-0.5).

sub nearest_ceil {
    my $targ = abs(shift);
    my @res  = map { $targ * POSIX::floor(($_ + $Math::Round::half * $targ) / $targ) } @_;

    return wantarray ? @res : $res[0];
}

sub nearest_floor {
    my $targ = abs(shift);
    my @res  = map { $targ * POSIX::ceil(($_ - $Math::Round::half * $targ) / $targ) } @_;

    return wantarray ? @res : $res[0];
}

sub nearest_rand {
 my $targ = abs(shift);

 my @res = map {
   my ($sign, $in, $fr) = _sepnear($_, $targ);
   if ($fr == 0.5 * $targ) {
      $sign * $targ * ((rand(4096) < 2048) ? $in : $in + 1);
   } else {
      $sign * $targ * int((abs($_) + $Math::Round::half * $targ) / $targ);
   }
 } @_;
 return (wantarray) ? @res : $res[0];
}

#--- Next lower multiple
sub nlowmult {
    my $targ = abs(shift);
    my @res  = map { $targ * POSIX::floor($_ / $targ) } @_;

    return wantarray ? @res : $res[0];
}

#--- Next higher multiple
sub nhimult {
    my $targ = abs(shift);
    my @res  = map { $targ * POSIX::ceil($_ / $targ) } @_;

    return wantarray ? @res : $res[0];
}

#--- Separate a number into sign, "integer", and "fractional" parts
#--- for the 'nearest' calculation.  Return as a list.
sub _sepnear {
 my ($x, $targ) = @_;
 my $sign = ($x >= 0) ? 1 : -1;
 $x = abs($x);
 my $i = int($x / $targ);
 return ($sign, $i, $x - $i*$targ);
}

1;

__END__

=head1 NAME

Math::Round - Perl extension for rounding numbers

=head1 SYNOPSIS

  use Math::Round qw(...those desired... or :all);

  $rounded = round($scalar);
  @rounded = round(LIST...);
  $rounded = nearest($target, $scalar);
  @rounded = nearest($target, LIST...);

  # and other functions as described below

=head1 DESCRIPTION

B<Math::Round> supplies functions that will round numbers in different
ways.  The functions B<round> and B<nearest> are exported by
default; others are available as described below.  "use ... qw(:all)"
exports all functions.

=head1 FUNCTIONS

=over 2

=item B<round> LIST

Rounds the number(s) to the nearest integer.  In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded
"to infinity"; i.e., positive values are rounded up (e.g., 2.5
becomes 3) and negative values down (e.g., -2.5 becomes -3).

Starting in Perl 5.22, the POSIX module by default exports all functions,
including one named "round". If you use both POSIX and this module,
exercise due caution.

=item B<round_even> LIST

Rounds the number(s) to the nearest integer.  In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded to the
nearest even number; e.g., 2.5 becomes 2, 3.5 becomes 4, and -2.5
becomes -2.

=item B<round_odd> LIST

Rounds the number(s) to the nearest integer.  In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded to the
nearest odd number; e.g., 3.5 becomes 3, 4.5 becomes 5, and -3.5
becomes -3.

=item B<round_rand> LIST

Rounds the number(s) to the nearest integer.  In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded up or
down in a random fashion.  For example, in a large number of trials,
2.5 will become 2 half the time and 3 half the time.

=item B<nearest> TARGET, LIST

Rounds the number(s) to the nearest multiple of the target value.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values.  Numbers that are halfway between two multiples
of the target will be rounded to infinity.  For example:

  nearest(10, 44)    yields  40
  nearest(10, 46)            50
  nearest(10, 45)            50
  nearest(25, 328)          325
  nearest(.1, 4.567)          4.6
  nearest(10, -45)          -50

=item B<nearest_ceil> TARGET, LIST

Rounds the number(s) to the nearest multiple of the target value.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values.  Numbers that are halfway between two multiples
of the target will be rounded to the ceiling, i.e. the next
algebraically higher multiple.  For example:

  nearest_ceil(10, 44)    yields  40
  nearest_ceil(10, 45)            50
  nearest_ceil(10, -45)          -40

=item B<nearest_floor> TARGET, LIST

Rounds the number(s) to the nearest multiple of the target value.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values.  Numbers that are halfway between two multiples
of the target will be rounded to the floor, i.e. the next
algebraically lower multiple.  For example:

  nearest_floor(10, 44)    yields  40
  nearest_floor(10, 45)            40
  nearest_floor(10, -45)          -50

=item B<nearest_rand> TARGET, LIST

Rounds the number(s) to the nearest multiple of the target value.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values.  Numbers that are halfway between two multiples
of the target will be rounded up or down in a random fashion.
For example, in a large number of trials, C<nearest(10, 45)> will
yield 40 half the time and 50 half the time.

=item B<nlowmult> TARGET, LIST

Returns the next lower multiple of the number(s) in LIST.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values.  Numbers that are between two multiples of the
target will be adjusted to the nearest multiples of LIST that are
algebraically lower. For example:

  nlowmult(10, 44)    yields  40
  nlowmult(10, 46)            40
  nlowmult(25, 328)          325
  nlowmult(.1, 4.567)          4.5
  nlowmult(10, -41)          -50

=item B<nhimult> TARGET, LIST

Returns the next higher multiple of the number(s) in LIST.
TARGET must be positive.
In scalar context, returns a single value; in list context, returns
a list of values.  Numbers that are between two multiples of the
target will be adjusted to the nearest multiples of LIST that are
algebraically higher. For example:

  nhimult(10, 44)    yields  50
  nhimult(10, 46)            50
  nhimult(25, 328)          350
  nhimult(.1, 4.512)          4.6
  nhimult(10, -49)          -40

=back

=head1 VARIABLE

The variable B<$Math::Round::half> is used by most routines in this
module. Its value is very slightly larger than 0.5, for reasons
explained below. If you find that your application does not deliver
the expected results, you may reset this variable at will.

=head1 STANDARD FLOATING-POINT DISCLAIMER

Floating-point numbers are, of course, a rational subset of the real
numbers, so calculations with them are not always exact.
Numbers that are supposed to be halfway between
two others may surprise you; for instance, 0.85 may not be exactly
halfway between 0.8 and 0.9, and (0.75 - 0.7) may not be the same as
(0.85 - 0.8).

In order to give more predictable results, 
these routines use a value for
one-half that is slightly larger than 0.5.  Nevertheless,
if the numbers to be rounded are stored as floating-point, they will
be subject as usual to the mercies of your hardware, your C
compiler, etc.

=head1 AUTHOR

Math::Round was written by Geoffrey Rommel E<lt>GROMMEL@cpan.orgE<gt>
in October 2000.

=cut