This file is indexed.

/usr/share/ncarg/hluex/streamlineplot/st04c.c is in libncarg-data 6.4.0-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/*
 *      $Id: st04c.c,v 1.8 2010-03-15 22:49:24 haley Exp $
 */
/***********************************************************************
*                                                                      *
*                Copyright (C)  1996                                   *
*        University Corporation for Atmospheric Research               *
*                All Rights Reserved                                   *
*                                                                      *
***********************************************************************/
/*
 *  File:       st04c.c
 *
 *  Author:     David Brown (converted by Mary Haley)
 *              National Center for Atmospheric Research
 *              PO 3000, Boulder, Colorado
 *
 *  Date:       Thu June 27 9:47:28 MST 1996
 *
 *  Description: This example shows a StreamlinePlot of 500 mb wind 
 *               vector data overlaid on a MapPlot. The streamlines
 *               are drawn over a VectorPlot of surface winds colored
 *               by surface pressure that in turn is drawn over a filled
 *               ContourPlot of surface temperature. Different intervals
 *               of the "temp1" colormap are used to color the contour
 *               levels and the vectors.
 *               The data represents 15 days of weather over North
 *               America in January, 1996.
 *               The data is extracted from NMC forcast data produced 
 *               at 12 hour intervals and converted to netcdf format 
 *               by Unidata. Most of the time steps in the files
 *               extracted from the original data are taken from the 
 *               0 and 6 hour forecast times. However, because some of
 *               the original files were lost, certain time steps come
 *               from longer range forcasts. Also, several steps had
 *               to be excluded from the frame set because the data is 
 *               defective. The result is that there is an 
 *               apparent discontinuity between some of the frames 
 *               when the output is animated.
 */

#include <math.h>
#include <ncarg/gks.h>
#include <ncarg/ncargC.h>
#include <ncarg/hlu/hlu.h>
#include <ncarg/hlu/App.h>
#include <ncarg/hlu/NcgmWorkstation.h>
#include <ncarg/hlu/PSWorkstation.h>
#include <ncarg/hlu/PDFWorkstation.h>
#include <ncarg/hlu/CairoWorkstation.h>
#include <ncarg/hlu/StreamlinePlot.h>
#include <ncarg/hlu/VectorPlot.h>
#include <ncarg/hlu/ScalarField.h>
#include <ncarg/hlu/MapPlot.h>
#include <ncarg/hlu/ContourPlot.h>
#include <ncarg/hlu/TextItem.h>
#include <netcdf.h>

/*
 * Depending on the value of the TIMESTEPS variable declared below,
 * this example example can generate up to 61 frames from the 64
 * timesteps in the data files. As shipped, only the first 20 frames 
 * are created. To see the complete plot uncomment the second 
 * assignment to TIMESTEPS. Some systems may not have enough physical
 * memory to allow all frames to be viewed as an animation.
 *
 * #define TIMESTEPS 64
 */
#define TIMESTEPS 20

/*
 * Initialize netCDF filenames
 */
char *cdffiles[6] = {"Ustorm.cdf","Vstorm.cdf","Pstorm.cdf","Tstorm.cdf","U500storm.cdf","V500storm.cdf"};


int main(int argc, char *argv[])
{
    int i, j, d, h;
    int appid, wid, cnid, vcid, stid, txid, amid, mpid, tmid, stdmid;
    long stid_len;
    int vfield, vfield2, sfield, sfield2;
    int rlist;
    ng_size_t len_dims[2];
    long strt[1], cnt[1];
    long latlen, lonlen;
    long timelen;
    int *timestep;
    int ncid[6], uid, vid, u5id, v5id, pid, tid;
    int latid, lonid;
    float *lon, *lat;
    float *X, *Y;
    char  filename[256];
    char  *rftime;
    const char *dir = _NGGetNCARGEnv("data");
    char hour[3], day[3], mainstring[17];
    extern void get_2d_array(float *, long, long, int, int, long);
    char const *wks_type = "x11";

/*
 * Initialize the high level utility library
 */
    NhlInitialize();
/*
 * Create an application object.
 */
    rlist = NhlRLCreate(NhlSETRL);
    NhlRLClear(rlist);
    NhlRLSetString(rlist,NhlNappUsrDir,"./");
    NhlRLSetString(rlist,NhlNappDefaultParent,"True");
    NhlCreate(&appid,"st04",NhlappClass,NhlDEFAULT_APP,rlist);

    if (!strcmp(wks_type,"ncgm") || !strcmp(wks_type,"NCGM")) {
/*
 * Create a meta file workstation.
 */
        NhlRLClear(rlist);
        NhlRLSetString(rlist,NhlNwkMetaName,"./st04c.ncgm");
        NhlRLSetString(rlist,NhlNwkColorMap,"temp1");
        NhlCreate(&wid,"st04Work",
                  NhlncgmWorkstationClass,NhlDEFAULT_APP,rlist);
    }
    else if (!strcmp(wks_type,"x11") || !strcmp(wks_type,"X11")) {
/*
 * Create an X workstation.
 */
        NhlRLClear(rlist);
        NhlRLSetInteger(rlist,NhlNwkPause,True);
        NhlRLSetString(rlist,NhlNwkColorMap,"temp1");
        NhlCreate(&wid,"st04Work",NhlcairoWindowWorkstationClass,appid,rlist);
    }

    else if (!strcmp(wks_type,"oldps") || !strcmp(wks_type,"OLDPS")) {
/*
 * Create an older-style PostScript workstation.
 */
        NhlRLClear(rlist);
        NhlRLSetString(rlist,NhlNwkPSFileName,"st04c.ps");
        NhlRLSetString(rlist,NhlNwkColorMap,"temp1");
        NhlCreate(&wid,"st04Work",NhlpsWorkstationClass,appid,rlist);
    }
    else if (!strcmp(wks_type,"oldpdf") || !strcmp(wks_type,"OLDPDF")) {
/*
 * Create an older-style PDF workstation.
 */
        NhlRLClear(rlist);
        NhlRLSetString(rlist,NhlNwkPDFFileName,"st04c.pdf");
        NhlRLSetString(rlist,NhlNwkColorMap,"temp1");
        NhlCreate(&wid,"st04Work",NhlpdfWorkstationClass,appid,rlist);
    }
    else if (!strcmp(wks_type,"pdf") || !strcmp(wks_type,"PDF") ||
             !strcmp(wks_type,"ps") || !strcmp(wks_type,"PS")) {
/*
 * Create a cairo PS/PDF workstation.
 */
        NhlRLClear(rlist);
        NhlRLSetString(rlist,NhlNwkFileName,"st04c");
        NhlRLSetString(rlist,NhlNwkFormat,(char*)wks_type);
        NhlRLSetString(rlist,NhlNwkColorMap,"temp1");
        NhlCreate(&wid,"st04Work",NhlcairoDocumentWorkstationClass,appid,rlist);
    }
    else if (!strcmp(wks_type,"png") || !strcmp(wks_type,"PNG")) {
/*
 * Create a cairo PNG workstation.
 */
        NhlRLClear(rlist);
        NhlRLSetString(rlist,NhlNwkFileName,"st04c");
        NhlRLSetString(rlist,NhlNwkFormat,(char*)wks_type);
        NhlRLSetString(rlist,NhlNwkColorMap,"temp1");
        NhlCreate(&wid,"st04Work",NhlcairoImageWorkstationClass,appid,rlist);
    }
/*
 * Open the netCDF files.
 */
    for( i = 0; i <= 5; i++ ) {
        sprintf( filename, "%s/cdf/%s", dir, cdffiles[i] );
        ncid[i] = ncopen(filename,NC_NOWRITE);
    }
/*
 * Get the lat/lon dimensions (they happen to be the
 * same for all files in this case)
 */
    latid = ncdimid(ncid[0],"lat");
    lonid = ncdimid(ncid[0],"lon");
    ncdiminq(ncid[0],latid,(char *)0,&latlen);
    ncdiminq(ncid[0],lonid,(char *)0,&lonlen);
    len_dims[0] = latlen;
    len_dims[1] = lonlen;
/*
 * Get the variable ids
 */
    uid = ncvarid(ncid[0],"u");
    vid = ncvarid(ncid[1],"v");
    pid = ncvarid(ncid[2],"p");
    tid = ncvarid(ncid[3],"t");
    u5id = ncvarid(ncid[4],"u");
    v5id = ncvarid(ncid[5],"v");
    latid = ncvarid(ncid[0],"lat");
    lonid = ncvarid(ncid[0],"lon");
/*
 * allocate space for arrays
 */
    X = (float *)malloc(sizeof(float)*latlen*lonlen);
    Y = (float *)malloc(sizeof(float)*latlen*lonlen);
    lat = (float *)malloc(sizeof(float)*latlen);
    lon = (float *)malloc(sizeof(float)*lonlen);
/*
 * Get lat/lon values (they are the same for all files)
 */
    strt[0] = 0;
    cnt[0] = latlen;
    ncvarget(ncid[0],latid,(long const *)strt,(long const *)cnt,lat);
    cnt[0] = lonlen;
    ncvarget(ncid[0],lonid,(long const *)strt,(long const *)cnt,lon);
/*
 * Get U and V data values
 */
    get_2d_array(X,latlen,lonlen,ncid[0],uid,0);
    get_2d_array(Y,latlen,lonlen,ncid[1],vid,0);
/*
 * Create a VectorField of the surface wind data
 */
    NhlRLClear(rlist);
    NhlRLSetMDFloatArray(rlist,NhlNvfUDataArray,X,2,len_dims);
    NhlRLSetMDFloatArray(rlist,NhlNvfVDataArray,Y,2,len_dims);
    NhlRLSetFloat(rlist,NhlNvfXCStartV,lon[0]);
    NhlRLSetFloat(rlist,NhlNvfYCStartV,lat[0]);
    NhlRLSetFloat(rlist,NhlNvfXCEndV,lon[lonlen-1]);
    NhlRLSetFloat(rlist,NhlNvfYCEndV,lat[latlen-1]);
    NhlRLSetFloat(rlist,NhlNvfMissingUValueV,-9999.0);
    NhlCreate(&vfield,"VectorField",NhlvectorFieldClass,appid,rlist);
/*
 * Create a VectorField of 500 millibar wind data
 *
 * Get U and V values
 */
    get_2d_array(X,latlen,lonlen,ncid[4],u5id,0);
    get_2d_array(Y,latlen,lonlen,ncid[5],v5id,0);

    NhlRLClear(rlist);
    NhlRLSetMDFloatArray(rlist,NhlNvfUDataArray,X,2,len_dims);
    NhlRLSetMDFloatArray(rlist,NhlNvfVDataArray,Y,2,len_dims);
    NhlRLSetFloat(rlist,NhlNvfXCStartV,lon[0]);
    NhlRLSetFloat(rlist,NhlNvfYCStartV,lat[0]);
    NhlRLSetFloat(rlist,NhlNvfXCEndV,lon[lonlen-1]);
    NhlRLSetFloat(rlist,NhlNvfYCEndV,lat[latlen-1]);
    NhlRLSetFloat(rlist,NhlNvfMissingUValueV,-9999.0);
    NhlCreate(&vfield2,"VectorField",NhlvectorFieldClass,appid,rlist);
/*
 * Create a ScalarField of surface pressure 
 *
 * Get P data values
 */
    get_2d_array(X,latlen,lonlen,ncid[2],pid,0);

    for( i = 0; i < latlen*lonlen; i++ ) {
        if( X[i] != -9999.0 ) {
            X[i] /= 100.;
        }
    }

    NhlRLClear(rlist);
    NhlRLSetMDFloatArray(rlist,NhlNsfDataArray,X,2,len_dims);
    NhlRLSetFloat(rlist,NhlNsfXCStartV,lon[0]);
    NhlRLSetFloat(rlist,NhlNsfYCStartV,lat[0]);
    NhlRLSetFloat(rlist,NhlNsfXCEndV,lon[lonlen-1]);
    NhlRLSetFloat(rlist,NhlNsfYCEndV,lat[latlen-1]);
    NhlRLSetFloat(rlist,NhlNsfMissingValueV,-9999.0);
    NhlCreate(&sfield,"ScalarField",NhlscalarFieldClass,appid,rlist);
/*
 * Create a ScalarField of surface temperature 
 * (convert from Kelvin to Farenheit)
 *
 * Get T data values
 */
    get_2d_array(X,latlen,lonlen,ncid[3],tid,0);
/*
 * Convert to Fahrenheit
 */
    for( i = 0; i < latlen*lonlen; i++ ) {
        if( X[i] != -9999.0) {
            X[i] = (X[i] - 273.15) * 9.0/5.0 + 32.0;
        }
    }

    NhlRLClear(rlist);
    NhlRLSetMDFloatArray(rlist,NhlNsfDataArray,X,2,len_dims);
    NhlRLSetFloat(rlist,NhlNsfXCStartV,lon[0]);
    NhlRLSetFloat(rlist,NhlNsfYCStartV,lat[0]);
    NhlRLSetFloat(rlist,NhlNsfXCEndV,lon[lonlen-1]);
    NhlRLSetFloat(rlist,NhlNsfYCEndV,lat[latlen-1]);
    NhlRLSetFloat(rlist,NhlNsfMissingValueV,-9999.0);
    NhlCreate(&sfield2,"ScalarField2",NhlscalarFieldClass,appid,rlist);
/*
 * Create a ContourPlot with surface temperature data
 */
    NhlRLClear(rlist);
    NhlRLSetString(rlist,NhlNcnFillOn,"true");
    NhlRLSetString(rlist,NhlNcnLinesOn,"false");
    NhlRLSetString(rlist,NhlNcnFillDrawOrder,"predraw");
    NhlRLSetInteger(rlist,NhlNcnScalarFieldData,sfield2);
    NhlCreate(&cnid,"contourplot",NhlcontourPlotClass,wid,rlist);
/*
 * Create a VectorPlot with the surface wind and pressure data
 */
    NhlRLClear(rlist);
    NhlRLSetString(rlist,NhlNvcUseScalarArray,"true");
    NhlRLSetInteger(rlist,NhlNvcVectorFieldData,vfield);
    NhlRLSetInteger(rlist,NhlNvcScalarFieldData,sfield);
    NhlCreate(&vcid,"vectorplot",NhlvectorPlotClass,wid,rlist);
/*
 * Create a StreamlinePlot with 500 mb wind data
 */
    NhlRLClear(rlist);
    NhlRLSetString(rlist,NhlNpmTitleDisplayMode,"always");
    NhlRLSetString(rlist,NhlNtiMainFuncCode,"~");
    NhlRLSetInteger(rlist,NhlNstVectorFieldData,vfield2);
    NhlCreate(&stid,"streamlineplot",NhlstreamlinePlotClass,wid,rlist);
/*
 * Create an annotation used to explain the streamline data
 */
    NhlCreate(&txid,"streamlineplotanno",NhltextItemClass,wid,0);
    amid = NhlAddAnnotation(stid,txid);
/*
 * Create a map object
 */
    NhlRLClear(rlist);
/*    NhlRLSetString(rlist,NhlNvpUseSegments,"true"); */
    NhlCreate(&mpid,"mapplot",NhlmapPlotClass,wid,rlist);
/*
 * Overlay everything on the MapPlot. The last object overlaid will
 * appear on top
 */
    NhlAddOverlay(mpid,cnid,-1);
    NhlAddOverlay(mpid,vcid,-1);
    NhlAddOverlay(mpid,stid,-1);
/*
 * Variables for manipulating the title string
 */
    tmid = ncdimid(ncid[1],"timestep");
    ncdiminq(ncid[1],tmid,(char *)0,&timelen);
    tmid = ncvarid(ncid[1],"timestep");
    timestep = (int *)malloc(sizeof(int)*timelen);

    strt[0] = 0;
    cnt[0] = timelen;
    ncvarget(ncid[1],tmid,(long const *)strt,(long const *)cnt,timestep);
    sprintf( hour, "00");
    sprintf( day, "05");
    
    stdmid = ncdimid(ncid[1],"timelen");
    ncdiminq(ncid[1], stdmid, (char *)0, &stid_len );
    tmid = ncvarid(ncid[1],"reftime");
    rftime = (char *)malloc((stid_len+1)*sizeof(char));

    strt[0] = 0; cnt[0] = stid_len;
    ncvarget(ncid[1],tmid,(long const *)strt,(long const *)cnt,rftime);

    for( i = 0; i <= TIMESTEPS-1; i++ ) {
        if (i != 17 && i != 36 && i != 37) {
/*
 * Figure out the hour and day from the timestep, convert to strings
 * and build the title string
 */
            d = timestep[i] / 24 + 5;
            h = timestep[i] % 24;
            if (h > 9) {
                sprintf( hour, "%d", h );
            }
            else {
                sprintf( hour, "0%d", h );
            }
            if (d > 9) {
                sprintf(day, "%d", d );
            }
            else {
                sprintf(day, "0%d", d );
            }
/*
 * Set the new title string
 */
			strcpy(mainstring, rftime);
            sprintf(&mainstring[8], "%2s %2s:00", day, hour);
            printf("%s\n",mainstring);
            NhlRLClear(rlist);
            NhlRLSetString(rlist,NhlNtiMainString,mainstring);
            NhlSetValues(stid,rlist);
/*
 * Modify the data objects with data for the current time step
 *
 * Get U and V values
 */         
            get_2d_array(X,latlen,lonlen,ncid[0],uid,i);
            get_2d_array(Y,latlen,lonlen,ncid[1],vid,i);

            NhlRLClear(rlist);
            NhlRLSetMDFloatArray(rlist,NhlNvfUDataArray,X,2,len_dims);
            NhlRLSetMDFloatArray(rlist,NhlNvfVDataArray,Y,2,len_dims);
            NhlSetValues(vfield,rlist);
/*
 * Get U and V values
 */
            get_2d_array(X,latlen,lonlen,ncid[4],u5id,i);
            get_2d_array(Y,latlen,lonlen,ncid[5],v5id,i);

            NhlRLClear(rlist);
            NhlRLSetMDFloatArray(rlist,NhlNvfUDataArray,X,2,len_dims);
            NhlRLSetMDFloatArray(rlist,NhlNvfVDataArray,Y,2,len_dims);
            NhlSetValues(vfield2,rlist);
/*
 * Get P values
 */
            get_2d_array(X,latlen,lonlen,ncid[2],pid,i);

            for( j = 0; j < latlen*lonlen; j++ ) {
                if( X[j] != -9999.0 ) {
                    X[j] /= 100.;
                }
            }
            NhlRLClear(rlist);
            NhlRLSetMDFloatArray(rlist,NhlNsfDataArray,X,2,len_dims);
            NhlSetValues(sfield,rlist);
/*
 * Get T values
 */
            get_2d_array(X,latlen,lonlen,ncid[3],tid,i);
/*
 * Convert to Fahrenheit
 */
            for( j = 0; j < latlen*lonlen; j++ ) {
                if( X[j] != -9999.0) {
                    X[j] = (X[j] - 273.15) * 9.0/5.0 + 32.0;
                }
            }

            NhlRLClear(rlist);
            NhlRLSetMDFloatArray(rlist,NhlNsfDataArray,X,2,len_dims);
            NhlSetValues(sfield2,rlist);
/* 
 * Draw the plot
 */
            NhlDraw(mpid);
            NhlFrame(wid);
        }
    }
/* 
 *  Destroy the workstation object and exit.
 */
    NhlDestroy(wid);
    NhlClose();
    exit(0);
}

/*
 * function for reading in 3-d array from netCDF
 * file and converting it to a 2-d array.
 */
void get_2d_array(
    float *array,
    long latlen,
    long lonlen,
    int fid,
    int aid,
    long timestep                  
)
{
    long start[3], count[3];

    start[0] = timestep;
    start[1] = start[2] = 0;
    count[0] = 1; count[1] = latlen; count[2] = lonlen;
    ncvarget(fid,aid,(long const *)start,(long const *)count,array);
    return;
}