/usr/share/ncarg/nclscripts/csm/extval.ncl is in libncarg-data 6.4.0-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 | ;---
; It is important to note that the 'center' (aka: location, shift) parameter is
; not the mean. However, it does represent the ‘center’ of the distribution.
; The 'scale' (aka, sigma, beta) parameter is not the standard deviation. However,
; it does govern the spread (size) of the deviations about the 'center'.
;---
undef("extval_gumbel")
function extval_gumbel(x[*]:numeric, scale[*]:numeric, center[*]:numeric, opt[1]:integer)
;
; Extreme Value Type I distribution ==> Gumbel Distribution
; The shape of the Gumbel model does not depend on the distribution parameters
; It is unbounded on the x-axis
;
; The Gumbel distribution is used to model the distribution of the maximum (or minimum)
; of a number of samples of various distributions.
; The shape of the Gumbel model does not depend on the distribution parameters
; It is bounded on the left and has a heavy upper tail.
;
; See: http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm
;
; minmax <=0 results in MINIMA (smallest extreme value)
; minmax > 0 results in MAXIMA (largest extreme value)
;
; GEV Type I with shape=0
; Domain of attraction for many common distributions ( e.g., normal , exponential,
; gamma), not frequently found to fit ‘real world data ;
;
local nctr, nscl, nx, n, ix, z, work, pdf, cdf
begin
nctr = dimsizes(center)
nscl = dimsizes(scale)
if (nctr.ne.nscl) then
print("extval_gumbel: center and scale arguments must be the same size")
print("extval_gumbel: nctr="+nctr+" nscl="+nscl)
exit
end if
nx = dimsizes(x)
if (typeof(x).eq."double" .or. \
typeof(scale).eq."double" .or. typeof(center).eq."double") then
pdf = new( (/nscl,nx/), "double", -9999d0 )
else
pdf = new( (/nscl,nx/), "float", -9999.0 )
end if
cdf = pdf
ix = dim_pqsort_n(x, 1, 0) ; for plot reasons it is better 'x' is ascending
do n=0,nscl-1
if (scale(n).le.0) then
print("extval_gumbel: shape <=0: scale="+scale(n))
continue
end if
z = (x(ix)-center(n))/scale(n) ; minimum
if (opt.ge.0) then ; maximum
z = -z
end if
work = exp(z)
pdf(n,:) = (totype(1,typeof(x))/scale(n))*(work*exp(-work))
cdf(n,:) = exp(-work) ; maximum
if (opt.lt.0) then
cdf(n,:) = 1-cdf(n,:) ; minimum
end if
if (opt.ge.0) then ; maximum
pdf@long_name = "Gumbel: Extreme Value Type I: Maxima; PDF"
cdf@long_name = "Gumbel: Extreme Value Type I: Maxima; CDF"
else
pdf@long_name = "Gumbel: Extreme Value Type I: Minima; PDF"
cdf@long_name = "Gumbel: Extreme Value Type I: Minima; CDF"
end if
end do
pdf@center = center
pdf@scale = scale
cdf@center = center
cdf@scale = scale
if (nscl.eq.1) then
return([/pdf(0,:), cdf(0,:)/])
else
return([/pdf, cdf/])
end if
end
;---
undef("extval_frechet")
function extval_frechet(x[*]:numeric, shape[*]:numeric, scale[*]:numeric \
,center[*]:numeric, opt[1]:numeric)
;
; Extreme Value Type II distribution ==> Frechet Distribution
; The Fréchet model relates to MAXIMA (largest extreme value)
;
; http://www.mathwave.com/help/easyfit/html/analyses/distributions/frechet.html
;
; GEV type II with ξ > 0 ( Frechet, heavy tailed)
; Fits found for precipitation, stream flow, economic damage, ..
;
; The Frechet distribution requires lower bound.
;
local nshp, nscl, nctr, nx, pdf, cdf, y, ix
begin
nshp = dimsizes(shape)
nscl = dimsizes(scale)
nctr = dimsizes(center)
if (nshp.ne.nscl .or. nshp.ne.nctr) then
print("extval_frechet: shape, scale and center arguments must be the same size")
print("extval_frechet: nshp="+nshp+" nscl="+nctr+" nscl="+nctr)
exit
end if
nx = dimsizes(x)
if (typeof(x).eq."double" .or. \
typeof(shape).eq."double" .or. typeof(scale).eq."double" .or. typeof(center).eq."double") then
pdf = new( (/nscl,nx/), "double", -9999d0 )
else
pdf = new( (/nscl,nx/), "float", -9999.0 )
end if
cdf = pdf
if (any(x.le.0)) then
print("extval_frechet: one or more x <= 0")
exit
end if
ix = dim_pqsort_n(x, 1, 0) ; for plot reasons it is better 'x' is asebding
do n=0,nscl-1
if (scale(n).le.0 .or. shape(n).le.0) then
print("extval_frechet: unexpected value(s): scale="+scale(n)+" shape="+shape(n))
continue
end if
y = scale(n)/(x(ix)-center(n))
cdf(n,:) = exp(-(y^shape(n)))
pdf(n,:) = (shape(n)/scale(n))*((y^(shape(n)+1)) * cdf(n,:))
pdf(n,:) = where(x.le.center(n), pdf@_FillValue, pdf(n,:)) ; undefined
end do
pdf@long_name = "PDF Frechet: Extreme Value Type II: Maxima"
pdf@shape = shape
pdf@scale = scale
pdf@center = center
cdf@long_name = "CDF: Frechet: Extreme Value Type II: Maxima"
cdf@shape = shape
cdf@scale = scale
cdf@center = center
if (nscl.eq.1) then
return([/pdf(0,:), cdf(n,:)/])
else
return([/pdf, cdf/])
end if
end
;---
undef("extval_weibull")
function extval_weibull(x[*]:numeric, shape[*]:numeric, scale[*]:numeric, center[*]:numeric, opt[1]:integer)
;
; Extreme Value Type III distribution ==> Weibull Distribution
; The distribution is defined for x>center
; The Weibull model relates to minima (smallest extreme value)
;
; http://www.mathwave.com/help/easyfit/html/analyses/distributions/weibull.html
;
; GEV type III with ξ < 0 ( Weibull, bounded) Fits
; Fits found for temperature, wind speed, pollutants, sea level
;
local y, pdf, cdf, nshp, nscl, nctr, nx, n, ix
begin
;if (any(x.le.0)) then
; print("extval_weibull: one or more x <= 0")
; exit
;end if
nshp = dimsizes(shape)
nscl = dimsizes(scale)
nctr = dimsizes(center)
if (nshp.ne.nscl .or. nshp.ne.nctr) then
print("extval_weibull: shape, scale and center arguments must be the same size")
print("extval_weibull: nshp="+nshp+" nscl="+nscl+" nctr="+nctr)
exit
end if
nx = dimsizes(x)
if (typeof(x).eq."double" .or. \
typeof(shape).eq."double" .or. typeof(scale).eq."double" .or. typeof(center).eq."double") then
pdf = new( (/nscl,nx/), "double", -9999d0 )
else
pdf = new( (/nscl,nx/), "float", -9999.0 )
end if
cdf = pdf
do n=0,nscl-1
if (scale(n).le.0 .or. shape(n).le.0) then
print("extval_weibull: shape <=0: shape="+shape(n)+"; scale="+scale(n) )
continue
end if
ix = dim_pqsort_n(x, 1, 0) ; for plot reasons it is better 'x' is ascending
y = (x(ix)-center(n))/scale(n)
pdf(n,:) = (shape(n)/scale(n))*(y^(shape(n)-1)) * exp(-(y^shape(n)))
pdf(n,:) = where(x.le.center(n), 0, pdf(n,:))
cdf(n,:) = 1-exp(-(y^shape(n)))
end do
pdf@long_name = "Weibull: Extreme Value Type III: PDF"
pdf@shape = shape
pdf@scale = scale
pdf@center = center
cdf@long_name = "Weibull: Extreme Value Type III: CDF"
cdf@shape = shape
cdf@scale = scale
cdf@center = center
if (nscl.eq.1) then
return([/pdf(0,:), cdf(0,:)/])
else
return([/pdf, cdf/])
end if
end
;================
undef("extval_pareto")
function extval_pareto(x[*]:numeric, shape[*]:numeric, scale[*]:numeric, location[*]:numeric \
, ptype[1]:integer, opt[1]:integer)
; Pareto Distributions:
; http://www.mathwave.com/help/easyfit/html/analyses/distributions/gen_pareto.html
; http://www.mathwave.com/help/easyfit/html/analyses/distributions/pareto.html
; http://www.mathwave.com/help/easyfit/html/analyses/distributions/pareto2.html
;
; https://en.wikipedia.org/wiki/Pareto_distribution
;
local nscl, nshp, nloc, nx, pdf, cdf, n, con, conk, cons, shpy, pdf, cdf, y
begin
nscl = dimsizes(scale)
nshp = dimsizes(shape)
nloc = dimsizes(location)
nx = dimsizes(x)
pdf = new( (/nshp,nx/), typeof(x), getVarFillValue(x))
cdf = pdf
if (ptype.lt.0 .or. ptype.gt.2) then
print("extval_pareto: non-valid ptype="+ptype)
exit
end if
if (ptype.eq.0) then ; Generalized Pareto
do n=0,nscl-1
if (scale(n).le.0) then
print("extval_pareto: Generalized: scale <=0: scale="+scale(n) )
continue
end if
conk = 1.0/shape(n) ; convenience and clarity
cons = 1.0/scale(n)
y = (x-location(n))/scale(n)
shpy = shape(n)*y
if (shape(n).eq.0) then
pdf(n,:) = cons*exp(-y)
cdf(n,:) = 1-pdf(n,:)
else
pdf(n,:) = cons*(1+shpy)^(-1.0-conk)
cdf(n,:) = 1-(1+shpy)^(-conk)
end if
end do
pdf@long_name = "Pareto: Generalized: PDF"
pdf@shape = shape
pdf@scale = scale
pdf@location = location
cdf@long_name = "Pareto: Generalized: CDF"
cdf@shape = shape
cdf@scale = scale
cdf@location = location
end if ; ptype=0
if (ptype.eq.1) then ; Perato Type I
do n=0,nscl-1
if (shape(n).le.0 .or. scale(n).le.0) then
print("extval_pareto: Type I: shape or scale <=0: shape="+shape(n)+"; scale="+scale(n) )
continue
end if
xx = where(x.le.0, pdf@_FillValue, x) ; safety; XX > 0
con = shape(n)*(scale(n)^shape(n)) ; numerator
pdf(n,:) = where(xx.ge.scale(n), con/(xx^(shape(n)+1)), pdf@_FillValue)
cdf(n,:) = where(xx.lt.scale(n), 1, (1-(scale(n)/xx)^shape(n)))
end do
pdf@long_name = "Pareto: Type I: PDF"
pdf@shape = shape
pdf@scale = scale
cdf@long_name = "Pareto: Type I: CDF"
cdf@shape = shape
cdf@scale = scale
end if ; ptype=1
if (ptype.eq.2) then ; Perato Type II; location ignored
do n=0,nscl-1
if (shape(n).le.0 .or. scale(n).le.0) then
print("extval_pareto: Type II: shape or scale <=0: shape="+shape(n)+"; scale="+scale(n) )
continue
end if
con = shape(n) * (scale(n)^shape(n)) ; numerator
pdf(n,:) = where(x.ge.0, con/((x+scale(n))^(shape(n)+1)), pdf@_FillValue)
cdf(n,:) = 1 - (scale(n)/(x+scale(n)))^shape(n)
end do
pdf@long_name = "Pareto: Type II: PDF"
pdf@shape = shape
pdf@scale = scale
cdf@long_name = "Pareto: Type II: CDF"
cdf@shape = shape
cdf@scale = scale
end if ; ptype=2
if (nscl.eq.1) then
return([/pdf(0,:), cdf(0,:)/])
else
return([/pdf, cdf/])
end if
end
;================
undef("extval_gev")
function extval_gev(x[*]:numeric, shape[*]:numeric, scale[*]:numeric, center[*]:numeric, opt[1]:integer)
;
; The generalized extreme value (GEV) distribution is a family of continuous probability
; distributions developed within extreme value theory to combine the Gumbel, Fréchet
; and Weibull families also known as type I, II and III extreme value distributions.
;
; The shape parameter ξ governs the distribution type :
; ... Type I with ξ = 0 ( Gumbel,light tailed)
; ... Type II with ξ > 0 ( Frechet, heavy tailed)
; ... Type III with ξ < 0 ( Weibull, bounded)
;
; The GEV distribution is often used as an approximation to model the maxima
; of long (finite) sequences of random variables.
;;
local nshp, nscl, nctr, nx, pdf, cdf, y
begin
nshp = dimsizes(shape)
nscl = dimsizes(scale)
nctr = dimsizes(center) ; center
if (nshp.ne.nscl .or. nshp.ne.nctr) then
print("extval_gev: shape, scale and shift arguments must be the same size")
print("extval_gev: nshp="+nshp+" nscl="+nscl+" nctr="+nctr)
exit
end if
nx = dimsizes(x)
if (typeof(x).eq."double" .or. \
typeof(shape).eq."double" .or. typeof(scale).eq."double" .or. typeof(center).eq."double") then
pdf = new( (/nscl,nx/), "double", -9999d0 )
else
pdf = new( (/nscl,nx/), "float", -9999.0 )
end if
cdf = pdf
;;if (any(x.le.0)) then
;; print("extval_gev: one or more x <= 0")
;; exit
;;end if
do n=0,nscl-1
if (scale(n).le.0) then
print("extval_gev: unexpected value(s): scale="+scale(n)+" shape="+shape(n))
continue
end if
y = (x-center(n))/scale(n) ; temporary for clarity (debug)
a = 1+shape(n)*y
q = 1.0/scale(n)
if (shape(n).ne.0) then
p1 = -1-(1.0/shape(n)) ; work; clarity
p2 = -1.0/shape(n)
pdf(n,:) = q*exp(-(a^p2))*(a^p1)
cdf(n,:) = exp(-(a^p2))
else
pdf(n,:) = q*exp(-y-exp(-y))
cdf(n,:) = exp(-exp(-y))
pdf(n,:) = where(pdf(n,:).lt.0, pdf@_FillValue, pdf(n,:))
end if
end do
pdf = where(pdf.lt.0, pdf@_FillValue, pdf)
cdf = where(ismissing(pdf), cdf@_FillValue, cdf)
pdf@long_name = "PDF: Generalized Extreme Value"
pdf@shape = shape
pdf@scale = scale
pdf@center = center
cdf@long_name = "CDF: Generalized Extreme Value"
cdf@shape = shape
cdf@scale = scale
cdf@center = center
if (nscl.eq.1) then
return([/pdf(0,:), cdf(0,:)/])
else
return([/pdf, cdf/])
end if
end
;----
undef("extval_gamma")
function extval_gamma(X[*]:numeric, shape[*]:numeric, scale[*]:numeric, center[*]:numeric, opt[1]:integer)
;
; Gamma Distribution
; The distribution is defined for x>center (location) ; scale>0 ; shape>0
; http://www.mathwave.com/help/easyfit/html/analyses/distributions/gamma.html
;
local ix, x, nx, pdf, cdf, nshp, nscl, nctr, n, ca, cb, cc, cd, cf, cg \
, xc, numType, scl, shp, ctr
begin
nshp = dimsizes(shape)
nscl = dimsizes(scale)
nctr = dimsizes(center)
if (nshp.ne.nscl .or. nshp.ne.nctr) then
print("extval_gamma: shape, scale and center arguments must be the same size")
print("extval_gamma: nshp="+nshp+" nscl="+nscl+" nctr="+nctr)
exit
end if
;--- Force to highest numeric type
nx = dimsizes(X)
if (typeof(X).eq."double" .or. \
typeof(shape).eq."double" .or. typeof(scale).eq."double" .or. typeof(center).eq."double") then
numType = "double"
pdf = new( (/nscl,nx/), numType, -9999d0 )
else
numType = "float"
pdf = new( (/nscl,nx/), numType, -9999.0 )
end if
cdf = pdf
;--- For plot reasons it is better 'x' is ascending
ix = dim_pqsort_n(X, 1, 0) ; indices of ascending values
x = totype(X(ix), numType) ; 'x' is local and is ascending (plotting)
x@_FillValue = pdf@_FillValue
do n=0,nscl-1
if (scale(n).le.0) then
print("extval_gamma: scale<=0 : scale="+scale(n))
continue
end if
if (shape(n).le.0) then
print("extval_gamma: shape<=0 : shape="+shape(n))
continue
end if
scl = totype(scale(n) , numType)
shp = totype(shape(n) , numType)
ctr = totype(center(n), numType)
xc = where(x .gt.ctr, (x-ctr), pdf@_FillValue)
xc = where(xc.gt.0 , xc, xc@_FillValue) ; avoid xc^(shp-1)
; clarity
ca = xc^(shp-1) ; ca[*]
cb = exp(-xc/scl) ; cb[*]
cc = gamma(shp) ; cc[1]
cd = scl^shp ; cd[1]
cab = ca*cb ; cab[*]
pdf(n,:) = cab/(cc*cd)
cf = conform(xc, shp, -1) ; [*] ... make scalar a [*]
cg = gammainc((xc/scl), cf) ; [*]
;;cgc = cg/cc ; <== This is correct but ...
cgc = cg ; Notn sure why this yields the CDF
cdf(n,:) = where(.not.ismissing(pdf(n,:)), cgc, pdf@_FillValue)
;;print("=================")
;;print("n="+n+" shape="+shape(n)+" scale="+scale(n)+" center="+center(n)+" cc="+cc+" cd="+cd)
;;print("ca="+ca+" cb="+cb+" x="+x+" pdf="+pdf(n,:)+" cdf="+cdf(n,:))
end do
pdf@long_name = "Gamma: PDF"
pdf@shape = shape
pdf@scale = scale
pdf@center = center
cdf@long_name = "Gamma: CDF"
cdf@shape = shape
cdf@scale = scale
cdf@center = center
if (nscl.eq.1) then
return([/pdf(0,:), cdf(0,:)/])
else
return([/pdf, cdf/])
end if
end
;----
undef("extval_recurrence_table_1d")
function extval_recurrence_table_1d(time[*]:numeric, x[*]:numeric, dims[*]:integer, opt[1]:logical)
;
; MAYBE this should be modified to return only:
; (5) exceedence probability rank
; (5) exceedence probability
; (6) recurrence interval
;
local N, N1, ix, n, nstat, table, TABLE
begin
N = dimsizes(time)
ix = dim_pqsort_n(x, 1, dims)
nstat = 7
if (typeof(x).eq."double" ) then
table = new( (/N,nstat/), "double", 9999d0)
else
table = new( (/N,nstat/), "float", 9999.0)
end if
table(:,0) = totype(time, typeof(x))
table(:,1) = x
do n=0,N-1
table(n,2) = ind(ix.eq.n)+1 ; Rank
end do
N1 = N+1.0
table(:,3) =(table(:,2)/N1) ; Cumulative Probability
table(:,4) = N1 - table(:,2) ; Exceedance Probability Rank (1 is highest)
table(:,5) =(table(:,4)/N1) ; Exceedance Probability
table(:,6) = N1/table(:,4) ; Exceedance Probability
if (opt .and. isatt(opt,"rank_order") .and. opt@rank_order)
TABLE = table
TABLE(:,0) = table(ix,0)
TABLE(:,1) = table(ix,1)
TABLE(:,2) = table(ix,2)
TABLE(:,3) = table(ix,3)
TABLE(:,4) = table(ix,4)
TABLE(:,5) = table(ix,5)
TABLE(:,6) = table(ix,6)
return(TABLE)
else
return(table)
end if
end
;----
undef("extval_recurrence_table_2d")
function extval_recurrence_table_2d(time[*]:numeric, x[*][*]:numeric, dims[*]:integer, opt[1]:logical)
; Driver for above
local dimx, ntim, npts, N, nstat, npt,table
begin
dimx = dimsizes(x) ; (ntim,npts)
ntim = dimx(0)
npts = dimx(1)
N = ntim ; consistency with 1d version
nstat = 7
if (typeof(x).eq."float" .or. typeof(x).eq."double" ) then
table = new( (/npts,ntim,nstat/), typeof(x), getVarFillValue(x))
else
table = new( (/npts,ntim,nstat/), "float", 1e10)
end if
; BRUTE force loop
do npt=0,npts-1
table(npt,:,:) = (/ extval_recurrence_table_1d(time, x(:,npt), 0, False) /)
end do
copy_VarCoords(x(0,:), table(:,0,0)) ; space: (npts,...)
copy_VarCoords(x(:,0), table(0,:,0)) ; time : ( 0 , : , 0)
table!2 = "stat"
table@long_name = "Recurrence Table"
table@info = "Probability of Exceedance for Ranked data"
table@NCL = "extval_recurrence_table_2d"
table@method = "Weibull Version: Rank/(N+1)"
return (table)
end
;----
undef("extval_recurrence_table_3d")
function extval_recurrence_table_3d(time[*]:numeric, x[*][*][*]:numeric, dims[*]:integer, opt[1]:logical)
; Driver for above
local dimx, ntim, nlat, mlon, N, nstat, nl, ml, table
begin
dimx = dimsizes(x)
ntim = dimx(0)
nlat = dimx(1)
mlon = dimx(2)
N = ntim ; consistency with 1d version
nstat = 7
if (typeof(x).eq."float" .or. typeof(x).eq."double" ) then
table = new( (/nlat,mlon,N,nstat/), typeof(x), getVarFillValue(x))
else
table = new( (/nlat,mlon,N,nstat/), "float", 1e10)
end if
; BRUTE force loop
do nl=0,nlat-1
do ml=0,mlon-1
table(nl,ml,:,:) = (/ extval_recurrence_table_1d(time, x(:,nl,ml), 0, False) /)
end do
end do
copy_VarCoords(x(0,:,:), table(:,:,0,0)) ; space: (lat,lon,...)
copy_VarCoords(x(:,0,0), table(0,0,:,0)) ; time : ( 0 , 0 , :, 0)
table!3 = "stat"
table@long_name = "Recurrence Table"
table@info = "Probability of Exceedance for Ranked data"
table@NCL = "extval_recurrence_table_3d"
table@method = "Weibull Version: Rank/(N+1)"
return (table)
end
;----
undef("extval_recurrence_table")
function extval_recurrence_table(time[*]:numeric, x:numeric, dims[*]:integer, opt[1]:logical)
;
; This invokes the appropriate function.
;
local dimx, rankx
begin
dimx = dimsizes(x)
rankx = dimsizes(dimx)
if (rankx.gt.3) then
return("extval_recurrence_table: FATAL: only up to rank 3 curently supported; rankx="+rankx)
exit
end if
if (rankx.eq.1) then
return( extval_recurrence_table_1d(time, x, dims, opt) )
end if
if (rankx.eq.2) then
return( extval_recurrence_table_2d(time, x, dims, opt) )
end if
if (rankx.eq.3) then
return( extval_recurrence_table_3d(time, x, dims, opt) )
end if
end
;----
undef("extval_recurrence_gev")
; DO NOT USE! This function has **NOT** been tested. DO NOT USE!
function extval_recurrence_gev(time[*]:numeric, x[*]:numeric, dims[*]:integer \
,shape[1]:numeric, scale[1]:numeric, location[1]:numeric\
,opt[1]:logical)
; Use GEV parameters to estimate recurrence
; GEV => Generalized Extreme Value distribution
;
; Under the assumption of stationarity the return level is the same for all years,
; giving rise to the notion of the return period . The return period of a
; particular event is the inverse of the probability that the event will be
; exceeded in any given year , i . e . the 푚 - year return level is
; associated with a return period of 푚 years
;
local N, N1, ix, n, rank, retval_gev
begin
print("extval_recurrence_gev: DO NOT USE")
;;N = dimsizes(x)
;;ix = dim_pqsort_n(x, 1, 0)
;;
;;do n=0,N-1
;; rank(n) = ind(ix.eq.n)+1 ; Rank
;;end do
;;retval_gev = location + (scale/shape)*((-log(1.0-rank))^(-shape)-1.0)
;;retval_gev@long_name = "Return Level"
retval_gev = -999.9
return(retval_gev)
end
;------
undef("extval_return_prob")
function extval_return_prob(Tr[*]:numeric, Nr[*]:numeric)
;
; Probability Pe that one or more floods occurring during any period
; will exceed a given 'event' (eg, flood) threshold can be determined,
; using the binomial distribution.
;
; https://en.wikipedia.org/wiki/Return_period
; https://en.wikipedia.org/wiki/100-year_flood
; http://water.usgs.gov/edu/100yearflood.html
; The probability of at least one event that exceeds design limits during
; the expected life of the structure is the complement of the probability
; that no events occur which exceed design limits.
;
; What is the probability of having one or more occurrence
; of a 10-year event within the 10-year life of a projectt?
; Assume that you are considering buying a house just with
; in the flood plain. Flood plains are defined for return periods
; of 100 years. What is the probability that one or more times
; you will be flooded within the 30-year life of a mortgage?
;
; Assumptions: values for 'Tr' are independent and stationary
; Tr - return (event) period
; n - period
; ------
; Let Tr = 10 ... What is the probability one will occur for the next 8 (=n)
; pre = 0.57
; ------
local kTr, kNr, Pre, Pref
begin
kTr = dimsizes(Tr)
kNr = dimsizes(Nr)
if (kTr.eq.1 .or. kNr.eq.1) then ;;if (isscalar(Tr) .and. isscaler(Nr)) then
Pre = 1d0-(1d0-(1d0/Tr))^Nr
if (kTr.eq.1) then
Pre!0 = "Nr"
Pre&Nr = Nr
else
Pre!0 = "Tr"
Pre&Tr = Tr
end if
else
Pre = new( (/kTr,kNr/), "double")
do k=0,kTr-1
Pre(k,:) = 1d0-(1d0-(1d0/Tr(k)))^Nr
end do
Pre!0 = "Tr"
Pre!1 = "Nr"
Pre&Nr = Nr
Pre&Tr = Tr
end if
Pre@long_name = "probability of return event" ; exceedance
Pre@info = "design risk"
if (typeof(Tr).eq."double" .or. typeof(Nr).eq."double") then
return(Pre)
else
Pref = tofloat(Pre)
copy_VarMeta(Pre, Pref)
return( Pref )
end if
end
;------
undef("extval_return_period")
function extval_return_period(Tr[*]:numeric, Pr[*]:numeric)
;
; Assumptions: values for 'Tr' are independent and stationary
; Tr - return (event) period
; Pr - probability (0-1)
; ------
; Pr = 0.95 ; user specified
; Ta = 100 ; years (days ... whatever)
; pp = 1.0/Ta ; clarity
; Nr = log(Pr)/log(1-pp) ; Nr=5.1 years
; ------
local kTr, kPr, Nr, Nrf
begin
kTr = dimsizes(Tr)
kPr = dimsizes(Pr)
if (any(Pr.le.0 .or. Pr.gt.1)) then
print("extval_return_period: Pr must be 0 < Pr < 1: Pr="+Pr)
exit
end if
if (any(Tr.le.0)) then
print("extval_return_period: Tr must be > 0: Tr="+Tr)
exit
end if
if (kTr.eq.1 .or. kPr.eq.1) then ;;if (isscalar(Tr) .and. isscaler(Pr)) then
pp = 1d0/Tr
Nr = log(Pr)/log(1-pp)
if (kTr.eq.1) then
Nr!0 = "Pr"
Nr&Pr = Pr
else
Nr!0 = "Tr"
Nr&Tr = Tr
end if
else
Nr = new( (/kTr,kPr/), "double")
do k=0,kTr-1
pp = 1d0/Tr
Nr(k,:) = log(Pr)/log(1-pp)
end do
Nr!0 = "Pr"
Nr!1 = "Tr"
Nr&Pr = Nr
Nr&Tr = Tr
end if
Nr@long_name = "period of return event"
if (isatt(Tr,"units")) then
Nr@units = Tr@units
end if
if (typeof(Tr).eq."double" .or. typeof(Pr).eq."double") then
return(Nr)
else
Nrf = tofloat(Nr)
copy_VarMeta(Nr, Nrf)
return( Nrf )
end if
end
;===========
undef("extval_mlegam")
function extval_mlegam(x:numeric, dims[*]:integer, opt[1]:logical)
;
; Gamma Distribution: Maximim Likelihood Estimation of
; location, shape, scale parameters
;
; Reference:
; Wilks: Statistical Methods in the Atmospheric Sciences (2006); pp 95-102
;
; Int. J. Climatol. 27 : 935 – 944 (2007)
; http://onlinelibrary.wiley.com/doi/10.1002/joc.1441/pdf
; Equations: 4-7
; pg: 938:
; "x(i) is equal to all non-zero values in the rainfall history,
; and the mean ( x) is the arithmetic mean of all non-zero values"
; ... later ...
; "the gamma distribution parameters are being estimated by
; fewer than 18 samples (out of 36 years) and the parameter
; reliability becomes quite suspect"
local X, Xavg, D, alpha, beta, s2, con, gam_mlw
begin
X = x
if (.not.isatt(x,"_FillValue")) then
X@_FillValue = default_fillvalue(typeof(X))
end if
X = where(X.eq.0, X@_FillValue, X)
Xavg = dim_avg_n(X, dims) ; average of non-zero values
;Xnum = dim_num_n(.not.(ismissing(X)), dims) ; number of non-missing values
D = log(Xavg) - dim_avg_n(log(X), dims) ; eqn 4.40 ; Wilks Ref
con = 1/(4*D) ; clarity
shape = con*(1+sqrt(1+(4*D/3))) ; eqn 4.41
scale = Xavg/shape ; eqn 4.42 (alpha)
gam_mean = shape*scale
gam_var = shape*scale^2
; gamma quantile function
prob = (/0.50/) ; default (median)
if (opt .and. isatt(opt,"prob")) then
prob := opt@prob
end if
gam_quant = gam_mean +(scale/shape)*((-log(prob))^shape -1) ; eqn 4.56
; gam_mean ==> location
gam_mle = (/gam_mean, scale, shape, gam_var, gam_quant/)
gam_mle@long_name = "gamma: maximum liklihood estimates"
gam_mle@info = "location, shape, scale, gam_var, gam_quant"
gam_mle@NCL_tag = "extval_mlegam"
return(gam_mle)
end
|