This file is indexed.

/usr/include/libnormaliz/cone.h is in libnormaliz-dev-common 3.5.1+ds-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/*
 * Normaliz
 * Copyright (C) 2007-2014  Winfried Bruns, Bogdan Ichim, Christof Soeger
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * As an exception, when this program is distributed through (i) the App Store
 * by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
 * by Google Inc., then that store may impose any digital rights management,
 * device limits and/or redistribution restrictions that are required by its
 * terms of service.
 */

#ifndef CONE_H_
#define CONE_H_

#include <sys/stat.h>
#include <vector>
#include <map>
#include <utility> //for pair
#include <boost/dynamic_bitset.hpp>

#include <libnormaliz/libnormaliz.h>
#include <libnormaliz/cone_property.h>
#include <libnormaliz/sublattice_representation.h>
#include <libnormaliz/matrix.h>
#include <libnormaliz/HilbertSeries.h>

namespace libnormaliz {
using std::vector;
using std::map;
using std::pair;

template<typename Integer> class Full_Cone;
//template<typename Integer> class Matrix;

// type for simplex, short in contrast to class Simplex
template<typename Integer> struct SHORTSIMPLEX {
    vector<key_t> key;                // full key of simplex
    Integer height;                   // height of last vertex over opposite facet
    Integer vol;                      // volume if computed, 0 else
    vector<bool> Excluded;           // for disjoint decomposition of cone
                                      // true in position i indictate sthat the facet 
                                      // opposite of generator i must be excluded
};

template<typename Integer>
bool compareKeys(const SHORTSIMPLEX<Integer>& A, const SHORTSIMPLEX<Integer>& B){

    return(A.key < B.key);
}

struct STANLEYDATA_int { // for internal use
    vector<key_t> key;
    Matrix<long> offsets;
    vector<long> degrees; // degrees and classNr are used in nmz_integral.cpp
    size_t classNr;  // number of class of this simplicial cone
};

template<typename Integer> struct STANLEYDATA {
    vector<key_t> key;
    Matrix<Integer> offsets;
};

template<typename Integer>
class Cone {

//---------------------------------------------------------------------------
//                               public methods
//---------------------------------------------------------------------------
public:

//---------------------------------------------------------------------------
//                    Constructors, they preprocess the input
//---------------------------------------------------------------------------
    
    Cone(); //default constructor

    /* give up to 3 matrices as input
     * the types must be pairwise different
     */
    Cone(InputType type, const vector< vector<Integer> >& input_data);

    Cone(InputType type1, const vector< vector<Integer> >& input_data1,
         InputType type2, const vector< vector<Integer> >& input_data2);

    Cone(InputType type1, const vector< vector<Integer> >& input_data1,
         InputType type2, const vector< vector<Integer> >& input_data2,
         InputType type3, const vector< vector<Integer> >& input_data3);

    /* give multiple input */
    Cone(const map< InputType , vector< vector<Integer> > >& multi_input_data);
    
//-----------------------------------------------------------------------------
// the same for mpq_class
    
    Cone(InputType type, const vector< vector<mpq_class> >& input_data);

    Cone(InputType type1, const vector< vector<mpq_class> >& input_data1,
         InputType type2, const vector< vector<mpq_class> >& input_data2);

    Cone(InputType type1, const vector< vector<mpq_class> >& input_data1,
         InputType type2, const vector< vector<mpq_class> >& input_data2,
         InputType type3, const vector< vector<mpq_class> >& input_data3);

    /* give multiple input */
    Cone(const map< InputType , vector< vector<mpq_class> > >& multi_input_data);
    
//-----------------------------------------------------------------------------
// the same for nmz_float
    
    Cone(InputType type, const vector< vector<nmz_float> >& input_data);

    Cone(InputType type1, const vector< vector<nmz_float> >& input_data1,
         InputType type2, const vector< vector<nmz_float> >& input_data2);

    Cone(InputType type1, const vector< vector<nmz_float> >& input_data1,
         InputType type2, const vector< vector<nmz_float> >& input_data2,
         InputType type3, const vector< vector<nmz_float> >& input_data3);

    /* give multiple input */
    Cone(const map< InputType , vector< vector<nmz_float> > >& multi_input_data);

//-----------------------------------------------------------------------------
// Now with Matrix
    
    Cone(InputType type, const Matrix<Integer>& input_data);

    Cone(InputType type1, const Matrix<Integer>& input_data1,
         InputType type2, const Matrix<Integer>& input_data2);

    Cone(InputType type1, const Matrix<Integer>& input_data1,
         InputType type2, const Matrix<Integer>& input_data2,
         InputType type3, const Matrix<Integer>& input_data3);

    /* give multiple input */
    Cone(const map< InputType , Matrix<Integer> >& multi_input_data);
    
//-----------------------------------------------------------------------------
// Now with Matrix and mpq_class
    
    Cone(InputType type, const Matrix<mpq_class>& input_data);

    Cone(InputType type1, const Matrix<mpq_class>& input_data1,
         InputType type2, const Matrix<mpq_class>& input_data2);

    Cone(InputType type1, const Matrix<mpq_class>& input_data1,
         InputType type2, const Matrix<mpq_class>& input_data2,
         InputType type3, const Matrix<mpq_class>& input_data3);

    /* give multiple input */
    Cone(const map< InputType , Matrix<mpq_class> >& multi_input_data);
    
//-----------------------------------------------------------------------------
// Now with Matrix and nmz_float
    
    Cone(InputType type, const Matrix<nmz_float>& input_data);

    Cone(InputType type1, const Matrix<nmz_float>& input_data1,
         InputType type2, const Matrix<nmz_float>& input_data2);

    Cone(InputType type1, const Matrix<nmz_float>& input_data1,
         InputType type2, const Matrix<nmz_float>& input_data2,
         InputType type3, const Matrix<nmz_float>& input_data3);

    /* give multiple input */
    Cone(const map< InputType , Matrix<nmz_float> >& multi_input_data);
    
    
//---------------------------------------------------------------------------
//                                Destructor
//---------------------------------------------------------------------------

    ~Cone();

//---------------------------------------------------------------------------
//                          give additional data
//---------------------------------------------------------------------------

    /* Sets if the Cone prints verbose output.
     * The default value for the Cone is the global verbose.
     * returns the old value
     */
    bool setVerbose (bool v);

    void deactivateChangeOfPrecision();

//---------------------------------------------------------------------------
//                           make computations
//---------------------------------------------------------------------------

    // return what was NOT computed
    // special cases for up to 3 CPs
    ConeProperties compute(ConeProperties ToCompute);
    ConeProperties compute(ConeProperty::Enum);
    ConeProperties compute(ConeProperty::Enum, ConeProperty::Enum);
    ConeProperties compute(ConeProperty::Enum, ConeProperty::Enum, ConeProperty::Enum);

//---------------------------------------------------------------------------
//                         check what is computed
//---------------------------------------------------------------------------

    bool isComputed(ConeProperty::Enum prop) const;
    //returns true, when ALL properties in CheckComputed are computed
    bool isComputed(ConeProperties CheckComputed) const;
    
    void resetComputed(ConeProperty::Enum prop);

//---------------------------------------------------------------------------
//   get the results, these methods will start a computation if necessary
//   throws an NotComputableException if not succesful
//---------------------------------------------------------------------------

    // dimension and rank invariants
    size_t getEmbeddingDim() const { return dim; };   // is always known
    size_t getRank();                           // depends on ExtremeRays
    Integer getIndex(); // depends on OriginalMonoidGenerators
    Integer getInternalIndex(); // = getIndex()
    Integer getUnitGroupIndex(); // ditto
    // only for inhomogeneous case:
    size_t getRecessionRank();
    long getAffineDim();
    size_t getModuleRank();
    
    Cone<Integer>& getIntegerHullCone() const;
    Cone<Integer>& getSymmetrizedCone() const;
    Cone<Integer>& getProjectCone() const;

    const Matrix<Integer>& getGeneratorsMatrix();
    const vector< vector<Integer> >& getGenerators();
    size_t getNrGenerators();

    const Matrix<Integer>& getExtremeRaysMatrix();
    const vector< vector<Integer> >& getExtremeRays();
    size_t getNrExtremeRays();
    
    const Matrix<nmz_float>& getVerticesFloatMatrix();
    const vector< vector<nmz_float> >& getVerticesFloat();
    size_t getNrVerticesFloat();

    const Matrix<Integer>& getVerticesOfPolyhedronMatrix();
    const vector< vector<Integer> >& getVerticesOfPolyhedron();
    size_t getNrVerticesOfPolyhedron();

    const Matrix<Integer>& getSupportHyperplanesMatrix();
    const vector< vector<Integer> >& getSupportHyperplanes();
    size_t getNrSupportHyperplanes();
    
    const Matrix<Integer>& getMaximalSubspaceMatrix();
    const vector< vector<Integer> >& getMaximalSubspace();
    size_t getDimMaximalSubspace();

    // depends on the ConeProperty::s SupportHyperplanes and Sublattice
    map< InputType, vector< vector<Integer> > > getConstraints();

    const Matrix<Integer>& getExcludedFacesMatrix();
    const vector< vector<Integer> >& getExcludedFaces();
    size_t getNrExcludedFaces();

    size_t getTriangulationSize();
    Integer getTriangulationDetSum();

    vector<Integer> getWitnessNotIntegrallyClosed();
    vector<Integer> getGeneratorOfInterior();

    const Matrix<Integer>& getHilbertBasisMatrix();
    const vector< vector<Integer> >& getHilbertBasis();
    size_t getNrHilbertBasis();

    const Matrix<Integer>& getModuleGeneratorsOverOriginalMonoidMatrix();
    const vector< vector<Integer> >& getModuleGeneratorsOverOriginalMonoid();
    size_t getNrModuleGeneratorsOverOriginalMonoid();

    const Matrix<Integer>& getModuleGeneratorsMatrix();
    const vector< vector<Integer> >& getModuleGenerators();
    size_t getNrModuleGenerators();

    const Matrix<Integer>& getDeg1ElementsMatrix();
    const vector< vector<Integer> >& getDeg1Elements();
    size_t getNrDeg1Elements();

    // the actual grading is Grading/GradingDenom
    vector<Integer> getGrading();
    Integer getGradingDenom();

    vector<Integer> getDehomogenization();

    vector<Integer> getClassGroup();

    mpq_class getMultiplicity();
    mpq_class getVolume();
    nmz_float getEuclideanVolume();
    mpq_class getVirtualMultiplicity();
    mpq_class getIntegral();
    const pair<HilbertSeries, mpz_class>& getWeightedEhrhartSeries();
    
    string getPolynomial() const;
    
    bool inequalities_present;

    bool isPointed();
    bool isInhomogeneous();
    bool isDeg1ExtremeRays();
    bool isDeg1HilbertBasis();
    bool isIntegrallyClosed();
    bool isGorenstein();
    bool isReesPrimary();
    Integer getReesPrimaryMultiplicity();
    const Matrix<Integer>& getOriginalMonoidGeneratorsMatrix();
    const vector< vector<Integer> >& getOriginalMonoidGenerators();
    size_t getNrOriginalMonoidGenerators();

    const Sublattice_Representation<Integer>& getSublattice();
    const HilbertSeries& getHilbertSeries(); //general purpose object

    // the following 2 methods give information about the last used triangulation
    // if no triangulation was computed so far they return false
    bool isTriangulationNested();
    bool isTriangulationPartial();
    const vector< pair<vector<key_t>, Integer> >& getTriangulation();
    const vector< vector<bool> >& getOpenFacets();
    const vector< pair<vector<key_t>, long> >& getInclusionExclusionData();
    const list< STANLEYDATA<Integer> >& getStanleyDec();
    list< STANLEYDATA_int >& getStanleyDec_mutable(); //allows us to erase the StanleyDec
                             // in order to save memeory for weighted Ehrhart
    
    void set_project(string name);
    void set_nmz_call(const string& path);
    void set_output_dir(string name);
    
    void setPolynomial(string poly);
    void setNrCoeffQuasiPol(long nr_coeff);
    void setExpansionDegree(long degree);
    
    bool get_verbose ();
    
    IntegrationData& getIntData();

//---------------------------------------------------------------------------
//                          private part
//---------------------------------------------------------------------------

private:
    
    string project;
    string output_dir;
    string nmz_call;
    size_t dim;
    
    // the following three matrices store the constraints of the input
    Matrix<Integer> Inequalities;
    Matrix<Integer> Equations;
    Matrix<Integer> Congruences;
    // we must register some information about thew input
    bool lattice_ideal_input;
    size_t nr_latt_gen, nr_cone_gen; // they count matrices in the input 

    Sublattice_Representation<Integer> BasisChange;  //always use compose_basis_change() !
    Sublattice_Representation<Integer> BasisChangePointed; // to the pointed cone
    bool BC_set;
    bool verbose;
    ConeProperties is_Computed;
    // Matrix<Integer> GeneratorsOfToricRing;
    Matrix<Integer> OriginalMonoidGenerators;
    Matrix<Integer> Generators;
    Matrix<Integer> ExtremeRays;
    Matrix<nmz_float> VerticesFloat;
    vector<bool> ExtremeRaysIndicator;
    Matrix<Integer> VerticesOfPolyhedron;
    Matrix<Integer> SupportHyperplanes;
    Matrix<Integer> ExcludedFaces;
    Matrix<Integer> PreComputedSupportHyperplanes;
    size_t TriangulationSize;
    Integer TriangulationDetSum;
    bool triangulation_is_nested;
    bool triangulation_is_partial;
    vector< pair<vector<key_t>, Integer> > Triangulation;
    vector<vector<bool> > OpenFacets;
    vector<bool> projection_coord_indicator;
    vector< pair<vector<key_t>, long> > InExData;
    list< STANLEYDATA_int > StanleyDec;
    list< STANLEYDATA<Integer> > StanleyDec_export;
    mpq_class multiplicity;
    mpq_class volume;
    nmz_float euclidean_volume;
    mpq_class Integral;
    mpq_class VirtualMultiplicity;
    vector<Integer> WitnessNotIntegrallyClosed;
    vector<Integer> GeneratorOfInterior;
    Matrix<Integer> HilbertBasis;
    Matrix<Integer> BasisMaxSubspace;
    Matrix<Integer> ModuleGeneratorsOverOriginalMonoid;
    Matrix<Integer> Deg1Elements;
    HilbertSeries HSeries;
    IntegrationData IntData;
    vector<Integer> Grading;
    vector<Integer> Dehomogenization;
    Integer GradingDenom;
    Integer index;  // the internal index
    Integer unit_group_index;
    
    vector<boost::dynamic_bitset<> > Pair; // for indicator vectors in project-and_lift
    vector<boost::dynamic_bitset<> > ParaInPair; // if polytope is a parallelotope
    bool check_parallelotope();

    bool pointed;
    bool inhomogeneous;
    bool gorensetin;
    bool deg1_extreme_rays;
    bool deg1_hilbert_basis;
    bool integrally_closed;
    bool Gorenstein;
    bool rees_primary;
    Integer ReesPrimaryMultiplicity;
    int affine_dim; //dimension of polyhedron
    size_t recession_rank; // rank of recession monoid
    size_t module_rank; // for the inhomogeneous case
    Matrix<Integer> ModuleGenerators;
    vector<Integer> ClassGroup;
    
    bool is_approximation;
    Cone* ApproximatedCone;

    Matrix<Integer> WeightsGrad;
    vector<bool> GradAbs;

    bool no_lattice_restriction; // true if cine generators are known to be in the relevant lattice
    bool normalization; // true if input type normalization is used

    // if this is true we allow to change to a smaller integer type in the computation
    bool change_integer_type;
    
    Cone<Integer>* IntHullCone; // cone containing data of integer hull
    Cone<Integer>* SymmCone;    // cone containing symmetrized data
    Cone<Integer>* ProjCone;    // cone containing projection to selected coordinates 
    
    // In cone based algorithms we use the following information
    bool Grading_Is_Coordinate; // indicates that the grading or dehomogenization is a coordinate
    key_t GradingCoordinate;  // namely this one

    void compose_basis_change(const Sublattice_Representation<Integer>& SR); // composes SR

    // main input processing
    void process_multi_input(const map< InputType, vector< vector<Integer> > >& multi_input_data);
    void process_multi_input_inner(map< InputType, vector< vector<Integer> > >& multi_input_data);
    void process_multi_input(const map< InputType, vector< vector<mpq_class> > >& multi_input_data);
    void process_multi_input(const map< InputType, vector< vector<nmz_float> > >& multi_input_data);
    
    void prepare_input_lattice_ideal(map< InputType, vector< vector<Integer> > >& multi_input_data);
    void prepare_input_constraints(const map< InputType, vector< vector<Integer> > >& multi_input_data);
    void prepare_input_generators(map< InputType, vector< vector<Integer> > >& multi_input_data,
                     Matrix<Integer>& LatticeGenerators);
    void homogenize_input(map< InputType, vector< vector<Integer> > >& multi_input_data);
    void check_precomputed_support_hyperplanes();
    void check_excluded_faces();
    
    void setGrading (const vector<Integer>& lf);
    void setWeights ();
    void setDehomogenization (const vector<Integer>& lf);
    void checkGrading();
    void checkDehomogenization();
    void check_vanishing_of_grading_and_dehom();
    void process_lattice_data(const Matrix<Integer>& LatticeGenerators, Matrix<Integer>& Congruences, Matrix<Integer>& Equations);
    
    void try_symmetrization(ConeProperties& ToCompute);
    void try_approximation_or_projection (ConeProperties& ToCompute);

    Matrix<Integer> prepare_input_type_2(const vector< vector<Integer> >& Input);
    Matrix<Integer> prepare_input_type_3(const vector< vector<Integer> >& Input);
    void prepare_input_type_4(Matrix<Integer>& Inequalities);

    /* only used by the constructors */
    void initialize();

    template<typename IntegerFC>
    void compute_full_cone(ConeProperties& ToCompute);

    /* compute the generators using the support hyperplanes */
    void compute_generators();
    template<typename IntegerFC>
    void compute_generators_inner();

    /* compute method for the dual_mode, used in compute(mode) */
    void compute_dual(ConeProperties& ToCompute);
    template<typename IntegerFC>
    void compute_dual_inner(ConeProperties& ToCompute);
    
    void set_implicit_dual_mode(ConeProperties& ToCompute);

    /* extract the data from Full_Cone, this may remove data from Full_Cone!*/
    template<typename IntegerFC>
    void extract_data(Full_Cone<IntegerFC>& FC);
    template<typename IntegerFC>
    void extract_supphyps(Full_Cone<IntegerFC>& FC);
    
    void extract_supphyps(Full_Cone<Integer>& FC);


    /* set OriginalMonoidGenerators */
    void set_original_monoid_generators(const Matrix<Integer>&);

    /* set ExtremeRays, in inhomogeneous case also VerticesOfPolyhedron */
    void set_extreme_rays(const vector<bool>&);

    /* If the Hilbert basis and the original monoid generators are computed,
     * use them to check whether the original monoid is integrally closed. */
    void check_integrally_closed();
    void compute_unit_group_index();
    /* try to find a witness for not integrally closed in the Hilbert basis */
    void find_witness();
    
    void check_Gorenstein (ConeProperties&  ToCompute);

    Integer compute_primary_multiplicity();
    template<typename IntegerFC>
    Integer compute_primary_multiplicity_inner();
    
    void compute_integer_hull();
    void complete_sublattice_comp(ConeProperties& ToCompute); // completes the sublattice computations
    void complete_HilbertSeries_comp(ConeProperties& ToCompute);
    
    void compute_integral (ConeProperties& ToCompute);
    void compute_virt_mult (ConeProperties& ToCompute);
    void compute_weighted_Ehrhart(ConeProperties& ToCompute);
    
    void compute_vertices_float(ConeProperties& ToCompute);
    
    void make_StanleyDec_export();
    
    void NotComputable (string message); // throws NotComputableException if default_mode = false
    
    void set_parallelization();
    
    template<typename IntegerFC>
    void give_data_of_approximated_cone_to(Full_Cone<IntegerFC>& FC);
    
    void project_and_lift(ConeProperties& ToCompute, Matrix<Integer>& Deg1, const Matrix<Integer>& Gens, Matrix<Integer>& Supps, bool float_projection);

    void compute_volume(ConeProperties& ToCompute);
    void compute_euclidean_volume(const vector<Integer>& Grad);
    
    void compute_projection(ConeProperties& ToCompute);
    void compute_projection_from_gens(const vector<Integer>& GradOrDehom);
    void compute_projection_from_constraints(const vector<Integer>& GradOrDehom);
 
    //in order to avoid getRank fromm inside compute
    size_t get_rank_internal();
    const Sublattice_Representation<Integer>& get_sublattice_internal();
};

// helpers

template<typename Integer>
vector<vector<Integer> > find_input_matrix(const map< InputType, vector< vector<Integer> > >& multi_input_data,
                               const InputType type);

template<typename Integer>
void insert_zero_column(vector< vector<Integer> >& mat, size_t col);

template<typename Integer>
void insert_column(vector< vector<Integer> >& mat, size_t col, Integer entry);


}  //end namespace libnormaliz

#endif /* CONE_H_ */