This file is indexed.

/usr/include/opengm/functions/function_properties_base.hxx is in libopengm-dev 2.3.6+20160905-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
#pragma once
#ifndef OPENGM_FUNCTION_PROPERTIES_BASE_HXX
#define OPENGM_FUNCTION_PROPERTIES_BASE_HXX

#include <cmath>

#include "opengm/opengm.hxx"
#include "opengm/utilities/shape_accessor.hxx"
#include "opengm/utilities/accessor_iterator.hxx"
#include "opengm/utilities/accumulation.hxx"
#include "opengm/utilities/indexing.hxx"
#include "opengm/utilities/functors.hxx"
#include "opengm/operations/adder.hxx"
#include "opengm/operations/and.hxx"
#include "opengm/operations/or.hxx"
#include "opengm/operations/minimizer.hxx"
#include "opengm/operations/maximizer.hxx"
#include "opengm/operations/adder.hxx"
#include "opengm/operations/integrator.hxx"
#include "opengm/operations/multiplier.hxx"
#include "opengm/graphicalmodel/weights.hxx"

#define OPENGM_FLOAT_TOL 0.000001

namespace opengm {
    
template<class T>
inline bool isNumericEqual(const T a, const T b) {
   if(meta::IsFloatingPoint<T>::value) {
      if(a < b) {
         return b-a<OPENGM_FLOAT_TOL ? true : false;
      }
      else {
         return a - b < OPENGM_FLOAT_TOL ? true : false;
      }
   }
   else {
      return a == b;
   }
}   

/// Fallback implementation of member functions of OpenGM functions
template<class FUNCTION, class VALUE, class INDEX = size_t, class LABEL = size_t>
class FunctionBase {
private:
   typedef VALUE ReturnType;
   typedef const VALUE& ReturnReferenceType;

public:   
   bool isPotts() const;
   bool isGeneralizedPotts() const;
   bool isSubmodular() const;
   bool isSquaredDifference() const;
   bool isTruncatedSquaredDifference() const;
   bool isAbsoluteDifference() const;
   bool isTruncatedAbsoluteDifference() const;
   bool isLinearConstraint() const;

   
   /// find minimum and maximum of the function in a single sweep
   /// \return class holding the minimum and the maximum
   MinMaxFunctor<VALUE> minMax() const;

   ReturnType min() const;
   ReturnType max() const;
   ReturnType sum() const;
   ReturnType product() const;

   /// accumulate all values of the function
   /// \tparam ACC Accumulator (e.g. Minimizer, Maximizer, ...)
   /// \return accumulated value
   template<class ACC>
      ReturnType accumulate() const;

   /// call a functor for each value of the function (in lexicographical order of the variable indices)
   ///
   /// Example:
   /// \code
   /// template<class T>
   /// struct MaxFunctor {
   ///    void operator()(const T v) {
   ///       if(v > max_)
   ///          max_ = v;
   ///    }
   ///    T max_;
   /// };
   /// MaxFunctor<float> maxFunctor;
   /// maxFunctor.max_ = 0.0;
   /// function.forAllValuesInOrder(maxFunctor);
   /// \endcode  
   ///
   /// \sa forAllValuesInAnyOrder, forAtLeastAllUniqueValues
   template<class FUNCTOR>
      void forAllValuesInOrder(FUNCTOR& functor) const;

   template<class FUNCTOR>
      void forAllValuesInSwitchedOrder(FUNCTOR& functor) const;

   /// call a functor for each value of the function (in un-specified order)
   ///
   /// \sa forAllValuesInOrder, forAtLeastAllUniqueValues
   template<class FUNCTOR>
      void forAllValuesInAnyOrder(FUNCTOR& functor) const;

   /// call a functor for at least all unique values of the function
   ///
   /// \sa forAllValuesInOrder, forAllValuesInAnyOrder
   template<class FUNCTOR>
      void forAtLeastAllUniqueValues(FUNCTOR& functor) const ; 
   
   
   template<class COORDINATE_FUNCTOR>
      void forAllValuesInOrderWithCoordinate(COORDINATE_FUNCTOR& functor) const;
   template<class COORDINATE_FUNCTOR>
      void forAllValuesInAnyOrderWithCoordinate(COORDINATE_FUNCTOR& functor) const;
   template<class COORDINATE_FUNCTOR>
      void forAtLeastAllUniqueValuesWithCoordinate(COORDINATE_FUNCTOR& functor) const ; 
   
   bool operator==(const FUNCTION&) const;

private:
   typedef FUNCTION FunctionType;
   typedef FunctionShapeAccessor<FunctionType> FunctionShapeAccessorType;

public:
   typedef AccessorIterator<FunctionShapeAccessorType, true> FunctionShapeIteratorType;

   FunctionShapeIteratorType functionShapeBegin() const;
   FunctionShapeIteratorType functionShapeEnd() const;

   size_t numberOfWeights()const{
      return 0;
   }
   INDEX weightIndex(const size_t weightNumber)const{
      throw RuntimeError("Function base has no parameters,this needs to be implemented in any function type");
   }
   void setWeights(const opengm::learning::Weights<VALUE>& /*weights*/) const {}
   template<class ITERATOR> 
   VALUE weightGradient(size_t,ITERATOR) const {return 0;}

};




template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline bool  
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::operator==
(
   const FUNCTION& fb
) const{
   const FunctionType& fa=*static_cast<FunctionType const *>(this);
   const size_t dimA=fa.dimension();
   // compare dimension
   if(dimA==fb.dimension()) {
      // compare shape
      for(size_t i=0;i<dimA;++i) {
         if(fa.shape(i)!=fb.shape(i)) {
            return false;
         }
      }
      // compare all values
      ShapeWalker<FunctionShapeIteratorType> shapeWalker(fa.functionShapeBegin(), dimA);
      for(INDEX i=0;i<fa.size();++i, ++shapeWalker) {
        if(isNumericEqual(fa(shapeWalker.coordinateTuple().begin()), fb(shapeWalker.coordinateTuple().begin()))==false) {
           return false;
        }
      }
   }
   else{
      return false;
   }
   return true;
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
template<class COORDINATE_FUNCTOR>
inline void 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::forAllValuesInOrderWithCoordinate
(
   COORDINATE_FUNCTOR& functor
) const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   ShapeWalker<FunctionShapeIteratorType> shapeWalker(f.functionShapeBegin(), f.dimension());
   for(INDEX i=0;i<f.size();++i, ++shapeWalker) {
      functor(f(shapeWalker.coordinateTuple().begin()),shapeWalker.coordinateTuple().begin());
   }
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
template<class COORDINATE_FUNCTOR>
inline void 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::forAllValuesInAnyOrderWithCoordinate
(
   COORDINATE_FUNCTOR& functor
) const{
   this->forAllValuesInOrderWithCoordinate(functor);
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
template<class COORDINATE_FUNCTOR>
inline void 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::forAtLeastAllUniqueValuesWithCoordinate
(
   COORDINATE_FUNCTOR& functor
) const {
   this->forAllValuesInAnyOrderWithCoordinate(functor);
}


template<class FUNCTION, class VALUE, class INDEX, class LABEL>
template<class FUNCTOR>
inline void
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::forAllValuesInOrder
( 
   FUNCTOR&  functor
) const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   ShapeWalker<FunctionShapeIteratorType> shapeWalker(f.functionShapeBegin(), f.dimension());
   for(INDEX i=0;i<f.size();++i, ++shapeWalker) {
      functor(f(shapeWalker.coordinateTuple().begin()));
   }
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
template<class FUNCTOR>
inline void
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::forAllValuesInSwitchedOrder
( 
   FUNCTOR&  functor
) const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   ShapeWalkerSwitchedOrder<FunctionShapeIteratorType> shapeWalker(f.functionShapeBegin(), f.dimension());
   for(INDEX i=0;i<f.size();++i, ++shapeWalker) {
      functor(f(shapeWalker.coordinateTuple().begin()));
   }
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
template<class FUNCTOR>
inline void
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::forAllValuesInAnyOrder
( 
   FUNCTOR&  functor
) const {
   static_cast<FunctionType const *>(this)->forAllValuesInOrder(functor);
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
template<class FUNCTOR>
inline void
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::forAtLeastAllUniqueValues
( 
   FUNCTOR&  functor
) const {
   static_cast<FunctionType const *>(this)->forAllValuesInAnyOrder(functor);
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline typename FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::FunctionShapeIteratorType
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::functionShapeBegin() const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   return FunctionShapeIteratorType(FunctionShapeAccessorType(f), 0);
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline typename FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::FunctionShapeIteratorType
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::functionShapeEnd() const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   return FunctionShapeIteratorType(FunctionShapeAccessorType(f), f.dimension());
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline bool 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::isSquaredDifference() const{
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   if(f.dimension()==2) {
      OPENGM_ASSERT(f.shape(0)>static_cast<LABEL>(1));
      LABEL c[2]={1, 0};
      //get possible weight
      VALUE weight=f(c);
      for( c[1]=0;c[1]<f.shape(1);++c[1]) {
         for( c[0]=0;c[0]<f.shape(0);++c[0]) {
            VALUE d= static_cast<VALUE> (c[0]<c[1] ? c[1]-c[0]:c[0]-c[1]);
            d*=d;
            if( isNumericEqual(f(c), d*weight  )==false)
               return false;
         } 
      }
      return true;
   }
   return false;
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline bool 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::isTruncatedSquaredDifference() const{
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   if(f.dimension()==2) {
      OPENGM_ASSERT(f.shape(0)>static_cast<LABEL>(1));
      LABEL c[2]={1, 0};
      //get possible weight
      VALUE weight=f(c);
      //get possible truncation (compute the biggest possible distance => value is the truncation value)
      c[0]=f.shape(0)-static_cast<LABEL>(1);
      VALUE truncated=f(c);
      for( c[1]=0;c[1]<f.shape(1);++c[1]) {
         for( c[0]=0;c[0]<f.shape(0);++c[0]) {
            VALUE d= static_cast<VALUE> (c[0]<c[1] ? c[1]-c[0]:c[0]-c[1]);
            d*=d;
            const VALUE fval=f(c);
            const VALUE compare=d*weight;
            if( isNumericEqual(fval, compare  )==false && ((isNumericEqual(fval, truncated) && truncated<compare)==false)) {
               return false;
            }
         } 
      }
      return true;
   }
   return false;
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline bool 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::isAbsoluteDifference() const{
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   if(f.dimension()==2) {
      OPENGM_ASSERT(f.shape(0)>static_cast<LABEL>(1));
      LABEL c[2]={1, 0};
      //get possible weight
      VALUE weight=f(c);
      for( c[1]=0;c[1]<f.shape(1);++c[1]) {
         for( c[0]=0;c[0]<f.shape(0);++c[0]) {
            VALUE d= static_cast<VALUE> (c[0]<c[1] ? c[1]-c[0]:c[0]-c[1]);
            if( isNumericEqual(f(c), d*weight  )==false)
               return false;
         } 
      }
      return true;
   }
   return false;
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline bool 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::isTruncatedAbsoluteDifference() const{
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   if(f.dimension()==2) {
      OPENGM_ASSERT(f.shape(0)>static_cast<LABEL>(1));
      LABEL c[2]={1, 0};
      //get possible weight
      VALUE weight=f(c);
      //get possible truncation (compute the biggest possible distance => value is the truncation value)
      c[0]=f.shape(0)-static_cast<LABEL>(1);
      VALUE truncated=f(c);
      for( c[1]=0;c[1]<f.shape(1);++c[1]) {
         for( c[0]=0;c[0]<f.shape(0);++c[0]) {
            VALUE d= static_cast<VALUE> (c[0]<c[1] ? c[1]-c[0]:c[0]-c[1]);
            const VALUE fval=f(c);
            const VALUE compare=d*weight;
            if( isNumericEqual(fval, compare  )==false && ((isNumericEqual(fval, truncated) && truncated<compare)==false)) {
               return false;
            }
         } 
      }
      return true;
   }
   return false;
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline bool 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::isPotts() const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   if (f.size()<=2) return true;//BSD: Bug fixed?
   ShapeWalker<FunctionShapeIteratorType> shapeWalker(f.functionShapeBegin(), f.dimension());
   VALUE vEqual=f(shapeWalker.coordinateTuple().begin());
   ++shapeWalker;
   VALUE vNotEqual=f(shapeWalker.coordinateTuple().begin());
   ++shapeWalker;
   for(INDEX i=2;i<f.size();++i, ++shapeWalker) {
      // all labels are equal
      if(isEqualValueVector(shapeWalker.coordinateTuple()) ) {
         if(vEqual!=f(shapeWalker.coordinateTuple().begin()))
            return false;
      }
      // all labels are not equal
      else{
         if(vNotEqual!=f(shapeWalker.coordinateTuple().begin()))
            return false;
      }
   }
   return true;
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline bool 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::isGeneralizedPotts() const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   if(f.dimension()==2) {
      LABEL l[] = {0, 1};
      VALUE v0 = f(l);
      l[1]=0;
      VALUE v1 = f(l);
      for(l[0]=0;l[0]<f.shape(0);++l[0]) {
         for(l[1]=0;l[1]<f.shape(1);++l[1]) {
            if((l[0]==l[1] && f(l)!=v1) || ((l[0]!=l[1] && f(l)!=v0)) ) return false;
         }
      }
      return true;
   }
   else  if(f.dimension()==3) {
      LABEL l[] = {0, 1, 2};
      VALUE v000 = f(l);
      l[2]=0; l[1]=1; l[0]=1;
      VALUE v001 = f(l);
      l[2]=1; l[1]=0; l[0]=1;
      VALUE v010 = f(l);
      l[2]=1; l[1]=1; l[0]=0;
      VALUE v100 = f(l); 
      l[2]=0; l[1]=0; l[0]=0;
      VALUE v111 = f(l);
      for(l[0]=0;l[0]<f.shape(0);++l[0]) {
         for(l[1]=0;l[1]<f.shape(1);++l[1]) { 
            for(l[2]=0;l[2]<f.shape(2);++l[2]) {
               if((l[1]!=l[2] && l[0]!=l[2]  && l[0]!=l[1] && f(l)!=v000) ) return false;
               if((l[1]!=l[2] && l[0]!=l[2]  && l[0]==l[1] && f(l)!=v001) ) return false;
               if((l[1]!=l[2] && l[0]==l[2]  && l[0]!=l[1] && f(l)!=v010) ) return false;
               if((l[1]==l[2] && l[0]!=l[2]  && l[0]!=l[1] && f(l)!=v100) ) return false;
               if((l[1]==l[2] && l[0]==l[2]  && l[0]==l[1] && f(l)!=v111) ) return false;
            }
         }
      }
      return true;
   } 
   else  if(f.dimension()==4) {
      LABEL l[] = {0, 1, 2, 3};
      VALUE v000000 = f(l);
      l[3]=2; l[2]=1; l[1]=0;l[0]=0;
      VALUE v000001 = f(l);
      l[3]=2; l[2]=0; l[1]=1;l[0]=0;
      VALUE v000010 = f(l);
      l[3]=2; l[2]=0; l[1]=0;l[0]=1;
      VALUE v000100 = f(l); 
      l[3]=1; l[2]=0; l[1]=0;l[0]=0; //3-1
      VALUE v000111 = f(l);
      l[3]=0; l[2]=1; l[1]=2; l[0]=0;
      VALUE v001000 = f(l);
      l[3]=0; l[2]=1; l[1]=1; l[0]=0;
      VALUE v001100 = f(l);
      l[3]=0; l[2]=1; l[1]=0; l[0]=0; //3-1
      VALUE v011001 = f(l);
      l[3]=0; l[2]=0; l[1]=0; l[0]=1; //3-1
      VALUE v110100 = f(l); 
      l[3]=0; l[2]=0; l[1]=0; l[0]=0;
      VALUE v111111 = f(l);
      l[3]=1; l[2]=1; l[1]=0; l[0]=0;
      VALUE v100001 = f(l); 
      l[3]=1; l[2]=0; l[1]=1; l[0]=0;
      VALUE v010010 = f(l); 
      l[3]=0; l[2]=0; l[1]=1; l[0]=2;
      VALUE v100000 = f(l); 
      l[3]=0; l[2]=1; l[1]=0; l[0]=2;
      VALUE v010000 = f(l);
      l[3]=0; l[2]=0; l[1]=1; l[0]=0; //3-1
      VALUE v101010 = f(l); 


      for(l[0]=0;l[0]<f.shape(0);++l[0]) {
         for(l[1]=0;l[1]<f.shape(1);++l[1]) { 
            for(l[2]=0;l[2]<f.shape(2);++l[2]) { 
               for(l[3]=0;l[3]<f.shape(3);++l[3]) {
                  if((l[2]!=l[3] && l[1]!=l[3] && l[0]!=l[3] && l[1]!=l[2] && l[0]!=l[2]  && l[0]!=l[1] && f(l)!=v000000) ) {std::cout<<"1"; return false;}
                  if((l[2]!=l[3] && l[1]!=l[3] && l[0]!=l[3] && l[1]!=l[2] && l[0]!=l[2]  && l[0]==l[1] && f(l)!=v000001) ) {std::cout<<"1"; return false;}
                  if((l[2]!=l[3] && l[1]!=l[3] && l[0]!=l[3] && l[1]!=l[2] && l[0]==l[2]  && l[0]!=l[1] && f(l)!=v000010) ) {std::cout<<"1"; return false;}
                  if((l[2]!=l[3] && l[1]!=l[3] && l[0]!=l[3] && l[1]==l[2] && l[0]!=l[2]  && l[0]!=l[1] && f(l)!=v000100) ) {std::cout<<"1"; return false;}
                  if((l[2]!=l[3] && l[1]!=l[3] && l[0]!=l[3] && l[1]==l[2] && l[0]==l[2]  && l[0]==l[1] && f(l)!=v000111) ) {std::cout<<"1"; return false;}
                  
                  if((l[2]!=l[3] && l[1]!=l[3] && l[0]==l[3] && l[1]!=l[2] && l[0]!=l[2]  && l[0]!=l[1] && f(l)!=v001000) ) {std::cout<<"1"; return false;}
                  if((l[2]!=l[3] && l[1]!=l[3] && l[0]==l[3] && l[1]==l[2] && l[0]!=l[2]  && l[0]!=l[1] && f(l)!=v001100) ) {std::cout<<"1"; return false;}
                  
                  if((l[2]!=l[3] && l[1]==l[3] && l[0]!=l[3] && l[1]!=l[2] && l[0]==l[2]  && l[0]!=l[1] && f(l)!=v010010) ) {std::cout<<"1"; return false;}
                  if((l[2]!=l[3] && l[1]==l[3] && l[0]!=l[3] && l[1]!=l[2] && l[0]!=l[2]  && l[0]!=l[1] && f(l)!=v010000) ) {std::cout<<"1"; return false;}
                  if((l[2]!=l[3] && l[1]==l[3] && l[0]==l[3] && l[1]!=l[2] && l[0]!=l[2]  && l[0]==l[1] && f(l)!=v011001) ) {std::cout<<"1"; return false;}
                  
                  if((l[2]==l[3] && l[1]==l[3] && l[0]!=l[3] && l[1]==l[2] && l[0]!=l[2]  && l[0]!=l[1] && f(l)!=v110100) ) {std::cout<<"1"; return false;}
                  if((l[2]==l[3] && l[1]==l[3] && l[0]==l[3] && l[1]==l[2] && l[0]==l[2]  && l[0]==l[1] && f(l)!=v111111) ) {std::cout<<"1"; return false;}
                  
                  if((l[2]==l[3] && l[1]!=l[3] && l[0]!=l[3] && l[1]!=l[2] && l[0]!=l[2]  && l[0]==l[1] && f(l)!=v100001) ) {std::cout<<"1"; return false;}
                  if((l[2]==l[3] && l[1]!=l[3] && l[0]!=l[3] && l[1]!=l[2] && l[0]!=l[2]  && l[0]!=l[1] && f(l)!=v100000) ) {std::cout<<"1"; return false;}
                  if((l[2]==l[3] && l[1]!=l[3] && l[0]==l[3] && l[1]!=l[2] && l[0]==l[2]  && l[0]!=l[1] && f(l)!=v101010) ) {std::cout<<"1"; return false;}
               }
            }
         }
      }
      return true;
   }
   else{
      return false;
   }
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline bool 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::isSubmodular() const {
   const FunctionType& f = *static_cast<FunctionType const *>(this);
   if(f.dimension()==1){
      return true;
   }
   if(f.dimension()!=2 ||f.shape(0)!=2 || f.shape(1)!=2) {
      throw RuntimeError("Fallback FunctionBase::isSubmodular only defined for binary functions with order less than 3");
   }
   LABEL l00[] = {0, 0};
   LABEL l01[] = {0, 1};
   LABEL l10[] = {1, 0};
   LABEL l11[] = {1, 1};

   return f(l00)+f(l11)<= f(l10)+f(l01);
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline bool
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::isLinearConstraint() const {
   // by default all Functions are not of type linear constraint.
   return false;
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline MinMaxFunctor<VALUE> 
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::minMax() const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   opengm::FastSequence<INDEX>  c(f.dimension(), 0);
   const VALUE tmp=f(c.begin());
   MinMaxFunctor<VALUE> minMax(tmp, tmp);
   static_cast<FunctionType const *>(this)->forAtLeastAllUniqueValues(minMax);
   return minMax;
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline typename FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::ReturnType
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::min() const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   opengm::FastSequence<INDEX>  c(f.dimension(), 0);
   AccumulationFunctor<Minimizer, VALUE> accumulator(f(c.begin()));
   static_cast<FunctionType const *>(this)->forAtLeastAllUniqueValues(accumulator);
   return accumulator.value();
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline typename FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::ReturnType
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::max() const {
   const FunctionType& f=*static_cast<FunctionType const *>(this);
   opengm::FastSequence<INDEX>  c(f.dimension(), 0);
   AccumulationFunctor<Maximizer, VALUE> accumulator(f(c.begin()));
   static_cast<FunctionType const *>(this)->forAtLeastAllUniqueValues(accumulator);
   return accumulator.value();
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline typename FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::ReturnType
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::sum() const {
   AccumulationFunctor<Integrator, VALUE> accumulator(static_cast<VALUE>(0));
   static_cast<FunctionType const *>(this)->forAllValuesInAnyOrder(accumulator);
   return accumulator.value();
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
inline typename FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::ReturnType
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::product() const {
   AccumulationFunctor<Multiplier, VALUE> accumulator(static_cast<VALUE>(1));;
   static_cast<FunctionType const *>(this)->forAllValuesInAnyOrder(accumulator);
   return accumulator.value();
}

template<class FUNCTION, class VALUE, class INDEX, class LABEL>
template<class ACC>
inline typename FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::ReturnType
FunctionBase<FUNCTION, VALUE, INDEX, LABEL>::accumulate() const {
   if(meta::Compare<ACC, Minimizer>::value  ) {
      return static_cast<FunctionType const *>(this)->min();
   }
   else if( meta::Compare<ACC, Maximizer>::value ) {
      return static_cast<FunctionType const *>(this)->max();
   }
   else if( meta::Compare<ACC, Adder>::value ) {
      return static_cast<FunctionType const *>(this)->sum();
   }
   else if( meta::Compare<ACC, Integrator>::value ) {
      return static_cast<FunctionType const *>(this)->sum();
   }
   else if( meta::Compare<ACC, Multiplier>::value ) {
      return static_cast<FunctionType const *>(this)->product();
   }
   else{
      AccumulationFunctor<ACC, VALUE> accumulator;
      static_cast<FunctionType const *>(this)->forAllValuesInOrder(accumulator);
      return accumulator.value();
   }
}

} // namespace opengm

#endif // OPENGM_FUNCTION_PROPERTIES_BASE_HXX