This file is indexed.

/usr/include/opengm/inference/auxiliary/transportationsolver.hxx is in libopengm-dev 2.3.6+20160905-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
#ifndef PRIMALSOLVER_H_
#define PRIMALSOLVER_H_
#include <iostream>
#if (defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) || defined(__WINDOWS__) || defined(MINGW)) && !defined(CYGWIN)
#undef MAXSIZE_T
#endif
#include <numeric>
#include <utility>
#include <queue>
#include <algorithm>
#include <functional>
#include <stdexcept>
#include <iomanip>
#include <cassert>
#include <cmath>
#include <list>
#include <limits>

//#define TRWS_DEBUG_OUTPUT

#ifdef TRWS_DEBUG_OUTPUT
#include <opengm/inference/trws/output_debug_utils.hxx>
#endif

namespace TransportSolver
{

#ifdef TRWS_DEBUG_OUTPUT
using OUT::operator <<;
#endif

/* List 2D class and implementation ==================================================== */

template<class T>
class List2D
{
public:

	struct bufferElement;

	struct listElement
	{
		listElement(size_t coordinate,bufferElement* pbufElement):
			_coordinate(coordinate), _pbufElement(pbufElement)
		{};

		size_t _coordinate;
		bufferElement* _pbufElement;
	};

	typedef std::list<listElement> List1D;

	template<class Parent,class typeT>
		class iterator_template : public Parent
		{
			public:
			iterator_template(Parent it,const bufferElement* pbuffer0):Parent(it),_pbuffer0(pbuffer0){};
			typeT& operator * ()const{return this->Parent::operator *()._pbufElement->_value;}

			size_t index()const
			{
				return (this->Parent::operator *()._pbufElement)-_pbuffer0;
			}

			size_t coordinate()const{return this->Parent::operator *()._coordinate;}
			size_t x()const{return (*this->Parent::operator *()._pbufElement->_rowIterator)._coordinate;}
			size_t y()const{return (*this->Parent::operator *()._pbufElement->_colIterator)._coordinate;}

			bool isRowIterator()const{return &(*(this->Parent::operator *()._pbufElement->_rowIterator)) == &(*Parent(*this));}

			iterator_template changeDir()const{
			    if (isRowIterator())
					return iterator_template(this->Parent::operator *()._pbufElement->_colIterator,_pbuffer0);
				else
					return iterator_template(this->Parent::operator *()._pbufElement->_rowIterator,_pbuffer0);
			}

			iterator_template operator ++ (int){iterator_template it=*this; ++(*this); return it;}
			iterator_template& operator ++ (){Parent::operator ++(); return *this;}
			iterator_template& operator -- (){Parent::operator --(); return *this;}
			private:
			const bufferElement* _pbuffer0;
		};

		typedef iterator_template<typename List1D::iterator,T> iterator;
		typedef iterator_template<typename List1D::const_iterator,const T> const_iterator;

	typedef std::vector<List1D> List1DSeq;

	struct bufferElement
	{
		bufferElement(const T& val,typename List1D::iterator rowIterator,typename List1D::iterator colIterator)
		    :_value(val) {
		    if (_value != NaN()) {
			_rowIterator = rowIterator;
			_colIterator = colIterator;
		    }
		};

		bufferElement(const bufferElement &other)
		: _value(other._value)
		{
		 if (_value != NaN()) {
			 _rowIterator = other._rowIterator;
			 _colIterator = other._colIterator;
		 }
		}

		bufferElement & operator=(const bufferElement &other) {
			_value = other._value;
			 if (_value != NaN()) {
				 _rowIterator = other._rowIterator;
				 _colIterator = other._colIterator;
			 }
			 return *this;
		}

		T _value;
		typename List1D::iterator _rowIterator;
		typename List1D::iterator _colIterator;
	};

	typedef std::vector<bufferElement> Buffer;

	List2D(size_t xsize, size_t ysize, size_t nnz);
	List2D(const List2D&);
	List2D& operator = (const List2D&);

	void clear();
	/*
	 * after resizing all data is lost!
	 */
	void resize(size_t xsize, size_t ysize, size_t nnz);

	/* tries to insert to the end of lists.
	 * compares coordinates of the last element for this purpose
	 * it it does not work, returns <false>
	 */
	bool push(size_t x, size_t y, const T& val);

	/*
	 * tries to insert to the position of the last
	 * call of the function erase(). If it was not called yet -
	 * the last position in the allocated memory.
	 * If the insertion position is occupied,
	 * returns <false>
	 */
	bool insert(size_t x, size_t y, const T& val);
	void erase(iterator it);
	/*
	 * index - index in the _buffer array
	 */
	void erase(size_t index){erase(iterator(_buffer[index]._rowIterator,&_buffer[0]));}

	void rowErase(size_t y);
	void colErase(size_t x);

	size_t rowSize(size_t y)const{return _rowLists[y].size();};
	size_t xsize()const{return _colLists.size();}
	size_t colSize(size_t x)const{return _colLists[x].size();};
	size_t ysize()const{return _rowLists.size();}
	size_t nnz()const{return _buffer.size();}

	iterator rowBegin(size_t y){return iterator(_rowLists[y].begin(),&_buffer[0]);}
	const_iterator rowBegin(size_t y)const{return const_iterator(_rowLists[y].begin(),&_buffer[0]);}

	iterator rowEnd(size_t y){return iterator(_rowLists[y].end(),&_buffer[0]);}
	const_iterator rowEnd(size_t y)const{return const_iterator(_rowLists[y].end(),&_buffer[0]);}

	iterator colBegin(size_t x){return iterator(_colLists[x].begin(),&_buffer[0]);}
	const_iterator colBegin(size_t x)const{return const_iterator(_colLists[x].begin(),&_buffer[0]);}

	iterator colEnd(size_t x){return iterator(_colLists[x].end(),&_buffer[0]);}
	const_iterator colEnd(size_t x)const{return const_iterator(_colLists[x].end(),&_buffer[0]);}

	//iterator switchDirection(iterator it)const;
	template<class BinaryTable1D>
	T inner_product1D(const BinaryTable1D& bin)const;

	//pprecision - if non-zero contains an upper bound for the numerical precision of the returned  value
	template<class BinaryTable2D>
	T inner_product2D(const BinaryTable2D& bin, T* pprecision=0)const;

	template<class BinaryTable2D>
	void get2DTable(BinaryTable2D* pbin)const;

	T& buffer(size_t index){return _buffer[index]._value;}
	const T& buffer(size_t index)const{return _buffer[index]._value;}

	std::pair<bool,T> getValue(size_t x,size_t y)const;//!< not very efficient function. Implemented mainly for test purposes.

#ifdef TRWS_DEBUG_OUTPUT
	void PrintTestData(std::ostream& fout)const;
#endif
private:
	bool _insert(size_t x, size_t y, const T& val, size_t position);
	void _copy(const List2D<T>& lst);
	static T NaN(){return std::numeric_limits<T>::max();}

	//size_t _nnz;
	size_t _insertPosition;
	size_t _pushPosition;
	List1DSeq _rowLists;
	List1DSeq _colLists;
	Buffer _buffer;
};

template<class T>
List2D<T>::List2D(size_t xsize, size_t ysize, size_t nnz):
_insertPosition(nnz-1),
_pushPosition(0),
_rowLists(ysize),
_colLists(xsize),
_buffer(nnz,bufferElement(NaN(),typename List1D::iterator(),typename List1D::iterator()))
{};

template<class T>
List2D<T>::List2D(const List2D& lst)
{
	_copy(lst);
}

template<class T>
void List2D<T>::resize(size_t xsize, size_t ysize, size_t nnz)
{
	_rowLists.assign(ysize,List1D());
	_colLists.assign(xsize,List1D());
	_buffer.assign(nnz,bufferElement(NaN(),typename List1D::iterator(),typename List1D::iterator()));
	_insertPosition=nnz-1;
	_pushPosition=0;
};


template<class T>
void List2D<T>::_copy(const List2D<T>& lst)
{
	_buffer=lst._buffer;

	_rowLists=lst._rowLists;
	typename List1DSeq::iterator itbeg=_rowLists.begin(), itend=_rowLists.end();
	for (;itbeg!=itend;++itbeg)
	{
		typename List1D::iterator beg=(*itbeg).begin(),end=(*itbeg).end();
		for (;beg!=end;++beg)
		{
			size_t offset=(*beg)._pbufElement-&(lst._buffer[0]);
			(*beg)._pbufElement= &_buffer[offset];
			(*beg)._pbufElement->_rowIterator=beg;
		}
	}

	_colLists=lst._colLists;
	itbeg=_colLists.begin(), itend=_colLists.end();
	for (;itbeg!=itend;++itbeg)
	{
		typename List1D::iterator beg=(*itbeg).begin(),end=(*itbeg).end();
		for (;beg!=end;++beg)
		{
			size_t offset=(*beg)._pbufElement-&(lst._buffer[0]);
			(*beg)._pbufElement= &_buffer[offset];
			(*beg)._pbufElement->_colIterator=beg;
		}
	}

	//_nnz=lst._nnz;
	_insertPosition=lst._insertPosition;
	_pushPosition=lst._pushPosition;
};

template<class T>
List2D<T>& List2D<T>::operator = (const List2D<T>& lst)
{
	if (this==&lst)
		return *this;

	_copy(lst);

	return *this;
}

template<class T>
bool List2D<T>::insert(size_t x,size_t y,const T& val)
{
	if (_insert(x,y,val,_insertPosition))
	{
	  _insertPosition=_buffer.size();
	  return true;
	}

	return false;
};

template<class T>
bool List2D<T>::push(size_t x, size_t y, const T& val)
{
	if (_insert(x,y,val,_pushPosition))
	{
	  ++_pushPosition;
	  //the very last position in _buffer can not be occupied de to push(), only due to insert()
	  if (_pushPosition == (_buffer.size()-1))
		  ++_pushPosition;
	  return true;
	}

	return false;
}

template<class E>
class coordLess
{
public:
 coordLess(size_t x):_x(x){}
 bool operator () (const E& e) const{return e._coordinate < _x;}
private:
 size_t _x;
};

template<class E>
class coordMore
{
public:
 coordMore(size_t x):_x(x){}
 bool operator () (const E& e) const{return e._coordinate > _x;}
private:
 size_t _x;
};

template<class T>
bool List2D<T>::_insert(size_t x, size_t y, const T& val, size_t position)
{
	assert(x<_colLists.size());
	assert(y< _rowLists.size());

	if (position >= _buffer.size())
		return false;

	bufferElement& buf=_buffer[position];
	buf._value=val;

	List1D& rowList=_rowLists[y];
	List1D& colList=_colLists[x];

	typename List1D::iterator insertPosition=std::find_if(rowList.begin(),rowList.end(),coordMore<listElement>(x));
	buf._rowIterator=rowList.insert(insertPosition,listElement(x,&buf));
	insertPosition=std::find_if(colList.begin(),colList.end(),coordMore<listElement>(y));
	buf._colIterator=colList.insert(insertPosition,listElement(y,&buf));

	return true;
};

template<class T>
void List2D<T>::erase(iterator it)
{
 _insertPosition=it.index();
 size_t x=it.x(), y=it.y();
 _rowLists[y].erase(_buffer[_insertPosition]._rowIterator);
 _colLists[x].erase(_buffer[_insertPosition]._colIterator);
 _buffer[_insertPosition]._value=NaN();
};

template<class T>
void List2D<T>::rowErase(size_t y)
{
	while (!_rowLists[y].empty())
		erase(iterator(_rowLists[y].begin(),&_buffer[0]));
};

template<class T>
void List2D<T>::colErase(size_t x)
{
	while (!_colLists[x].empty())
		erase(iterator(_colLists[x].begin(),&_buffer[0]));
};

template<class T>
void List2D<T>::clear()
{
	for (size_t x=0;x<_rowLists.size();++x)
		rowErase(x);

	for (size_t y=0;y<_colLists.size();++y)
		colErase(y);

	_pushPosition=0;
	_insertPosition=_buffer.size()-1;
};

template<class T>
template<class BinaryTable1D>
T List2D<T>::inner_product1D(const BinaryTable1D& bin)const
{
	T sum=0;
	for (size_t i=0; i<_colLists.size();++i)
	{
		typename List1D::const_iterator beg=_colLists[i].begin(), end=_colLists[i].end();
		for (;beg!=end;++beg)
			sum+=(*beg)._pbufElement->_value * bin[xsize()*((*beg)._coordinate)+i];
	};
	return sum;
};

template<class T>
template<class BinaryTable2D>
T List2D<T>::inner_product2D(const BinaryTable2D& bin, T* pprecision)const //DEBUG
{
	T floatTypeEps=std::numeric_limits<T>::epsilon();
	T precision_;
	T* pprecision_;
	if (pprecision!=0)
		pprecision_=pprecision;
	else
		pprecision_=&precision_;

	*pprecision_=0;

	T sum=0;
	for (size_t i=0; i<xsize();++i)
	{
		const_iterator beg=colBegin(i), end=colEnd(i);
		for (;beg!=end;++beg)
		{
			sum+=(*beg) * bin(beg.x(),beg.y());
			*pprecision_+=floatTypeEps*fabs(sum);
		}
	};
	return sum;
};

template<class T>
std::pair<bool,T> List2D<T>::getValue(size_t x,size_t y)const
{
 typename List1D::const_iterator beg=_colLists[x].begin(), end=_colLists[x].end();
 for (;beg!=end;++beg)
	if ((*beg)._coordinate==y)
		return std::make_pair(true,(*beg)._pbufElement->_value);

  return std::make_pair(false,(T)0);
};

#ifdef TRWS_DEBUG_OUTPUT
template<class T>
void List2D<T>::PrintTestData(std::ostream& fout)const
{
	fout << "_nnz=" <<_buffer.size()<<std::endl;
	fout << "_insertPosition=" << _insertPosition<<std::endl;
	fout << "_pushPosition=" << _pushPosition<<std::endl;
	fout << "xsize="<<_colLists.size()<<std::endl;
	fout << "ysize="<<_rowLists.size()<<std::endl;

	std::vector<T> printBuffer(_buffer.size(),NaN());

	fout << "row Lists: "<<std::endl;
	for (size_t i=0; i< _rowLists.size();++i)
	{
		fout << "y="<<i<<": ";
		typename List1D::const_iterator beg=_rowLists[i].begin(), end=_rowLists[i].end();
		for (;beg!=end;++beg)
		{
			fout <<"("<<(*beg)._coordinate<<","<<(*beg)._pbufElement->_value<<")";
			printBuffer[(*beg)._pbufElement-&_buffer[0]]=(*beg)._pbufElement->_value;
		}
		fout <<std::endl;
	}

	fout << "column Lists: "<<std::endl;
	for (size_t i=0; i< _colLists.size();++i)
	{
		fout << "x="<<i<<": ";
		typename List1D::const_iterator beg=_colLists[i].begin(), end=_colLists[i].end();
		for (;beg!=end;++beg)
		{
			fout <<"("<<(*beg)._coordinate<<","<<(*beg)._pbufElement->_value<<")";
		}
		fout <<std::endl;
	}

	fout << "buffer: ";
	for (size_t i=0;i<printBuffer.size();++i)
		if (printBuffer[i]!=NaN())
		 fout << "("<<_buffer[i]._value<<","<<(*_buffer[i]._rowIterator)._coordinate <<","<< (*_buffer[i]._colIterator)._coordinate<<")";
		else
			fout << "(nan,nan,nan)";
	fout << std::endl;

};
#endif

template<class T>
template<class BinaryTable2D>
void List2D<T>::get2DTable(BinaryTable2D* pbin)const
{
	for (size_t x=0;x<xsize();++x)
		for (size_t y=0;y<ysize();++y)
			(*pbin)(x,y)=0;

	for (size_t i=0; i<xsize();++i)
	{
		const_iterator beg=colBegin(i), end=colEnd(i);
		for (;beg!=end;++beg)
			(*pbin)(beg.x(),beg.y())=(*beg);
	};
};

//=====================================================================================

/*
 * simple matrix class
 */
template<class T>
class MatrixWrapper
{
public:
  typedef typename std::vector<T>::const_iterator const_iterator;
  typedef typename std::vector<T>::iterator iterator;
  typedef T ValueType;
  MatrixWrapper():_xsize(0),_ysize(0){};
  MatrixWrapper(size_t xsize,size_t ysize):_xsize(xsize),_ysize(ysize),_array(xsize*ysize){};
  MatrixWrapper(size_t xsize,size_t ysize, T value):_xsize(xsize),_ysize(ysize),_array(xsize*ysize,value){};
  void resize(size_t xsize,size_t ysize){_xsize=xsize;_ysize=ysize;_array.resize(xsize*ysize);}; //<! array entries will not be copied!
  void assign(size_t xsize,size_t ysize,T value){_xsize=xsize;_ysize=ysize;_array.assign(xsize*ysize,value);};
  const_iterator begin()const {return _array.begin();}
  const_iterator end  ()const {return _array.end();}
  iterator 		 begin()	  {return _array.begin();}
  iterator 		 end  ()	  {return _array.end();}

  const T& operator() (size_t x,size_t y)const{return _array[y*_xsize + x];}
  	    T& operator() (size_t x,size_t y)	  {return _array[y*_xsize + x];}
  size_t xsize()const{return _xsize;}
  size_t ysize()const{return _ysize;}

#ifdef TRWS_DEBUG_OUTPUT
  std::ostream& print(std::ostream& out)const
  {
	const_iterator it=begin();
	out<<"["<<_xsize<<","<<_ysize<<"](";
	for (size_t y=0;y<_ysize;++y)
	{
	 if (y!=0) out << ",";
	 out <<"(";
	 for (size_t x=0;x<_xsize;++x)
	 {
	  if (x!=0) out << ",";
	  out << *it;
	  ++it;
	 }
	 out << ")";
	}

	return out<<")";
  }
#endif

private:
  size_t _xsize, _ysize;
  std::vector<T> _array;
};

template<class T>
void transpose(const MatrixWrapper<T>& input, MatrixWrapper<T>& result)
{
 result.resize(input.xsize(),input.ysize());
 for (size_t x=0;x<input.xsize();++x)
  for (size_t y=0;y<input.ysize();++y)
	  result(y,x)=input(x,y);
}

/*
 * Additionally to the functionality provided by std::copy_if it returns indexes of elements satisfying pred
 */
template <class InputIterator, class OutputIteratorValue,class OutputIteratorIndex, class UnaryPredicate>
OutputIteratorValue copy_if (InputIterator first, InputIterator last,
		  OutputIteratorValue result, OutputIteratorIndex resultIndex, UnaryPredicate pred)
{
  size_t indx=0;
  while (first!=last) {
    if (pred(*first)) {
      *result = *first;
      *resultIndex=indx;
      ++resultIndex;
      ++result;
    }
    ++indx;
    ++first;
  }
  return result;
}

template<class Iterator,class T>
T _Normalize(Iterator begin,Iterator end,T initialValue)
{
	T acc=std::accumulate(begin,end,(T)0.0);
	std::transform(begin,end,begin,std::bind1st(std::multiplies<T>(),1.0/acc));
	return initialValue+acc;
};

//===== TransportationSolver class ==============================================
/*
* in class OPTIMIZER the member bool bop(const T& a, const T& b) has to be defined. If minimization is meant, then bop== operator <()
* if maximization -> bop == operator >()
* OPTIMIZER == ACC in opengm notation
*
* DenseMatrix represents a dense matrix type and has to
*  - contain elements of the type floatType, defined in common.h
*  and provide floatType operator ()(size_t index_a, size_t index_b) to access its elements
*  Examples for Matrix:
*  MatrixWrapper defined in simpleobjects.h
*  boost::numeric::ublas::matrix<DD::floatType>;
*
*   see also tests/testcommon.h
**
**/
template<class OPTIMIZER, class DenseMatrix>
class TransportationSolver
{
public:
	typedef typename DenseMatrix::ValueType floatType;
	typedef enum{X, Y} Direction;
	typedef std::pair<size_t,Direction> CoordDir;
	typedef std::queue<CoordDir> Queue;
	typedef List2D<floatType> FeasiblePoint;
	typedef std::vector<floatType> UnaryDense;
	typedef std::vector<size_t> IndexArray;
	typedef std::list<typename FeasiblePoint::const_iterator> CycleList;

	static const floatType floatTypeEps;
	static const size_t defaultMaxIterationNumber;
	static const size_t MAXSIZE_T;

	TransportationSolver(
#ifdef	TRWS_DEBUG_OUTPUT
			std::ostream& fout=std::cerr,
#endif
			floatType relativePrecision=floatTypeEps,size_t maxIterationNumber=defaultMaxIterationNumber):
#ifdef	TRWS_DEBUG_OUTPUT
		_fout(fout),
#endif
		_pbinInitial(0),_xsize(0),_ysize(0),_relativePrecision(relativePrecision),_basicSolution(0,0,0),_maxIterationNumber(maxIterationNumber)
	{
		assert(relativePrecision >0);
	};

	TransportationSolver(const size_t& xsize,const size_t& ysize,const DenseMatrix& bin,
#ifdef	TRWS_DEBUG_OUTPUT
			std::ostream& fout=std::cout,
#endif
			floatType relativePrecision=floatTypeEps,size_t maxIterationNumber=100):
#ifdef	TRWS_DEBUG_OUTPUT
		_fout(fout),
#endif
	  _pbinInitial(&bin),_xsize(xsize),_ysize(ysize),_relativePrecision(relativePrecision),_basicSolution(xsize,ysize,_nnz(xsize,ysize)),_maxIterationNumber(maxIterationNumber)
	{
		assert(relativePrecision >0);
		Init(xsize,ysize,bin);
	};


	void Init(size_t xsize,size_t ysize,const DenseMatrix& bin);
	/*
	 * iterators xbegin and ybegin should point out to containers at least xsize and ysize long.
	 * Only the first xsize and ysize will be used.
	 * Iterator should support operation + n, i.e. begin+xsize should be defined
	 * Non-necessary near-zero elements will NOT be considered automatically to avoid numerical problems and save computational time
	 */
	template <class Iterator>
	floatType Solve(Iterator xbegin,Iterator ybegin);

	floatType GetObjectiveValue()const{return _basicSolution.inner_product2D(_matrix, &_primalValueNumericalPrecision);};//!< returns value of the current basic solution
	/*
	 * OutputMatrix should provide operator ()(size_t index_a, size_t index_b) to assign values to its elements
	 */
	template<class OutputMatrix>
	floatType GetSolution(OutputMatrix* pbin)const;
#ifdef TRWS_DEBUG_OUTPUT
	void PrintTestData(std::ostream& fout)const;
	void PrintProblemDescription(const UnaryDense& xarr,const UnaryDense& yarr);
#endif
private:
	void _InitBasicSolution(const UnaryDense& xarr,const UnaryDense& yarr);
	bool _isOptimal(std::pair<size_t,size_t>* pmove);
	bool _CheckDualConstraints(const UnaryDense& xdual,const UnaryDense& ydual,std::pair<size_t,size_t>* pmove )const;
	CoordDir _findSingleNeighborNode(const FeasiblePoint&)const;
	void _BuildDuals(UnaryDense* pxdual,UnaryDense* pydual);
	void _FindCycle(FeasiblePoint* pfp,const std::pair<size_t,size_t>& move);
	void _ChangeSolution(const FeasiblePoint& fp,const std::pair<size_t,size_t>& move);
	bool _MovePotentials(const std::pair<size_t,size_t>& move);

	void _move2Neighbor(const FeasiblePoint& fp,typename FeasiblePoint::const_iterator &it)const;//helper function - determines, iterator direction and moves it to another element of a list fp with length 2

	static size_t _nnz(size_t xsize,size_t ysize){return xsize+ysize;}
	template <class Iterator>
	static floatType _FilterBound(Iterator xbegin,size_t xsize,UnaryDense& out,IndexArray* pactiveIndexes, floatType precision);
	void _FilterObjectiveMatrix();
	void _checkCounter(size_t* pcounter,const char* errmess);

	mutable floatType _primalValueNumericalPrecision;
	bool _recalculated;
#ifdef TRWS_DEBUG_OUTPUT
	std::ostream& _fout;
#endif
	const DenseMatrix* _pbinInitial;
	MatrixWrapper<floatType> _matrix;
	size_t _xsize,_ysize;
	floatType _relativePrecision;//relative precision of thresholding input marginal values
	FeasiblePoint _basicSolution;
	IndexArray _nonZeroXcoordinates;//_activeXbound;
	IndexArray _nonZeroYcoordinates;//_activeYbound;
	size_t _maxIterationNumber;
};

template<class OPTIMIZER,class DenseMatrix>
const typename TransportationSolver<OPTIMIZER,DenseMatrix>::floatType TransportationSolver<OPTIMIZER,DenseMatrix>::floatTypeEps=std::numeric_limits<TransportationSolver<OPTIMIZER,DenseMatrix>::floatType>::epsilon();

template<class OPTIMIZER,class DenseMatrix>
const size_t TransportationSolver<OPTIMIZER,DenseMatrix>::MAXSIZE_T=std::numeric_limits<size_t>::max();

template<class OPTIMIZER,class DenseMatrix>
const size_t TransportationSolver<OPTIMIZER,DenseMatrix>::defaultMaxIterationNumber=100;

template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::Init(size_t xsize,size_t ysize,const DenseMatrix& bin)
{
	_pbinInitial=&bin;
	_xsize=xsize;
	_ysize=ysize;
	_basicSolution.resize(xsize,ysize,_nnz(xsize,ysize));
	_nonZeroXcoordinates.clear();
	_nonZeroYcoordinates.clear();
	_primalValueNumericalPrecision=0;
};

template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::
_checkCounter (size_t* pcounter, const char* errmess)
{
	if ((*pcounter)++ < std::max(_xsize*_ysize*100,_maxIterationNumber) )//100 - magic number
		return;

	throw std::runtime_error(errmess);
};

template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::
_InitBasicSolution(const UnaryDense& xarr,const UnaryDense& yarr)
{
	UnaryDense row=xarr;
	UnaryDense col=yarr;
	//north-west corner basic solution
	//_basicSolution.clear();
	_basicSolution.resize(xarr.size(),yarr.size(),_nnz(xarr.size(),yarr.size()));
	typename UnaryDense::iterator rbeg=row.begin(), rend=row.end();
	typename UnaryDense::iterator cbeg=col.begin(), cend=col.end();

	size_t counter=0;
	while ((rbeg!=rend)&&(cbeg!=cend))
	{
	if (*cbeg>=*rbeg)
	{
		//_basicSolution.push(rbeg.index(), cbeg.index(),*rbeg);
		_basicSolution.push(rbeg-row.begin(), cbeg-col.begin(),*rbeg);
		(*cbeg)-=(*rbeg);
		if (rbeg!=rend)
		 ++rbeg;
		else
		 ++cbeg;
	}
	else
	{
		_basicSolution.push(rbeg-row.begin(),cbeg-col.begin(),*cbeg);
		(*rbeg)-=(*cbeg);
		if (cbeg!=cend)
		 ++cbeg;
		else
		 ++rbeg;
	}

	_checkCounter(&counter,"_InitBasicSolution-infinite loop!\n");
	}

	size_t basicNum=xarr.size()+yarr.size()-1;
	if (counter!=basicNum)
		throw std::runtime_error("TransportationSolver::_InitBasicSolution() : INTERNAL ERROR: Can not initialize basic solution!");
};


/*
 * returns coordinate + direction of the point which is alone in its row/column.
 * e.g. (1,X) means that the column with X-coordinate equal to 1, contains a single element.
 */

template<class OPTIMIZER,class DenseMatrix>
typename TransportationSolver<OPTIMIZER,DenseMatrix>::CoordDir
TransportationSolver<OPTIMIZER,DenseMatrix>::_findSingleNeighborNode(const FeasiblePoint& fp)const
{
	for (size_t i=0;i<_nonZeroXcoordinates.size();++i)
		if (fp.colSize(i)==1)
			return std::make_pair(i,X);

	for (size_t i=0;i<_nonZeroYcoordinates.size();++i)
		if (fp.rowSize(i)==1)
			return std::make_pair(i,Y);

	return std::make_pair(MAXSIZE_T,X);
};

template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::
_BuildDuals(UnaryDense* pxdual,UnaryDense* pydual)
{
	UnaryDense& xdual=*pxdual;
	UnaryDense& ydual=*pydual;

	xdual.assign(_nonZeroXcoordinates.size(),0.0);
	ydual.assign(_nonZeroYcoordinates.size(),0.0);

	FeasiblePoint fpcopy(_basicSolution);
	CoordDir currNode=_findSingleNeighborNode(fpcopy);

	if (currNode.first==MAXSIZE_T)
		throw std::runtime_error("_BuildDuals: can not build duals: no single neighbor node available!");

	if (currNode.second==X)
	{
		currNode.second=Y;
		currNode.first=fpcopy.colBegin(currNode.first).coordinate();
	}else
	{
		currNode.second=X;
		currNode.first=fpcopy.rowBegin(currNode.first).coordinate();
	}

	Queue qu;
	qu.push(currNode);

	size_t counter=0;
	do
	{
		if (qu.front().second==Y)
		{
		 size_t y=qu.front().first;

		 typename FeasiblePoint::iterator beg=fpcopy.rowBegin(y),
										  end=fpcopy.rowEnd(y);
		 for (;beg!=end;++beg)
		 {
			 size_t x=beg.coordinate();
			 //xdual[x]=(*_pbin)(x,y)-ydual[y];
			 xdual[x]=_matrix(x,y)-ydual[y];
			 qu.push(std::make_pair(x,X));
		 }
		 fpcopy.rowErase(y);

		}else
		{
			size_t x=qu.front().first;

			 typename FeasiblePoint::iterator beg=fpcopy.colBegin(x),
											  end=fpcopy.colEnd(x);
			 for (;beg!=end;++beg)
			 {
				 size_t y=beg.coordinate();
				 //ydual[y]=(*_pbin)(x,y)-xdual[x];
				 ydual[y]=_matrix(x,y)-xdual[x];
				 qu.push(std::make_pair(y,Y));
			 }

			 fpcopy.colErase(x);
		}

		qu.pop();

	_checkCounter(&counter, "_BuildDuals-infinite loop!\n");
	}while (!qu.empty());

};

template<class OPTIMIZER,class DenseMatrix>
 bool TransportationSolver<OPTIMIZER,DenseMatrix>::
_CheckDualConstraints(const UnaryDense& xdual,const UnaryDense& ydual,std::pair<size_t,size_t>* pmove)const
{
	floatType eps=(OPTIMIZER::bop(1,0) ? 1.0 : -1.0)*floatTypeEps;
	floatType delta, precision;

	typename MatrixWrapper<floatType>::const_iterator mit=_matrix.begin();
	for (typename UnaryDense::const_iterator ybeg=ydual.begin();ybeg<ydual.end();++ybeg)
		for (typename UnaryDense::const_iterator xbeg=xdual.begin();xbeg<xdual.end();++xbeg)
		{
			delta=*mit-*xbeg-*ybeg;
			precision=(fabs(*mit)+fabs(*xbeg)+fabs(*ybeg))*eps;
			if (OPTIMIZER::bop(delta,precision))
			 {
				pmove->first=xbeg-xdual.begin(); pmove->second=ybeg-ydual.begin();
				return false;
			 }
			++mit;
		}

		return true;
};

template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::
_FindCycle(FeasiblePoint* pfp,const std::pair<size_t,size_t>& move)
{
	FeasiblePoint& fp=*pfp;

	fp.insert(move.first,move.second,0);

	CoordDir cd=_findSingleNeighborNode(fp);

	size_t counter=0;//_initCounter();
	while (cd.first<MAXSIZE_T)
	{
		if (cd.second==X)
			fp.colErase(cd.first);
		else
			fp.rowErase(cd.first);

		cd=_findSingleNeighborNode(fp);

		_checkCounter(&counter,"_FindCycle-infinite loop!\n");
	}
};

//helper function - determines, iterator direction and moves it to another element of a list fp with length 2
template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::
_move2Neighbor(const FeasiblePoint& fp,typename FeasiblePoint::const_iterator &it)const
{
 typename FeasiblePoint::const_iterator beg=fp.rowBegin(0);
 if (it.isRowIterator())
 {
	 beg=fp.rowBegin(it.y());
 }
 else
 {
	 beg=fp.colBegin(it.x());
 }

if (beg==it)
	++it;
else
	--it;
};

template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::
_ChangeSolution(const FeasiblePoint& fp,const std::pair<size_t,size_t>& move)
{
	size_t y=0;
	for (;y<fp.ysize();++y)
	{
	  assert( (fp.rowSize(y)==2) || (fp.rowSize(y)==0) ) ;
	  if (fp.rowSize(y)!=0)
		break;
	}

	CycleList plusList, minusList;
	CycleList* pplus=&plusList, *pPlusList=0;
	CycleList* pminus=&minusList, *pMinusList=0;

	//going along the cycle to assign +/- to vertices correctly
	typename FeasiblePoint::const_iterator it=fp.rowBegin(y);
	std::pair<size_t,size_t> c0(it.x(),it.y());
	do{
		pplus->push_back(it);
		if ( (it.x()==move.first) && (it.y()==move.second) )
		{
			pMinusList=pminus; //really minus list is in *pMinusList
			pPlusList =pplus;
		}
		it=it.changeDir();
		_move2Neighbor(fp,it);
		swap(pplus,pminus);
	}while (! ( (it.x()==c0.first) && (it.y()==c0.second) ) );

	assert (pMinusList!=0);
	assert (pPlusList!=0);

	//selecting the smallest number to add...
		 floatType min=std::numeric_limits<floatType>::max();
		 typename CycleList::const_iterator iterMinVal, beg=pMinusList->begin(), end=pMinusList->end();
		 for (;beg!=end;++beg)
		 {
			 if ( (  **beg < min) ||
				  ( (**beg == min) &&
					    ( (beg->y() < iterMinVal->y()) ||
					    ( ((beg->y() == iterMinVal->y())
					    		 && (beg->x() < iterMinVal->x())) ) ) 	) )
			 {
				 min=**beg;
				 iterMinVal=beg;
			 }
		 }

		  //changing
		 _basicSolution.insert(move.first,move.second,0);

		  beg=pMinusList->begin(), end=pMinusList->end();
		  for (;beg!=end;++beg)
		 	 _basicSolution.buffer((*beg).index())-=min;

		  beg=pPlusList->begin(), end=pPlusList->end();
		  for (;beg!=end;++beg)
		 	 _basicSolution.buffer((*beg).index())+=min;

		  _basicSolution.erase((*iterMinVal).index());
}

template<class OPTIMIZER,class DenseMatrix>
bool TransportationSolver<OPTIMIZER,DenseMatrix>::
_MovePotentials(const std::pair<size_t,size_t>& move)
{
	floatType ObjVal=GetObjectiveValue();
	floatType primalValueNumericalPrecisionOld=_primalValueNumericalPrecision;
	FeasiblePoint fp=_basicSolution;

	_FindCycle(&fp,move);

	_ChangeSolution(fp,move);


        floatType newObjValue=GetObjectiveValue();
	if ( (OPTIMIZER::bop(ObjVal,newObjValue)) && (fabs(ObjVal-newObjValue)>(_primalValueNumericalPrecision+primalValueNumericalPrecisionOld) ) )
		{
#ifdef	TRWS_DEBUG_OUTPUT
			std::cerr<<_fout<<std::setprecision (std::numeric_limits<floatType>::digits10+1) << std::endl<<"ObjVal="<<ObjVal
					 <<", newObjValue="<<newObjValue
					 <<", fabs(ObjVal-newObjValue)="<<fabs(ObjVal-newObjValue)<<", _primalValueNumericalPrecision="<<_primalValueNumericalPrecision
					 << ", primalValueNumericalPrecisionOld="<< primalValueNumericalPrecisionOld <<std::endl;
			_fout << "Basic solution before move:" <<std::endl;
			fp.PrintTestData(_fout);
			_fout << "Move:" << move<<std::endl;
#endif
			return false;
		}

	return true;
};


template<class OPTIMIZER,class DenseMatrix>
bool TransportationSolver<OPTIMIZER,DenseMatrix>::
_isOptimal(std::pair<size_t,size_t>* pmove)
{
	//checks current basic solution for optimality
	//1. build duals
	UnaryDense xduals,yduals;
	_BuildDuals(&xduals,&yduals);
	//2. check whether they satisfy dual constraints
	return _CheckDualConstraints(xduals,yduals,pmove);
};

template<class OPTIMIZER,class DenseMatrix>
template <class Iterator>
typename TransportationSolver<OPTIMIZER,DenseMatrix>::floatType TransportationSolver<OPTIMIZER,DenseMatrix>::
_FilterBound(Iterator xbegin,size_t xsize,UnaryDense& out,IndexArray* pactiveIndexes,floatType precision)
{
	size_t numOfMeaningfulValues=std::count_if(xbegin,xbegin+xsize,std::bind2nd(std::greater<floatType>(),precision));

 	if (numOfMeaningfulValues==0)
 		throw std::runtime_error("TransportationSolver:_FilterBound(): Error: empty output array. Was the _relativePrecision parameter selected properly?");

 	out.resize(numOfMeaningfulValues);
 	pactiveIndexes->resize(numOfMeaningfulValues);
 	TransportSolver::copy_if(xbegin,xbegin+xsize,out.begin(),pactiveIndexes->begin(),std::bind2nd(std::greater<floatType>(),precision));
 	return _Normalize(out.begin(),out.end(),(floatType)0.0);
}

#ifdef TRWS_DEBUG_OUTPUT
template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::
PrintProblemDescription(const UnaryDense& xarr,const UnaryDense& yarr)
{
		 size_t maxprecision=std::numeric_limits<floatType>::digits10;
				_fout<< std::setprecision (maxprecision+1) << "xarr=" << xarr<< std::endl;;
				_fout<< std::setprecision (maxprecision+1) << "yarr=" << yarr << std::endl;

				for (size_t x=0;x<xarr.size();++x)
				 for (size_t y=0;y<yarr.size();++y)
					_fout << std::setprecision (maxprecision+1)<<"; bin("<<_nonZeroXcoordinates[x]<<","<<_nonZeroYcoordinates[y]<<")="<<_matrix(x,y)<<std::endl;

		_fout <<std::endl<< "Current basic solution:"<<std::endl;
		_basicSolution.PrintTestData(_fout);
}
#endif

template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::_FilterObjectiveMatrix()
{
	_matrix.resize(_nonZeroXcoordinates.size(),_nonZeroYcoordinates.size());
	typename MatrixWrapper<floatType>::iterator begin=_matrix.begin();
	for (size_t y=0;y<_nonZeroYcoordinates.size();++y)
	  for (size_t x=0;x<_nonZeroXcoordinates.size();++x)
		{
			size_t ycurr=_nonZeroYcoordinates[y];
			*begin=(*_pbinInitial)(_nonZeroXcoordinates[x],ycurr);
			++begin;
		}
}

template<class OPTIMIZER,class DenseMatrix>
template<class Iterator>
typename TransportationSolver<OPTIMIZER,DenseMatrix>::floatType TransportationSolver<OPTIMIZER,DenseMatrix>::
Solve(Iterator xbegin,Iterator ybegin)
{
	_recalculated=false;
	UnaryDense xarr,yarr;

	_FilterBound(xbegin,_xsize,xarr,&_nonZeroXcoordinates,_relativePrecision*_xsize*_ysize);
	_FilterBound(ybegin,_ysize,yarr,&_nonZeroYcoordinates,_relativePrecision*_xsize*_ysize);
	_FilterObjectiveMatrix();

	//1. Create basic solution _basicSolution
	_InitBasicSolution(xarr,yarr);

	//2. Check optimality
	std::pair<size_t,size_t> move;
	bool objectiveImprovementFlag=true;
	size_t counter=0;//_initCounter();

	while ((objectiveImprovementFlag)&&(!_isOptimal(&move)))
	{
		objectiveImprovementFlag=_MovePotentials(move); //changes basic solution
		//_checkCounter(&counter,"TransportationSolver::Solve(): maximal number of iterations reached! Try to increase <maxIterationNumber> in constructor.\n");
 		if (counter++ > std::max(_xsize*_ysize*100,_maxIterationNumber))
 		{
 #ifdef TRWS_DEBUG_OUTPUT
 			_fout << "Warning! TransportationSolver::Solve(): maximal number of iterations reached! A non-optimal solution is possible!"<<std::endl;
 #endif
                        break;
 		}
		if (!objectiveImprovementFlag)
		{
#ifdef TRWS_DEBUG_OUTPUT
			PrintProblemDescription(xarr,yarr);
#endif
			throw std::runtime_error("TransportationSolver::Solve: INTERNAL ERROR: Objective has become worse. Interrupting!");
		}
	}
	return  GetObjectiveValue();
};


template<class OPTIMIZER,class DenseMatrix>
template<class OutputMatrix>
typename TransportationSolver<OPTIMIZER,DenseMatrix>::floatType TransportationSolver<OPTIMIZER,DenseMatrix>::GetSolution(OutputMatrix* pbin)const
{
	for (size_t y=0;y<_ysize;++y)
	 for (size_t x=0;x<_xsize;++x)
		 (*pbin)(x,y)=0.0;

	MatrixWrapper<floatType> matrix(_basicSolution.xsize(),_basicSolution.ysize());
	_basicSolution.get2DTable(&matrix);
	for (size_t y=0;y<matrix.ysize();++y)
	 for (size_t x=0;x<matrix.xsize();++x)
		 (*pbin)(_nonZeroXcoordinates[x],_nonZeroYcoordinates[y])=matrix(x,y);

	return GetObjectiveValue();
};

#ifdef TRWS_DEBUG_OUTPUT
template<class OPTIMIZER,class DenseMatrix>
void TransportationSolver<OPTIMIZER,DenseMatrix>::PrintTestData(std::ostream& fout)const
{
	fout << "_relativePrecision="<<_relativePrecision<<std::endl;
	fout << "_xsize="<<_xsize<<", _ysize="<<_ysize<<std::endl;
	fout <<"_basicSolution:"<<std::endl;
	_basicSolution.PrintTestData(fout);
	fout <<std::endl<< "_nonZeroXcoordinates: "<<_nonZeroXcoordinates;
	fout <<std::endl<< "_nonZeroYcoordinates: "<<_nonZeroYcoordinates;
};
#endif

};//TS

#endif