/usr/include/opengm/inference/dynamicprogramming.hxx is in libopengm-dev 2.3.6+20160905-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | #pragma once
#ifndef OPENGM_DYNAMICPROGRAMMING_HXX
#define OPENGM_DYNAMICPROGRAMMING_HXX
#include <typeinfo>
#include <limits>
#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"
namespace opengm {
/// DynamicProgramming
///\ingroup inference
/// \ingroup messagepassing_inference
template<class GM, class ACC>
class DynamicProgramming : public Inference<GM, ACC> {
public:
typedef ACC AccumulationType;
typedef ACC AccumulatorType;
typedef GM GraphicalModelType;
OPENGM_GM_TYPE_TYPEDEFS;
typedef LabelType MyStateType;
typedef ValueType MyValueType;
typedef visitors::VerboseVisitor<DynamicProgramming<GM, ACC> > VerboseVisitorType;
typedef visitors::EmptyVisitor<DynamicProgramming<GM, ACC> > EmptyVisitorType;
typedef visitors::TimingVisitor<DynamicProgramming<GM, ACC> > TimingVisitorType;
template<class _GM>
struct RebindGm{
typedef DynamicProgramming<_GM, ACC> type;
};
template<class _GM,class _ACC>
struct RebindGmAndAcc{
typedef DynamicProgramming<_GM, _ACC > type;
};
struct Parameter {
Parameter(){
}
template<class P>
Parameter(const P &p)
: roots_(p.roots_){
}
std::vector<IndexType> roots_;
};
DynamicProgramming(const GraphicalModelType&, const Parameter& = Parameter());
~DynamicProgramming();
std::string name() const;
const GraphicalModelType& graphicalModel() const;
InferenceTermination infer();
template< class VISITOR>
InferenceTermination infer(VISITOR &);
InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const;
void getNodeInfo(const IndexType Inode, std::vector<ValueType>& values, std::vector<std::vector<LabelType> >& substates, std::vector<IndexType>& nodes) const;
private:
const GraphicalModelType& gm_;
Parameter para_;
MyValueType* valueBuffer_;
MyStateType* stateBuffer_;
std::vector<MyValueType*> valueBuffers_;
std::vector<MyStateType*> stateBuffers_;
std::vector<size_t> nodeOrder_;
std::vector<size_t> orderedNodes_;
bool inferenceStarted_;
};
template<class GM, class ACC>
inline std::string
DynamicProgramming<GM, ACC>::name() const {
return "DynamicProgramming";
}
template<class GM, class ACC>
inline const typename DynamicProgramming<GM, ACC>::GraphicalModelType&
DynamicProgramming<GM, ACC>::graphicalModel() const {
return gm_;
}
template<class GM, class ACC>
DynamicProgramming<GM, ACC>::~DynamicProgramming()
{
free(valueBuffer_);
free(stateBuffer_);
}
template<class GM, class ACC>
inline DynamicProgramming<GM, ACC>::DynamicProgramming
(
const GraphicalModelType& gm,
const Parameter& para
)
: gm_(gm), inferenceStarted_(false)
{
OPENGM_ASSERT(gm_.isAcyclic());
para_ = para;
// Set nodeOrder
std::vector<size_t> numChildren(gm_.numberOfVariables(),0);
std::vector<size_t> nodeList;
size_t orderCount = 0;
size_t varCount = 0;
nodeOrder_.resize(gm_.numberOfVariables(),std::numeric_limits<std::size_t>::max());
size_t rootCounter=0;
while(varCount < gm_.numberOfVariables() && orderCount < gm_.numberOfVariables()){
if(rootCounter<para_.roots_.size()){
nodeOrder_[para_.roots_[rootCounter]] = orderCount++;
nodeList.push_back(para_.roots_[rootCounter]);
++rootCounter;
}
else if(nodeOrder_[varCount]==std::numeric_limits<std::size_t>::max()){
nodeOrder_[varCount] = orderCount++;
nodeList.push_back(varCount);
}
++varCount;
while(nodeList.size()>0){
size_t node = nodeList.back();
nodeList.pop_back();
for(typename GM::ConstFactorIterator it=gm_.factorsOfVariableBegin(node); it !=gm_.factorsOfVariableEnd(node); ++it){
const typename GM::FactorType& factor = gm_[(*it)];
if( factor.numberOfVariables() == 2 ){
if( factor.variableIndex(1) == node && nodeOrder_[factor.variableIndex(0)]==std::numeric_limits<std::size_t>::max() ){
nodeOrder_[factor.variableIndex(0)] = orderCount++;
nodeList.push_back(factor.variableIndex(0));
++numChildren[node];
}
if( factor.variableIndex(0) == node && nodeOrder_[factor.variableIndex(1)]==std::numeric_limits<std::size_t>::max() ){
nodeOrder_[factor.variableIndex(1)] = orderCount++;
nodeList.push_back(factor.variableIndex(1));
++numChildren[node];
}
}
}
}
}
// Allocate memmory
size_t memSizeValue = 0;
size_t memSizeState = 0;
for(size_t i=0; i<gm_.numberOfVariables();++i){
memSizeValue += gm_.numberOfLabels(i);
memSizeState += gm.numberOfLabels(i) * numChildren[i];
}
valueBuffer_ = (MyValueType*) malloc(memSizeValue*sizeof(MyValueType));
stateBuffer_ = (MyStateType*) malloc(memSizeState*sizeof(MyStateType));
valueBuffers_.resize(gm_.numberOfVariables());
stateBuffers_.resize(gm_.numberOfVariables());
MyValueType* valuePointer = valueBuffer_;
MyStateType* statePointer = stateBuffer_;
for(size_t i=0; i<gm_.numberOfVariables();++i){
valueBuffers_[i] = valuePointer;
valuePointer += gm.numberOfLabels(i);
stateBuffers_[i] = statePointer;
statePointer += gm.numberOfLabels(i) * numChildren[i];
}
orderedNodes_.resize(gm_.numberOfVariables(),std::numeric_limits<std::size_t>::max());
for(size_t i=0; i<gm_.numberOfVariables(); ++i)
orderedNodes_[nodeOrder_[i]] = i;
}
template<class GM, class ACC>
inline InferenceTermination
DynamicProgramming<GM, ACC>::infer(){
EmptyVisitorType v;
return infer(v);
}
template<class GM, class ACC>
template<class VISITOR>
inline InferenceTermination
DynamicProgramming<GM, ACC>::infer
(
VISITOR & visitor
){
visitor.begin(*this);
inferenceStarted_ = true;
for(size_t i=1; i<=gm_.numberOfVariables();++i){
const size_t node = orderedNodes_[gm_.numberOfVariables()-i];
// set buffer neutral
for(size_t n=0; n<gm_.numberOfLabels(node); ++n){
OperatorType::neutral(valueBuffers_[node][n]);
}
// accumulate messages
size_t childrenCounter = 0;
for(typename GM::ConstFactorIterator it=gm_.factorsOfVariableBegin(node); it !=gm_.factorsOfVariableEnd(node); ++it){
const typename GM::FactorType& factor = gm_[(*it)];
// unary
if(factor.numberOfVariables()==1 ){
for(size_t n=0; n<gm_.numberOfLabels(node); ++n){
const ValueType fac = factor(&n);
OperatorType::op(fac, valueBuffers_[node][n]);
}
}
//pairwise
if( factor.numberOfVariables()==2 ){
size_t vec[] = {0,0};
if(factor.variableIndex(0) == node && nodeOrder_[factor.variableIndex(1)]>nodeOrder_[node] ){
const size_t node2 = factor.variableIndex(1);
MyStateType s;
MyValueType v,v2;
for(vec[0]=0; vec[0]<gm_.numberOfLabels(node); ++vec[0]){
ACC::neutral(v);
for(vec[1]=0; vec[1]<gm_.numberOfLabels(node2); ++vec[1]){
const ValueType fac = factor(vec);
OperatorType::op(fac,valueBuffers_[node2][vec[1]],v2) ;
if(ACC::bop(v2,v)){
v=v2;
s=vec[1];
}
}
stateBuffers_[node][childrenCounter*gm_.numberOfLabels(node)+vec[0]] = s;
OperatorType::op(v,valueBuffers_[node][vec[0]]);
}
++childrenCounter;
}
if(factor.variableIndex(1) == node && nodeOrder_[factor.variableIndex(0)]>nodeOrder_[node]){
const size_t node2 = factor.variableIndex(0);
MyStateType s;
MyValueType v,v2;
for(vec[1]=0; vec[1]<gm_.numberOfLabels(node); ++vec[1]){
ACC::neutral(v);
for(vec[0]=0; vec[0]<gm_.numberOfLabels(node2); ++vec[0]){
const ValueType fac = factor(vec);
OperatorType::op(fac,valueBuffers_[node2][vec[0]],v2);
if(ACC::bop(v2,v)){
v=v2;
s=vec[0];
}
}
stateBuffers_[node][childrenCounter*gm_.numberOfLabels(node)+vec[1]] = s;
OperatorType::op(v,valueBuffers_[node][vec[1]]);
}
++childrenCounter;
}
}
// higher order
if( factor.numberOfVariables()>2 ){
throw std::runtime_error("This implementation of Dynamic Programming does only support second order models so far, but could be extended.");
}
}
}
visitor.end(*this);
return NORMAL;
}
template<class GM, class ACC>
inline InferenceTermination DynamicProgramming<GM, ACC>::arg
(
std::vector<LabelType>& arg,
const size_t n
) const {
if(n > 1) {
arg.assign(gm_.numberOfVariables(), 0);
return UNKNOWN;
}
else {
if(inferenceStarted_) {
std::vector<size_t> nodeList;
arg.assign(gm_.numberOfVariables(), std::numeric_limits<LabelType>::max() );
size_t var = 0;
while(var < gm_.numberOfVariables()){
if(arg[var]==std::numeric_limits<LabelType>::max()){
MyValueType v; ACC::neutral(v);
for(size_t i=0; i<gm_.numberOfLabels(var); ++i){
if(ACC::bop(valueBuffers_[var][i], v)){
v = valueBuffers_[var][i];
arg[var]=i;
}
}
nodeList.push_back(var);
}
++var;
while(nodeList.size()>0){
size_t node = nodeList.back();
size_t childrenCounter = 0;
nodeList.pop_back();
for(typename GM::ConstFactorIterator it=gm_.factorsOfVariableBegin(node); it !=gm_.factorsOfVariableEnd(node); ++it){
const typename GM::FactorType& factor = gm_[(*it)];
if(factor.numberOfVariables()==2 ){
if(factor.variableIndex(1)==node && nodeOrder_[factor.variableIndex(0)] > nodeOrder_[node] ){
arg[factor.variableIndex(0)] = stateBuffers_[node][childrenCounter*gm_.numberOfLabels(node)+arg[node]];
nodeList.push_back(factor.variableIndex(0));
++childrenCounter;
}
if(factor.variableIndex(0)==node && nodeOrder_[factor.variableIndex(1)] > nodeOrder_[node] ){
arg[factor.variableIndex(1)] = stateBuffers_[node][childrenCounter*gm_.numberOfLabels(node)+arg[node]];
nodeList.push_back(factor.variableIndex(1));
++childrenCounter;
}
}
}
}
}
return NORMAL;
} else {
arg.assign(gm_.numberOfVariables(), 0);
return UNKNOWN;
}
}
}
template<class GM, class ACC>
inline void DynamicProgramming<GM, ACC>::getNodeInfo(const IndexType Inode, std::vector<ValueType>& values, std::vector<std::vector<LabelType> >& substates, std::vector<IndexType>& nodes) const{
values.clear();
substates.clear();
nodes.clear();
values.resize(gm_.numberOfLabels(Inode));
substates.resize(gm_.numberOfLabels(Inode));
std::vector<LabelType> arg;
bool firstround = true;
std::vector<size_t> nodeList;
for(IndexType i=0;i<gm_.numberOfLabels(Inode); ++i){
arg.assign(gm_.numberOfVariables(), std::numeric_limits<LabelType>::max() );
arg[Inode]=i;
values[i]=valueBuffers_[Inode][i];
nodeList.push_back(Inode);
if(i!=0){
firstround=false;
}
while(nodeList.size()>0){
size_t node = nodeList.back();
size_t childrenCounter = 0;
nodeList.pop_back();
for(typename GM::ConstFactorIterator it=gm_.factorsOfVariableBegin(node); it !=gm_.factorsOfVariableEnd(node); ++it){
const typename GM::FactorType& factor = gm_[(*it)];
if(factor.numberOfVariables()==2 ){
if(factor.variableIndex(1)==node && nodeOrder_[factor.variableIndex(0)] > nodeOrder_[node] ){
arg[factor.variableIndex(0)] = stateBuffers_[node][childrenCounter*gm_.numberOfLabels(node)+arg[node]];
substates[i].push_back(stateBuffers_[node][childrenCounter*gm_.numberOfLabels(node)+arg[node]]);
if(firstround==true){
nodes.push_back(factor.variableIndex(0));
}
nodeList.push_back(factor.variableIndex(0));
++childrenCounter;
}
if(factor.variableIndex(0)==node && nodeOrder_[factor.variableIndex(1)] > nodeOrder_[node] ){
arg[factor.variableIndex(1)] = stateBuffers_[node][childrenCounter*gm_.numberOfLabels(node)+arg[node]];
substates[i].push_back(stateBuffers_[node][childrenCounter*gm_.numberOfLabels(node)+arg[node]]);
if(firstround==true){
nodes.push_back(factor.variableIndex(1));
}
nodeList.push_back(factor.variableIndex(1));
++childrenCounter;
}
}
}
}
}
}
} // namespace opengm
#endif // #ifndef OPENGM_DYNAMICPROGRAMMING_HXX
|