/usr/include/opengm/inference/partition-move.hxx is in libopengm-dev 2.3.6+20160905-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | #pragma once
#ifndef OPENGM_PARTITIONMOVE_HXX
#define OPENGM_PARTITIONMOVE_HXX
#include <algorithm>
#include <vector>
#include <queue>
#include <utility>
#include <string>
#include <iostream>
#include <fstream>
#include <typeinfo>
#include <limits>
#ifdef WITH_BOOST
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
#else
#include <ext/hash_map>
#include <ext/hash_set>
#endif
#include "opengm/opengm.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"
namespace opengm {
/// \brief Partition Move\n\n
/// Currently Partition Move only implements the Kernighan-Lin-Algorithm
///
/// - Cite: B.W. Kernighan and S. Lin, "An efficent heuristic procedure for partition graphs", 1970
/// - Maximum factor order : second order Potts functions only!
/// - Maximum number of labels : same as the number of variables !
/// - Restrictions : see above
/// - Convergent : Converge to some local fix point
///
/// \ingroup inference
template<class GM, class ACC>
class PartitionMove : public Inference<GM, ACC>
{
public:
typedef ACC AccumulationType;
typedef GM GraphicalModelType;
OPENGM_GM_TYPE_TYPEDEFS;
typedef size_t LPIndexType;
typedef visitors::VerboseVisitor<PartitionMove<GM, ACC> > VerboseVisitorType;
typedef visitors::EmptyVisitor<PartitionMove<GM, ACC> > EmptyVisitorType;
typedef visitors::TimingVisitor<PartitionMove<GM, ACC> > TimingVisitorType;
#ifdef WITH_BOOST
typedef boost::unordered_map<IndexType, LPIndexType> EdgeMapType;
typedef boost::unordered_set<IndexType> VariableSetType;
#else
typedef __gnu_cxx::hash_map<IndexType, LPIndexType> EdgeMapType;
typedef __gnu_cxx::hash_set<IndexType> VariableSetType;
#endif
template<class _GM>
struct RebindGm{
typedef PartitionMove<_GM, ACC> type;
};
template<class _GM,class _ACC>
struct RebindGmAndAcc{
typedef PartitionMove<_GM, _ACC > type;
};
struct Parameter{
Parameter ( ) {};
template<class P>
Parameter (const P & p) {};
};
~PartitionMove();
PartitionMove(const GraphicalModelType&, Parameter para=Parameter());
virtual std::string name() const {return "PartitionMove";}
const GraphicalModelType& graphicalModel() const {return gm_;}
virtual InferenceTermination infer();
template<class VisitorType> InferenceTermination infer(VisitorType&);
virtual InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const;
private:
enum ProblemType {INVALID, MC, MWC};
const GraphicalModelType& gm_;
ProblemType problemType_;
Parameter parameter_;
LabelType numberOfTerminals_;
LPIndexType numberOfInternalEdges_;
/// For each variable it contains a map indexed by neighbord nodes giving the index to the LP-variable
/// e.g. neighbours[a][b] = i means a has the neighbour b and the edge has the index i in the linear objective
std::vector<EdgeMapType > neighbours_;
std::vector<double> edgeWeight_;
double constant_;
std::vector<LabelType> states_;
template<class VisitorType> InferenceTermination inferKL(VisitorType&);
double solveBinaryKL(VariableSetType&, VariableSetType&);
};
template<class GM, class ACC>
PartitionMove<GM, ACC>::~PartitionMove() {
;
}
template<class GM, class ACC>
PartitionMove<GM, ACC>::PartitionMove
(
const GraphicalModelType& gm,
Parameter para
) : gm_(gm), parameter_(para)
{
if(typeid(ACC) != typeid(opengm::Minimizer) || typeid(OperatorType) != typeid(opengm::Adder)) {
throw RuntimeError("This implementation does only supports Min-Plus-Semiring.");
}
//Set Problem Type
problemType_ = MC;
numberOfInternalEdges_ = 0;
numberOfTerminals_ = gm_.numberOfLabels(0);
for(size_t i=0; i<gm_.numberOfVariables(); ++i){
if(gm_.numberOfLabels(i)<gm_.numberOfVariables()) {
problemType_ = MWC;
numberOfTerminals_ = std::max(numberOfTerminals_ ,gm_.numberOfLabels(i));
}
}
for(size_t f=0; f<gm_.numberOfFactors();++f) {
if(gm_[f].numberOfVariables()==0) {
continue;
}
else if(gm_[f].numberOfVariables()==1) {
problemType_ = MWC;
}
else if(gm_[f].numberOfVariables()==2) {
++numberOfInternalEdges_;
if(!gm_[f].isPotts()) {
problemType_ = INVALID;
break;
}
}
else{
problemType_ = INVALID;
break;
}
}
if(problemType_ == INVALID)
throw RuntimeError("Invalid Model for Multicut-Solver! Solver requires a potts model!");
if(problemType_ == MWC)
throw RuntimeError("Invalid Model for Multicut-Solver! Solver currently do not support first order terms!");
//Calculate Neighbourhood
neighbours_.resize(gm_.numberOfVariables());
edgeWeight_.resize(numberOfInternalEdges_,0);
constant_=0;
LPIndexType numberOfInternalEdges=0;
// Add edges that have to be included
for(size_t f=0; f<gm_.numberOfFactors(); ++f) {
if(gm_[f].numberOfVariables()==0) {
const LabelType l=0;
constant_+=gm_[f](&l);
}
else if(gm_[f].numberOfVariables()==2) {
LabelType cc0[] = {0,0};
LabelType cc1[] = {0,1};
edgeWeight_[numberOfInternalEdges] += gm_[f](cc1) - gm_[f](cc0);
constant_ += gm_[f](cc0);
IndexType u = gm_[f].variableIndex(0);
IndexType v = gm_[f].variableIndex(1);
neighbours_[u][v] = numberOfInternalEdges;
neighbours_[v][u] = numberOfInternalEdges;
++numberOfInternalEdges;
}
else{
throw RuntimeError("Only supports second order Potts functions!");
}
}
OPENGM_ASSERT(numberOfInternalEdges==numberOfInternalEdges_);
states_.resize(gm_.numberOfVariables(),0);
size_t init = 2;
if(init==1){
for(size_t i=0; i<states_.size();++i){
states_[i]=rand()%10;
}
}
if(init==2){
LabelType p=0;
std::vector<bool> assigned(states_.size(),false);
for(IndexType node=0; node<states_.size(); ++node) {
if(assigned[node])
continue;
else{
std::list<IndexType> nodeList;
states_[node] = p;
assigned[node] = true;
nodeList.push_back(node);
while(!nodeList.empty()) {
size_t n=nodeList.front(); nodeList.pop_front();
for(typename EdgeMapType::const_iterator it=neighbours_[n].begin() ; it != neighbours_[n].end(); ++it) {
const IndexType node2 = (*it).first;
if(!assigned[node2] && edgeWeight_[(*it).second]>0) {
states_[node2] = p;
assigned[node2] = true;
nodeList.push_back(node2);
}
}
}
++p;
}
}
}
if(init==3){
for(size_t i=0; i<states_.size();++i){
states_[i]=i;
}
}
}
template <class GM, class ACC>
InferenceTermination
PartitionMove<GM,ACC>::infer()
{
EmptyVisitorType visitor;
return infer(visitor);
}
template <class GM, class ACC>
template<class VisitorType>
InferenceTermination
PartitionMove<GM,ACC>::infer(VisitorType& visitor)
{
visitor.begin(*this);
inferKL(visitor);
visitor.end(*this);
return NORMAL;
}
template <class GM, class ACC>
template<class VisitorType>
InferenceTermination
PartitionMove<GM,ACC>::inferKL(VisitorType& visitor)
{
// Current Partition-Sets
std::vector<VariableSetType> partitionSets;
// Set-Up Partition-Sets from current/initial partitioning
LabelType numberOfPartitions =0;
for(size_t i=0; i<states_.size(); ++i)
if(states_[i]+1>numberOfPartitions) numberOfPartitions=states_[i]+1;
partitionSets.resize(numberOfPartitions);
for(IndexType i=0; i<states_.size(); ++i){
partitionSets[states_[i]].insert(i);
}
bool change = true;
while(change){
// std::cout << numberOfPartitions << " conncted subsets."<<std::endl;
change = false;
std::vector<size_t> pruneSets;
// Check all pairs of partitions
for(size_t part0=0; part0<numberOfPartitions; ++part0){
//std::cout <<"*"<<std::flush;
// Find neighbord sets
std::set<size_t> neighbordSets;
for(typename VariableSetType::const_iterator it=partitionSets[part0].begin(); it!=partitionSets[part0].end(); ++it){
const IndexType node = (*it);
for(typename EdgeMapType::const_iterator nit=neighbours_[node].begin() ; nit != neighbours_[node].end(); ++nit) {
const IndexType node2 = (*nit).first;
if(states_[node2]>part0){
neighbordSets.insert(states_[node2]);
}
}
}
for(std::set<size_t>::const_iterator it=neighbordSets.begin(); it!=neighbordSets.end();++it){
size_t part1 = *it;
//for(size_t part1=part0+1; part1<numberOfPartitions; ++part1){
if(partitionSets[part0].size()==0 || partitionSets[part1].size()==0)
continue;
double improvement = solveBinaryKL(partitionSets[part0],partitionSets[part1]);
//std::cout <<part0<<" vs "<<part1<<" : " <<improvement<<std::endl;
OPENGM_ASSERT(improvement<1e-8);
if(-1e-8>improvement){
change = true; // Partition has been improved
}
}
}
// Check for each Partition ...
for(size_t part0=0; part0<numberOfPartitions; ++part0){
// ... if it is empty and can be pruned
if(partitionSets[part0].size()==0){
//std::cout <<"Remove "<<part0<<std::endl;
pruneSets.push_back(part0);
}
// ... or if it can be splited into two sets
else if(partitionSets[part0].size()>1){
// std::cout <<part0<<" vs "<<"NULL"<<std::endl;
VariableSetType emptySet(partitionSets[part0].size());
double improvement = solveBinaryKL(partitionSets[part0], emptySet);
if(emptySet.size()>0){
OPENGM_ASSERT(improvement<0);
partitionSets.push_back(emptySet);
change = true;
}
}
}
// Remove sets marked as to prune
//std::cout << "Remove " <<pruneSets.size() << " subsets."<<std::endl;
for(size_t i=0; i<pruneSets.size(); ++i){
size_t part = pruneSets[pruneSets.size()-1-i];
partitionSets.erase( partitionSets.begin()+part);
}
// Update Labeling
numberOfPartitions = partitionSets.size();
for(size_t part=0; part<numberOfPartitions; ++part){
for(typename VariableSetType::const_iterator it=partitionSets[part].begin(); it!=partitionSets[part].end(); ++it){
states_[*it] = part;
}
}
if( visitor(*this) != visitors::VisitorReturnFlag::ContinueInf ){
change = false;
}
}
return NORMAL;
}
template <class GM, class ACC>
double PartitionMove<GM,ACC>::solveBinaryKL
(
VariableSetType& set0,
VariableSetType& set1
)
{
double improvement = 0.0;
//std::cout << "Set0: "<< set0.size() <<" Set1: "<< set1.size() << std::endl;
for(size_t outerIt=0; outerIt<100;++outerIt){
// Compute D[n] = E_n - I_n
std::vector<double> D(gm_.numberOfVariables(),0);
for(typename VariableSetType::const_iterator it=set0.begin(); it!=set0.end(); ++it){
double E_a = 0.0;
double I_a = 0.0;
const IndexType node = *it;
for (typename EdgeMapType::const_iterator eit=neighbours_[node].begin(); eit!=neighbours_[node].end(); ++eit){
const IndexType node2 = (*eit).first;
const double weight = edgeWeight_[(*eit).second];
if (set0.find(node2) != set0.end()) {
I_a += weight;
}
else if(set1.find(node2) != set1.end()){
E_a += weight;
}
}
D[node] = -(E_a - I_a);
}
for(typename VariableSetType::const_iterator it=set1.begin(); it!=set1.end(); ++it){
double E_a = 0.0;
double I_a = 0.0;
const IndexType node = *it;
for(typename EdgeMapType::const_iterator eit=neighbours_[node].begin(); eit!=neighbours_[node].end(); ++eit){
const IndexType node2 = (*eit).first;
const double weight = edgeWeight_[(*eit).second];
if (set1.find(node2) != set1.end()) {
I_a += weight;
}
else if(set0.find(node2) != set0.end()){
E_a += weight;
}
}
D[node] = -(E_a - I_a);
}
double d=0;
for(size_t i=0; i<D.size(); ++i){
if(D[i]<d)
d=D[i];
}
// Search a gready move sequence
std::vector<bool> isMovedNode(gm_.numberOfVariables(),false);
std::vector<IndexType> nodeSequence;
std::vector<double> improveSequence;
std::vector<double> improveSumSequence(1,0.0);
size_t bestMove=0;
// Build sequence of greedy best moves
for(size_t innerIt=0; innerIt<1000; ++innerIt){
double improve = std::numeric_limits<double>::infinity();
IndexType node;
bool moved = false;
// Search over moves from set0
for(typename VariableSetType::const_iterator it=set0.begin(); it!=set0.end(); ++it){
if(isMovedNode[*it]){
continue;
}
else{
if(D[*it]<improve){
improve = D[*it];
node = *it;
moved = true;
}
}
}
// Search over moves from set1
for(typename VariableSetType::const_iterator it=set1.begin(); it!=set1.end(); ++it){
if(isMovedNode[*it]){
continue;
}
else{
if(D[*it]<improve){
improve = D[*it];
node = *it;
moved = true;
}
}
}
// No more moves?
if(moved == false){
break;
}
// Move node and recalculate D
//std::cout << " " <<improveSumSequence.back()+improve;
isMovedNode[node]=true;
nodeSequence.push_back(node);
improveSumSequence.push_back(improveSumSequence.back()+improve);
improveSequence.push_back(improve);
if (improveSumSequence[bestMove]>improveSumSequence.back()) {
bestMove = improveSumSequence.size()-1;
}
VariableSetType& mySet = set0.find(node) != set0.end() ? set0 : set1;
for(typename EdgeMapType::const_iterator eit=neighbours_[node].begin(); eit!=neighbours_[node].end(); ++eit){
IndexType node2 = (*eit).first;
double weight = edgeWeight_[(*eit).second];
if(mySet.find(node2) != mySet.end()){
D[node2] -= 2.0 * weight;
}
else{
D[node2] += 2.0 * weight;
}
}
}
// Perform Move
if(improveSumSequence[bestMove]>-1e-10)
break;
else{
improvement += improveSumSequence[bestMove];
for (size_t i = 0; i < bestMove; ++i) {
int node = nodeSequence[i];
if (set0.find(node) != set0.end()) {
set0.erase(node);
set1.insert(node);
}
else{
set1.erase(node);
set0.insert(node);
}
}
}
// Search for the next move if this move has give improvement
}
return improvement;
}
template <class GM, class ACC>
InferenceTermination
PartitionMove<GM,ACC>::arg
(
std::vector<typename PartitionMove<GM,ACC>::LabelType>& x,
const size_t N
) const
{
if(N!=1) {
return UNKNOWN;
}
else{
x.resize(gm_.numberOfVariables());
for(size_t i=0; i<gm_.numberOfVariables(); ++i)
x[i] = states_[i];
return NORMAL;
}
}
} // end namespace opengm
#endif
|