/usr/share/perl5/ORLite.pm is in liborlite-perl 1.98-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 | package ORLite;
# See POD at end of file for documentation
use 5.006;
use strict;
use Carp ();
use File::Spec 0.80 ();
use File::Path 2.08 ();
use File::Basename ();
use Params::Util 1.00 ();
use DBI 1.607 ();
use DBD::SQLite 1.27 ();
use vars qw{$VERSION};
BEGIN {
$VERSION = '1.98';
}
# Support for the 'prune' option
my @PRUNE = ();
END {
foreach ( reverse @PRUNE ) {
next unless -e $_;
require File::Remove;
File::Remove::remove( \1, $_ );
}
}
#####################################################################
# Code Generation
sub import {
my $class = ref($_[0]) || $_[0];
# Check for debug mode
my $DEBUG = 0;
if ( defined Params::Util::_STRING($_[-1]) and $_[-1] eq '-DEBUG' ) {
$DEBUG = 1;
pop @_;
}
# Check params and apply defaults
my %params = (
# Simple defaults here, complex defaults later
package => scalar(caller),
create => 0,
cleanup => '',
array => 0,
xsaccessor => 0,
shim => 0,
tables => 1,
views => 0,
unicode => 0,
);
if ( defined Params::Util::_STRING($_[1]) ) {
# Support the short form "use ORLite 'db.sqlite'"
$params{file} = $_[1];
} elsif ( Params::Util::_HASHLIKE($_[1]) ) {
%params = ( %params, %{$_[1]} );
} else {
Carp::croak("Missing, empty or invalid params HASH");
}
unless (
defined Params::Util::_STRING($params{file})
and (
$params{create}
or
-f $params{file}
)
) {
Carp::croak("Missing or invalid file param");
}
unless ( defined $params{readonly} ) {
$params{readonly} = $params{create} ? 0 : ! -w $params{file};
}
unless ( Params::Util::_CLASS($params{package}) ) {
Carp::croak("Missing or invalid package class");
}
# Check caching params
my $cached = undef;
my $pkg = $params{package};
if ( defined $params{cache} ) {
# Caching is illogical or invalid in some situations
if ( $params{prune} ) {
Carp::croak("Cannot set a 'cache' directory while 'prune' enabled");
}
unless ( $params{user_version} ) {
Carp::croak("Cannot set a 'cache' directory without 'user_version'");
}
# To make the caching work, the version be defined before ORLite is called.
no strict 'refs';
unless ( ${"$pkg\::VERSION"} ) {
Carp::croak("Cannot set a 'cache' directory without a package \$VERSION");
}
# Build the cache file from the super path using an inlined Class::ISA
my @queue = ( $class );
my %seen = ( $pkg => 1 );
my @parts = ( $pkg => ${"$pkg\::VERSION"} );
while ( @queue ) {
my $c = Params::Util::_STRING(shift @queue) or next;
push @parts, $c => ${"$c\::VERSION"};
unshift @queue, grep { not $seen{$c}++ } @{"$c\::ISA"};
}
$cached = join '-', @parts, user_version => $params{user_version};
$cached =~ s/[:.-]+/-/g;
$cached = File::Spec->rel2abs(
File::Spec->catfile( $params{cache}, "$cached.pm" )
);
}
# Create the parent directory if needed
my $file = File::Spec->rel2abs($params{file});
my $created = ! -f $params{file};
if ( $created ) {
my $dir = File::Basename::dirname($file);
unless ( -d $dir ) {
my @dirs = File::Path::mkpath( $dir, { verbose => 0 } );
$class->prune(@dirs) if $params{prune};
}
$class->prune($file) if $params{prune};
}
# Connect to the database
my $dsn = "dbi:SQLite:$file";
my $dbh = DBI->connect( $dsn, undef, undef, {
PrintError => 0,
RaiseError => 1,
ReadOnly => $params{create} ? 0 : 1,
$params{unicode} ? ( sqlite_unicode => 1 ) : ( ),
} );
# Schema custom creation support
if ( $created and Params::Util::_CODELIKE($params{create}) ) {
$params{create}->($dbh);
}
# Check the schema version before generating
my $user_version = $dbh->selectrow_arrayref('pragma user_version')->[0];
if ( exists $params{user_version} and $user_version != $params{user_version} ) {
Carp::croak("Schema user_version mismatch (got $user_version, wanted $params{user_version})");
}
# If caching and the cached version exists, load and shortcut.
# Don't try to catch exceptions, just let them blow up.
if ( $cached and -f $cached ) {
$dbh->disconnect;
require $cached;
return 1;
}
# Prepare to generate code
my $cleanup = $params{cleanup};
my $readonly = $params{readonly} ? "\n\t\tReadOnly => 1," : '';
my $unicode = $params{unicode} ? "\n\t\tsqlite_unicode => 1," : '';
my $version = $unicode ? '5.008005' : '5.006';
# Generate the support package code
my $code = <<"END_PERL";
package $pkg;
use $version;
use strict;
use Carp ();
use DBI 1.607 ();
use DBD::SQLite 1.27 ();
my \$DBH = undef;
sub orlite { '$VERSION' }
sub sqlite { '$file' }
sub dsn { '$dsn' }
sub dbh {
\$DBH or \$_[0]->connect;
}
sub connect {
DBI->connect( \$_[0]->dsn, undef, undef, {
PrintError => 0,
RaiseError => 1,$readonly$unicode
} );
}
sub connected {
defined \$DBH;
}
sub prepare {
shift->dbh->prepare(\@_);
}
sub do {
shift->dbh->do(\@_);
}
sub selectall_arrayref {
shift->dbh->selectall_arrayref(\@_);
}
sub selectall_hashref {
shift->dbh->selectall_hashref(\@_);
}
sub selectcol_arrayref {
shift->dbh->selectcol_arrayref(\@_);
}
sub selectrow_array {
shift->dbh->selectrow_array(\@_);
}
sub selectrow_arrayref {
shift->dbh->selectrow_arrayref(\@_);
}
sub selectrow_hashref {
shift->dbh->selectrow_hashref(\@_);
}
sub pragma {
\$_[0]->do("pragma \$_[1] = \$_[2]") if \@_ > 2;
\$_[0]->selectrow_arrayref("pragma \$_[1]")->[0] if defined wantarray;
}
sub iterate {
my \$class = shift;
my \$call = pop;
my \$sth = \$class->prepare(shift);
\$sth->execute(\@_);
while ( \$_ = \$sth->fetchrow_arrayref ) {
\$call->() or return 1;;
}
}
sub begin {
\$DBH or
\$DBH = \$_[0]->connect;
\$DBH->begin_work;
}
sub rollback {
\$DBH or return 1;
\$DBH->rollback;
\$DBH->disconnect;
undef \$DBH;
return 1;
}
sub rollback_begin {
if ( \$DBH ) {
\$DBH->rollback;
\$DBH->begin_work;
} else {
\$_[0]->begin;
}
return 1;
}
END_PERL
# If you are a read-write database, we even allow you
# to commit your transactions.
$code .= <<"END_PERL" unless $readonly;
sub commit {
\$DBH or return 1;
\$DBH->commit;
\$DBH->disconnect;
undef \$DBH;
return 1;
}
sub commit_begin {
if ( \$DBH ) {
\$DBH->commit;
\$DBH->begin_work;
} else {
\$_[0]->begin;
}
return 1;
}
END_PERL
# Cleanup and shutdown operations
if ( $cleanup ) {
$code .= <<"END_PERL";
END {
if ( \$DBH ) {
\$DBH->rollback;
\$DBH->do('$cleanup');
\$DBH->disconnect;
undef \$DBH;
} else {
$pkg->do('$cleanup');
}
}
END_PERL
} else {
$code .= <<"END_PERL";
END {
$pkg->rollback if \$DBH;
}
END_PERL
}
# Optionally generate the table classes
my $tables = undef;
if ( $params{tables} ) {
# Capture the raw schema table information
$tables = $dbh->selectall_arrayref(
'select * from sqlite_master where name not like ? and type in ( ?, ? )',
{ Slice => {} }, 'sqlite_%', 'table', 'view',
);
# Capture the raw schema information and do first-pass work
foreach my $t ( @$tables ) {
# Convenience pre-quoted form of the table name
$t->{qname} = $dbh->quote_identifier(undef, undef, $t->{name});
# What will be the class for this table
$t->{class} = $t->{name};
if ( $t->{class} ne lc $t->{class} ) {
$t->{class} =~ s/([a-z])([A-Z])/${1}_${2}/g;
$t->{class} =~ s/_+/_/g;
}
$t->{class} = ucfirst lc $t->{class};
$t->{class} =~ s/_([a-z])/uc($1)/ge;
$t->{class} = "${pkg}::$t->{class}";
# Load the structural column list
my $columns = $t->{columns} = $dbh->selectall_arrayref(
"pragma table_info('$t->{name}')",
{ Slice => {} },
);
# The list of columns we will select, which can
# be different to the general list.
my $select = $t->{select} = [ @$columns ];
# Track array vs hash implementation on a per-table
# basis so that we can force views to always be done
# array-wise (to compensate for some weird SQLite
# column quoting differences between tables and views
$t->{array} = $params{array};
if ( $t->{type} eq 'view' ) {
$t->{array} = 1;
}
# Track usage of rowid on a per-table basis because
# views don't always support rowid.
$t->{rowid} = $t->{type} eq 'table';
foreach my $c ( @$select ) {
# Convenience escaping for the column names
$c->{qname} = $dbh->quote_identifier($c->{name});
# Affinity detection
if ( $c->{type} =~ /INT/i ) {
$c->{affinity} = 'INTEGER';
} elsif ( $c->{type} =~ /(?:CHAR|CLOB|TEXT)/i ) {
$c->{affinity} = 'TEXT';
} elsif ( $c->{type} =~ /BLOB/i or not $c->{type} ) {
$c->{affinity} = 'BLOB';
# Unicode currently breaks BLOB columns
if ( $unicode ) {
die "BLOB column $t->{name}.$c->{name} is not supported in unicode database";
}
} elsif ( $c->{type} =~ /(?:REAL|FLOA|DOUB)/i ) {
$c->{affinity} = 'REAL';
} else {
$c->{affinity} = 'NUMERIC';
}
}
# Analyze the primary keys structure
$t->{pk} = [ grep { $_->{pk} } @$columns ];
$t->{pkn} = scalar @{$t->{pk}};
if ( $t->{pkn} == 1 ) {
$t->{pk1} = $t->{pk}->[0];
if ( $t->{pk1}->{affinity} eq 'INTEGER' ) {
$t->{pki} = $t->{pk1};
}
}
if ( $t->{pki} ) {
$t->{rowid} &&= $t->{pki};
if ( $t->{pki}->{name} eq $t->{name} . '_id' ) {
$t->{id} = $t->{pki};
}
} elsif ( $t->{rowid} ) {
# Add rowid to the query
$t->{rowid} = {
cid => -1,
name => 'rowid',
qname => '"rowid"',
type => 'integer',
affinity => 'INTEGER',
notnull => 1,
dflt_value => undef,
pk => 0,
};
push @$select, $t->{rowid};
}
# Do we allow object creation?
$t->{create} = $t->{pkn};
$t->{create} = 1 if $t->{rowid};
$t->{create} = 0 if $readonly;
# Generate the object keys for the columns
if ( $t->{array} ) {
foreach my $i ( 0 .. $#$select ) {
$select->[$i]->{xs} = $i;
$select->[$i]->{key} = "[$i]";
}
} else {
foreach my $c ( @$select ) {
$c->{xs} = "'$c->{name}'";
$c->{key} = "{$c->{name}}";
}
}
# Generate the main SQL fragments
$t->{sql_scols} = join ', ', map { $_->{qname} } @$select;
$t->{sql_icols} = join ', ', map { $_->{qname} } @$columns;
$t->{sql_ivals} = join ', ', ( '?' ) x scalar @$columns;
$t->{sql_select} = "select $t->{sql_scols} from $t->{qname}";
$t->{sql_insert} =
"insert into $t->{qname} " .
"( $t->{sql_icols} ) " .
"values ( $t->{sql_ivals} )";
$t->{sql_where} = join ' and ',
map { "$_->{qname} = ?" } @{$t->{pk}};
# Generate the new Perl fragments
$t->{pl_new} = join "\n", map {
$t->{array}
? "\t\t\$attr{$_->{name}},"
: "\t\t$_->{name} => \$attr{$_->{name}},"
} @$columns;
$t->{pl_insert} = join "\n", map {
"\t\t\$self->$_->{key},"
} @$columns;
$t->{pl_fill} = '';
if ( $t->{pki} ) {
$t->{pl_fill} =
"\t\$self->$t->{pki}->{key} " .
"= \$dbh->func('last_insert_rowid') " .
"unless \$self->$t->{pki}->{key};";
} elsif ( $t->{rowid} ) {
$t->{pl_fill} =
"\t\$self->$t->{rowid}->{key} " .
"= \$dbh->func('last_insert_rowid');";
}
}
# Generate the foreign key metadata
my %tindex = map { $_->{name} => $_ } @$tables;
foreach my $t ( @$tables ) {
# Locate the foreign keys
my %fk = ();
my @fk_sql = $t->{sql} =~ /[(,]\s*(.+?REFERENCES.+?)\s*[,)]/g;
# Extract the details
foreach ( @fk_sql ) {
unless ( /^(\w+).+?REFERENCES\s+(\w+)\s*\(\s*(\w+)/ ) {
die "Invalid foreign key $_";
}
$fk{"$1"} = [ "$2", $tindex{"$2"}, "$3" ];
}
foreach ( @{$t->{columns}} ) {
$_->{fk} = $fk{$_->{name}};
}
# One final code fragment we need the fk for
$t->{pl_accessor} = join "\n",
map { "\t\t$_->{name} => $_->{xs}," }
grep { ! $_->{fk} } @{$t->{columns}};
}
# Generate the per-table code
foreach my $t ( @$tables ) {
my @select = @{$t->{select}};
my @columns = @{$t->{columns}};
my $slice = $t->{array}
? '{}'
: '{ Slice => {} }';
# Generate the package header
if ( $params{shim} ) {
# Generate a shim-wrapper class
$code .= <<"END_PERL";
package $t->{class};
\@$t->{class}::ISA = '$t->{class}::Shim';
package $t->{class}::Shim;
END_PERL
} else {
# Plain vanilla package header
$code .= <<"END_PERL";
package $t->{class};
END_PERL
}
# Generate the common elements for all classes
$code .= <<"END_PERL";
sub base { '$pkg' }
sub table { '$t->{name}' }
sub table_info {
$pkg->selectall_arrayref(
"pragma table_info('$t->{name}')",
{ Slice => {} },
);
}
sub select {
my \$class = shift;
my \$sql = '$t->{sql_select} ';
\$sql .= shift if \@_;
my \$rows = $pkg->selectall_arrayref( \$sql, $slice, \@_ );
bless \$_, '$t->{class}' foreach \@\$rows;
wantarray ? \@\$rows : \$rows;
}
sub count {
my \$class = shift;
my \$sql = 'select count(*) from $t->{qname} ';
\$sql .= shift if \@_;
$pkg->selectrow_array( \$sql, {}, \@_ );
}
END_PERL
# Handle different versions, because arrayref acts funny
if ( $t->{array} ) {
$code .= <<"END_PERL";
sub iterate {
my \$class = shift;
my \$call = pop;
my \$sql = '$t->{sql_select} ';
\$sql .= shift if \@_;
my \$sth = $pkg->prepare(\$sql);
\$sth->execute(\@_);
while ( \$_ = \$sth->fetchrow_arrayref ) {
\$_ = bless [ \@\$_ ], '$t->{class}';
\$call->() or last;
}
\$sth->finish;
}
END_PERL
} else {
$code .= <<"END_PERL";
sub iterate {
my \$class = shift;
my \$call = pop;
my \$sql = '$t->{sql_select} ';
\$sql .= shift if \@_;
my \$sth = $pkg->prepare(\$sql);
\$sth->execute(\@_);
while ( \$_ = \$sth->fetchrow_hashref ) {
bless \$_, '$t->{class}';
\$call->() or last;
}
\$sth->finish;
}
END_PERL
}
# Add the primary key based single object loader
if ( $t->{pkn} ) {
if ( $t->{array} ) {
$code .= <<"END_PERL";
sub load {
my \$class = shift;
my \@row = $pkg->selectrow_array(
'$t->{sql_select} where $t->{sql_where}',
undef, \@_,
);
unless ( \@row ) {
Carp::croak("$t->{class} row does not exist");
}
bless \\\@row, '$t->{class}';
}
END_PERL
} else {
$code .= <<"END_PERL";
sub load {
my \$class = shift;
my \$row = $pkg->selectrow_hashref(
'$t->{sql_select} where $t->{sql_where}',
undef, \@_,
);
unless ( \$row ) {
Carp::croak("$t->{class} row does not exist");
}
bless \$row, '$t->{class}';
}
END_PERL
}
}
# Generate the elements for tables with primary keys
if ( $t->{create} ) {
my $l = $t->{array} ? '[' : '{';
my $r = $t->{array} ? ']' : '}';
my $set = $t->{array}
? '$self->set( $_ => $set{$_} ) foreach keys %set;'
: '$self->{$_} = $set{$_} foreach keys %set;';
$code .= <<"END_PERL";
sub new {
my \$class = shift;
my \%attr = \@_;
bless $l
$t->{pl_new}
$r, \$class;
}
sub create {
shift->new(\@_)->insert;
}
sub insert {
my \$self = shift;
my \$dbh = $pkg->dbh;
\$dbh->do(
'$t->{sql_insert}',
{},
$t->{pl_insert}
);
$t->{pl_fill}
return \$self;
}
sub update {
my \$self = shift;
my \%set = \@_;
my \$rows = $pkg->do(
'update $t->{qname} set ' .
join( ', ', map { "\\"\$_\\" = ?" } keys \%set ) .
' where "rowid" = ?',
{},
values \%set,
\$self->rowid,
);
unless ( \$rows == 1 ) {
Carp::croak("Expected to update 1 row, actually updated \$rows");
}
$set
return 1;
}
sub delete {
return $pkg->do(
'delete from $t->{qname} where "rowid" = ?', {},
shift->rowid,
) if ref \$_[0];
Carp::croak("Static $pkg->delete has been deprecated");
}
sub delete_where {
shift; $pkg->do('delete from $t->{qname} where ' . shift, {}, \@_);
}
sub truncate {
$pkg->do('delete from $t->{qname}');
}
END_PERL
}
if ( $t->{create} and $t->{array} ) {
# Add an additional set method to avoid having
# the user have to enter manual positions.
$code .= <<"END_PERL";
sub set {
my \$self = shift;
my \$i = {
$t->{pl_accessor}
}->{\$_[0]};
Carp::croak("Bad name '\$_[0]'") unless defined \$i;
\$self->[\$i] = \$_[1];
}
END_PERL
}
# Generate the boring accessors
if ( $params{xsaccessor} ) {
my $type = $t->{create} ? 'accessors' : 'getters';
my $xsclass = $t->{array}
? 'Class::XSAccessor::Array'
: 'Class::XSAccessor';
my $id = $t->{id}
? "\t\t$t->{id}->{name} => $t->{id}->{xs},\n"
: '';
my $rowid = ($t->{id} and $t->{rowid})
? "\t\t$t->{rowid}->{name} => $t->{rowid}->{xs},\n"
: '';
$code .= <<"END_PERL";
use $xsclass 1.05 {
getters => {
${rowid}${id}$t->{pl_accessor}
},
};
END_PERL
} else {
if ( $t->{pki} and $t->{rowid} ) {
$code .= <<"END_PERL";
sub rowid {
\$_[0]->$t->{rowid}->{key};
}
END_PERL
}
if ( $t->{id} ) {
$code .= <<"END_PERL";
sub id {
\$_[0]->$t->{id}->{key};
}
END_PERL
}
$code .= join "\n\n", map { <<"END_PERL" } grep { ! $_->{fk} } @select;
sub $_->{name} {
\$_[0]->$_->{key};
}
END_PERL
}
# Generate the foreign key accessors
$code .= join "\n\n", map { <<"END_PERL" } grep { $_->{fk} } @columns;
sub $_->{name} {
($_->{fk}->[1]->{class}\->select('where \"$_->{fk}->[1]->{pk}->[0]->{name}\" = ?', \$_[0]->$_->{key}))[0];
}
END_PERL
}
}
# We are finished with the database
$dbh->disconnect;
# Start the post-table content again
$code .= "\npackage $pkg;\n" if $params{tables};
# Append any custom code for the user
$code .= "\n$params{append}" if defined $params{append};
# Load the overload classes for each of the tables
if ( $tables ) {
$code .= join( "\n",
"local \$@ = undef;",
map {
"eval { require $_->{class} };"
} @$tables
);
}
# End the class normally
$code .= "\n\n1;\n";
# Save to the cache location if caching is enabled
if ( $cached ) {
my $dir = File::Basename::dirname($cached);
unless ( -d $dir ) {
File::Path::mkpath( $dir, { verbose => 0 } );
}
# Save a copy of the code to the file
local *FILE;
open( FILE, ">$cached" ) or Carp::croak("open($cached): $!");
print FILE $code;
close FILE;
}
# Compile the code
local $@;
if ( $^P and $^V >= 5.008009 ) {
local $^P = $^P | 0x800;
eval($code);
die $@ if $@;
} elsif ( $DEBUG ) {
dval($code);
} else {
eval($code);
die $@ if $@;
}
return 1;
}
sub dval {
# Write the code to the temp file
require File::Temp;
my ($fh, $filename) = File::Temp::tempfile();
$fh->print($_[0]);
close $fh;
require $filename;
unlink $filename;
# Print the debugging output
# my @trace = map {
# s/\s*[{;]$//;
# s/^s/ s/;
# s/^p/\np/;
# "$_\n"
# } grep {
# /^(?:package|sub)\b/
# } split /\n/, $_[0];
# print STDERR @trace, "\nCode saved as $filename\n\n";
return 1;
}
sub prune {
my $class = shift;
push @PRUNE, map { File::Spec->rel2abs($_) } @_;
}
1;
__END__
=pod
=head1 NAME
ORLite - Extremely light weight SQLite-specific ORM
=head1 SYNOPSIS
package Foo;
# Simplest possible usage
use strict;
use ORLite 'data/sqlite.db';
my @awesome = Foo::Person->select(
'where first_name = ?',
'Adam',
);
package Bar;
# All available options enabled or specified.
# Some options shown are mutually exclusive,
# this code would not actually run.
use ORLite {
package => 'My::ORM',
file => 'data/sqlite.db',
user_version => 12,
readonly => 1,
create => sub {
my $dbh = shift;
$dbh->do('CREATE TABLE foo ( bar TEXT NOT NULL )');
},
tables => [ 'table1', 'table2' ],
cleanup => 'VACUUM',
prune => 1,
};
=head1 DESCRIPTION
L<SQLite> is a light single file SQL database that provides an
excellent platform for embedded storage of structured data.
However, while it is superficially similar to a regular server-side SQL
database, SQLite has some significant attributes that make using it like
a traditional database difficult.
For example, SQLite is extremely fast to connect to compared to server
databases (1000 connections per second is not unknown) and is
particularly bad at concurrency, as it can only lock transactions at
a database-wide level.
This role as a superfast internal data store can clash with the roles and
designs of traditional object-relational modules like L<Class::DBI> or
L<DBIx::Class>.
What this situation would seem to need is an object-relation system that is
designed specifically for SQLite and is aligned with its idiosyncracies.
ORLite is an object-relation system specifically tailored for SQLite that
follows many of the same principles as the ::Tiny series of modules and
has a design and feature set that aligns directly to the capabilities of
SQLite.
Further documentation will be available at a later time, but the synopsis
gives a pretty good idea of how it works.
=head2 How ORLite Works
ORLite discovers the schema of a SQLite database, and then generates the
code for a complete set of classes that let you work with the objects stored
in that database.
In the simplest form, your target root package "uses" ORLite, which will do
the schema discovery and code generation at compile-time.
When called, ORLite generates two types of packages.
Firstly, it builds database connectivity, transaction support, and other
purely database level functionality into your root namespace.
Secondly, it will create one sub-package underneath the namespace of the root
module for each table or view it finds in the database.
Once the basic table support has been generated, it will also try to load an
"overlay" module of the same name. Thus, by created a Foo::TableName module on
disk containing "extra" code, you can extend the original and add additional
functionality to it.
=head1 OPTIONS
ORLite takes a set of options for the class construction at compile time
as a HASH parameter to the "use" line.
As a convenience, you can pass just the name of an existing SQLite file
to load, and ORLite will apply defaults to all other options.
# The following are equivalent
use ORLite $filename;
use ORLite {
file => $filename,
};
The behaviour of each of the options is as follows:
=head2 package
The optional C<package> parameter is used to provide the Perl root namespace
to generate the code for. This class does not need to exist as a module on
disk, nor does it need to have anything loaded or in the namespace.
By default, the package used is the package that is calling ORLite's import
method (typically via the C<use ORLite { ... }> line).
=head2 file
The compulsory C<file> parameter (the only compulsory parameter) provides
the path to the SQLite file to use for the ORM class tree.
If the file already exists, it must be a valid SQLite file match that
supported by the version of L<DBD::SQLite> that is installed on your
system.
L<ORLite> will throw an exception if the file does not exist, B<unless>
you also provide the C<create> option to signal that L<ORLite> should
create a new SQLite file on demand.
If the C<create> option is provided, the path provided must be creatable.
When creating the database, L<ORLite> will also create any missing
directories as needed.
=head2 user_version
When working with ORLite, the biggest risk to the stability of your code
is often the reliability of the SQLite schema structure over time.
When the database schema changes the code generated by ORLite will also
change. This can easily result in an unexpected change in the API of your
class tree, breaking the code that sits on top of those generated APIs.
To resolve this, L<ORLite> supports a feature called schema version-locking.
Via the C<user_version> SQLite pragma, you can set a revision for your
database schema, increasing the number each time to make a non-trivial
chance to your schema.
SQLite> PRAGMA user_version = 7
When creating your L<ORLite> package, you should specificy this schema
version number via the C<user_version> option.
use ORLite {
file => $filename,
user_version => 7,
};
When connecting to the SQLite database, the C<user_version> you provide
will be checked against the version in the schema. If the versions do
not match, then the schema has unexpectedly changed, and the code that
is generated by L<ORLite> would be different to the expected API.
Rather than risk potentially destructive errors caused by the changing
code, L<ORLite> will simply refuse to run and throw an exception.
Thus, using the C<user_version> feature allows you to write code against
a SQLite database with high-certainty that it will continue to work. Or
at the very least, that should the SQLite schema change in the future your
code fill fail quickly and safely instead of running away and causing
unknown behaviour.
By default, the C<user_version> option is false and the value of
the SQLite C<PRAGMA user_version> will B<not> be checked.
=head2 readonly
To conserve memory and reduce complexity, L<ORLite> will generate the API
differently based on the writability of the SQLite database.
Features like transaction support and methods that result in C<INSERT>,
C<UPDATE> and C<DELETE> queries will only be added if they can actually
be run, resulting in an immediate "no such method" exception at the Perl
level instead of letting the application do more work only to hit an
inevitable SQLite error.
By default, the C<readonly> option is based on the filesystem permissions
of the SQLite database (which matches SQLite's own writability behaviour).
However the C<readonly> option can be explicitly provided if you wish.
Generally you would do this if you are working with a read-write database,
but you only plan to read from it.
Forcing C<readonly> to true will halve the size of the code that is
generated to produce your ORM, reducing the size of any auto-generated
API documentation using L<ORLite::Pod> by a similar amount.
It also ensures that this process will only take shared read locks on the
database (preventing the chance of creating a dead-lock on the SQLite
database).
=head2 create
The C<create> option is used to expand L<ORLite> beyond just consuming
other people's databases to produce and operating on databases user the
direct control of your code.
The C<create> option supports two alternative forms.
If C<create> is set to a simple true value, an empty SQLite file will be
created if the location provided in the C<file> option does not exist.
If C<create> is set to a C<CODE> reference, this function will be executed
on the new database B<before> L<ORLite> attempts to scan the schema.
The C<CODE> reference will be passed a plain L<DBI> connection handle,
which you should operate on normally. Note that because C<create> is fired
before the code generation phase, none of the functionality produced by
the generated classes is available during the execution of the C<create>
code.
The use of C<create> option is incompatible with the C<readonly> option.
=head2 tables
The C<tables> option should be a reference to an array containing a list
of table names. For large or complex SQLite databases where you only need
to make use of a fraction of the schema limiting the set of tables
will reduce both the startup time needed to scan the structure of the
SQLite schema, and reduce the memory cost of the class tree.
If the C<tables> option is not provided, L<ORLite> will attempt to produce
a class for every table in the main schema that is not prefixed with
with C<sqlite_>.
=head2 cache
use ORLite {
file => 'dbi:SQLite:sqlite.db',
user_version => 2,
cache => 'cache/directory',
};
The C<cache> option is used to reduce the time needed to scan the SQLite
database table structures and generate the code for them, by saving the
generated code to a cache directory and loading from that file instead
of generating it each time from scratch.
=head2 cleanup
When working with embedded SQLite databases containing rapidly changing
state data, it is important for database performance and general health
to make sure you VACUUM or ANALYZE the database regularly.
The C<cleanup> option should be a single literal SQL statement.
If provided, this statement will be automatically run on the database
during C<END>-time, after the last transaction has been completed.
This will typically either by a full C<'VACUUM ANALYZE'> or the more
simple C<'VACUUM'>.
=head2 prune
In some situation, such as during test scripts, an application will only
need the created SQLite database temporarily. In these situations, the
C<prune> option can be provided to instruct L<ORLite> to delete the
SQLite database when the program ends.
If any directories were made in order to create the SQLite file, these
directories will be cleaned up and removed as well.
If C<prune> is enabled, you should generally not use C<cleanup> as any
cleanup operation will be made pointless when C<prune> deletes the file.
By default, the C<prune> option is set to false.
=head2 shim
In some situtations you may wish to make extensive changes to the behaviour
of the classes and methods generated by ORLite. Under normal circumstances
all code is generated into the table class directly, which can make
overriding method difficult.
The C<shim> option will make ORLite generate all of it's methods into a
separate C<Foo::TableName::Shim> class, and leave the main table class
C<Foo::TableName> as a transparent subclass of the shim.
This allows you to alter the behaviour of a table class without having
to do nasty tricks with symbol tables in order to alter or replace methods.
package My::Person;
# Write a log message when we create a new object
sub create {
my $class = shift;
my $self = SUPER::create(@_);
my $name = $self->name;
print LOG "Created new person '$name'\n";
return $self;
}
The C<shim> option is global. It will alter the structure of all table
classes at once. However, unless you are making alterations to a class
the impact of this different class structure should be zero.
=head2 unicode
You can use this option to tell L<ORLite> that your database uses unicode.
At the moment, it just enables the C<sqlite_unicode> option while
connecting to your database. There'll be more in the future.
=head1 ROOT PACKAGE METHODS
All ORLite root packages receive an identical set of methods for
controlling connections to the database, transactions, and the issuing
of queries of various types to the database.
The example root package Foo::Bar is used in any examples.
All methods are static, ORLite does not allow the creation of a Foo::Bar
object (although you may wish to add this capability yourself).
=head2 dsn
my $string = Foo::Bar->dsn;
The C<dsn> accessor returns the dbi connection string used to connect
to the SQLite database as a string.
=head2 dbh
my $handle = Foo::Bar->dbh;
To reliably prevent potential SQLite deadlocks resulting from multiple
connections in a single process, each ORLite package will only ever
maintain a single connection to the database.
During a transaction, this will be the same (cached) database handle.
Although in most situations you should not need a direct DBI connection
handle, the C<dbh> method provides a method for getting a direct
connection in a way that is compatible with ORLite's connection
management.
Please note that these connections should be short-lived, you should
never hold onto a connection beyond the immediate scope.
The transaction system in ORLite is specifically designed so that code
using the database should never have to know whether or not it is in a
transaction.
Because of this, you should B<never> call the -E<gt>disconnect method
on the database handles yourself, as the handle may be that of a
currently running transaction.
Further, you should do your own transaction management on a handle
provided by the <dbh> method.
In cases where there are extreme needs, and you B<absolutely> have to
violate these connection handling rules, you should create your own
completely manual DBI-E<gt>connect call to the database, using the connect
string provided by the C<dsn> method.
The C<dbh> method returns a L<DBI::db> object, or throws an exception on
error.
=head2 connect
my $dbh = Foo::Bar->connect;
The C<connect> method is provided for the (extremely rare) situation in
which you need a raw connection to the database, evading the normal tracking
and management provided of the ORM.
The use of raw connections in this manner is strongly discouraged, as you
can create fatal deadlocks in SQLite if either the core ORM or the raw
connection uses a transaction at any time.
To summarise, do not use this method unless you B<REALLY> know what you are
doing.
B<YOU HAVE BEEN WARNED!>
=head2 connected
my $active = Foo::Bar->connected;
The C<connected> method provides introspection of the connection status
of the library. It returns true if there is any connection or transaction
open to the database, or false otherwise.
=head2 begin
Foo::Bar->begin;
The C<begin> method indicates the start of a transaction.
In the same way that ORLite allows only a single connection, likewise
it allows only a single application-wide transaction.
No indication is given as to whether you are currently in a transaction
or not, all code should be written neutrally so that it works either way
or doesn't need to care.
Returns true or throws an exception on error.
While transaction support is always built for every L<ORLite>-generated
class tree, if the database is opened C<readonly> the C<commit> method
will not exist at all in the API, and your only way of ending the
transaction (and the resulting persistent connection) will be C<rollback>.
=head2 commit
Foo::Bar->commit;
The C<commit> method commits the current transaction. If called outside
of a current transaction, it is accepted and treated as a null operation.
Once the commit has been completed, the database connection falls back
into auto-commit state. If you wish to immediately start another
transaction, you will need to issue a separate -E<gt>begin call.
Returns true or throws an exception on error.
=head2 commit_begin
Foo::Bar->begin;
# Code for the first transaction...
Foo::Bar->commit_begin;
# Code for the last transaction...
Foo::Bar->commit;
By default, L<ORLite>-generated code uses opportunistic connections.
Every <select> you call results in a fresh L<DBI> C<connect>, and a
C<disconnect> occurs after query processing and before the data is
returned. Connections are B<only> held open indefinitely during a
transaction, with an immediate C<disconnect> after your C<commit>.
This makes ORLite very easy to use in an ad-hoc manner, but can have
performance implications.
While SQLite itself can handle 1000 connections per second, the repeated
destruction and repopulation of SQLite's data page caches between your
statements (or between transactions) can slow things down dramatically.
The C<commit_begin> method is used to C<commit> the current transaction
and immediately start a new transaction, without disconnecting from the
database.
Its exception behaviour and return value is identical to that of a plain
C<commit> call.
=head2 rollback
The C<rollback> method rolls back the current transaction. If called outside
of a current transaction, it is accepted and treated as a null operation.
Once the rollback has been completed, the database connection falls back
into auto-commit state. If you wish to immediately start another
transaction, you will need to issue a separate -E<gt>begin call.
If a transaction exists at END-time as the process exits, it will be
automatically rolled back.
Returns true or throws an exception on error.
=head2 rollback_begin
Foo::Bar->begin;
# Code for the first transaction...
Foo::Bar->rollback_begin;
# Code for the last transaction...
Foo::Bar->commit;
By default, L<ORLite>-generated code uses opportunistic connections.
Every <select> you call results in a fresh L<DBI> C<connect>, and a
C<disconnect> occurs after query processing and before the data is
returned. Connections are B<only> held open indefinitely during a
transaction, with an immediate C<disconnect> after your C<commit>.
This makes ORLite very easy to use in an ad-hoc manner, but can have
performance implications.
While SQLite itself can handle 1000 connections per second, the repeated
destruction and repopulation of SQLite's data page caches between your
statements (or between transactions) can slow things down dramatically.
The C<rollback_begin> method is used to C<rollback> the current transaction
and immediately start a new transaction, without disconnecting from the
database.
Its exception behaviour and return value is identical to that of a plain
C<commit> call.
=head2 do
Foo::Bar->do(
'insert into table (foo, bar) values (?, ?)',
{},
$foo_value,
$bar_value,
);
The C<do> method is a direct wrapper around the equivalent L<DBI> method,
but applied to the appropriate locally-provided connection or transaction.
It takes the same parameters and has the same return values and error
behaviour.
=head2 selectall_arrayref
The C<selectall_arrayref> method is a direct wrapper around the equivalent
L<DBI> method, but applied to the appropriate locally-provided connection
or transaction.
It takes the same parameters and has the same return values and error
behaviour.
=head2 selectall_hashref
The C<selectall_hashref> method is a direct wrapper around the equivalent
L<DBI> method, but applied to the appropriate locally-provided connection
or transaction.
It takes the same parameters and has the same return values and error
behaviour.
=head2 selectcol_arrayref
The C<selectcol_arrayref> method is a direct wrapper around the equivalent
L<DBI> method, but applied to the appropriate locally-provided connection
or transaction.
It takes the same parameters and has the same return values and error
behaviour.
=head2 selectrow_array
The C<selectrow_array> method is a direct wrapper around the equivalent
L<DBI> method, but applied to the appropriate locally-provided connection
or transaction.
It takes the same parameters and has the same return values and error
behaviour.
=head2 selectrow_arrayref
The C<selectrow_arrayref> method is a direct wrapper around the equivalent
L<DBI> method, but applied to the appropriate locally-provided connection
or transaction.
It takes the same parameters and has the same return values and error
behaviour.
=head2 selectrow_hashref
The C<selectrow_hashref> method is a direct wrapper around the equivalent
L<DBI> method, but applied to the appropriate locally-provided connection
or transaction.
It takes the same parameters and has the same return values and error
behaviour.
=head2 prepare
The C<prepare> method is a direct wrapper around the equivalent
L<DBI> method, but applied to the appropriate locally-provided connection
or transaction
It takes the same parameters and has the same return values and error
behaviour.
In general though, you should try to avoid the use of your own prepared
statements if possible, although this is only a recommendation and by
no means prohibited.
=head2 pragma
# Get the user_version for the schema
my $version = Foo::Bar->pragma('user_version');
The C<pragma> method provides a convenient method for fetching a pragma
for a datase. See the SQLite documentation for more details.
=head1 TABLE PACKAGE METHODS
When you use ORLite, your database tables will be available as
objects named in a camel-cased fashion. So, if your model name
is Foo::Bar...
use ORLite {
package => 'Foo::Bar',
file => 'data/sqlite.db',
};
... then a table named 'user' would be accessed as C<Foo::Bar::User>,
while a table named 'user_data' would become C<Foo::Bar::UserData>.
=head2 base
my $namespace = Foo::Bar::User->base; # Returns 'Foo::Bar'
Normally you will only need to work directly with a table class,
and only with one ORLite package.
However, if for some reason you need to work with multiple ORLite packages
at the same time without hardcoding the root namespace all the time, you
can determine the root namespace from an object or table class with the
C<base> method.
=head2 table
print Foo::Bar::UserData->table; # 'user_data'
While you should not need the name of table for any simple operations,
from time to time you may need it programmatically. If you do need it,
you can use the C<table> method to get the table name.
=head2 table_info
# List the columns in the underlying table
my $columns = Foo::Bar::User->table_info;
foreach my $c ( @$columns ) {
print "Column $c->{name} $c->{type}";
print " not null" if $c->{notnull};
print " default $c->{dflt_value}" if defined $c->{dflt_value};
print " primary key" if $c->{pk};
print "\n";
}
The C<table_info> method is a wrapper around the SQLite C<table_info>
pragma, and provides simplified access to the column metadata for the
underlying table should you need it for some advanced function that
needs direct access to the column list.
Returns a reference to an C<ARRAY> containing a list of columns, where
each column is a reference to a C<HASH> with the keys C<cid>, C<dflt_value>,
C<name>, C<notnull>, C<pk> and C<type>.
=head2 new
my $user = Foo::Bar::User->new(
name => 'Your Name',
age => 23,
);
The C<new> constructor creates an anonymous object, without reading or
writing it to the database. It also won't do validation of any kind,
since ORLite is designed for use with embedded databases and presumes that
you know what you are doing.
=head2 insert
my $user = Foo::Bar::User->new(
name => 'Your Name',
age => 23,
)->insert;
The C<insert> method takes an existing anonymous object and inserts it
into the database, returning the object back as a convenience.
It provides the second half of the slower manual two-phase object
construction process.
If the table has an auto-incrementing primary key (and you have not
provided a value for it yourself) the identifier for the new record
will be fetched back from the database and set in your object.
my $object = Foo::Bar::User->new( name => 'Foo' )->insert;
print "Created new user with id " . $user->id . "\n";
=head2 create
my $user = Foo::Bar::User->create(
name => 'Your Name',
age => 23,
);
While the C<new> + C<insert> methods are useful when you need to do
interesting constructor mechanisms, for most situations you already
have all the attributes ready and just want to create and insert the
record in a single step.
The C<create> method provides this shorthand mechanism and is just
the functional equivalent of the following.
sub create {
shift->new(@_)->insert;
}
It returns the newly created object after it has been inserted.
=head2 load
my $user = Foo::Bar::User->load( $id );
If your table has single column primary key, a C<load> method will be
generated in the class. If there is no primary key, the method is not
created.
The C<load> method provides a shortcut mechanism for fetching a single
object based on the value of the primary key. However it should only
be used for cases where your code trusts the record to already exists.
It returns a C<Foo::Bar::User> object, or throws an exception if the
object does not exist.
=head2 id
The C<id> accessor is a convenience method that is added to your table
class to increase the readability of your code when ORLite detects certain
patterns of column naming.
For example, take the following definition where convention is that all
primary keys are the table name followed by "_id".
create table foo_bar (
foo_bar_id integer not null primary key,
name string not null,
)
When ORLite detects the use of this pattern, and as long as the table does
not have an "id" column, the additional C<id> accessor will be added to your
class, making these expressions equivalent both in function and performance.
my $foo_bar = My::FooBar->create( name => 'Hello' );
# Column name accessor
$foo_bar->foo_bar_id;
# Convenience id accessor
$foo_bar->id;
As you can see, the latter involves much less repetition and reads much
more cleanly.
=head2 select
my @users = Foo::Bar::User->select;
my $users = Foo::Bar::User->select( 'where name = ?', @args );
The C<select> method is used to retrieve objects from the database.
In list context, returns an array with all matching elements.
In scalar context an array reference is returned with that same data.
You can filter the results or order them by passing SQL code to the method.
my @users = DB::User->select( 'where name = ?', $name );
my $users = DB::User->select( 'order by name' );
Because C<select> provides only the thinnest of layers around pure SQL
(it merely generates the "SELECT ... FROM table_name") you are free to use
anything you wish in your query, including subselects and function calls.
If called without any arguments, it will return all rows of the table in
the natural sort order of SQLite.
=head2 iterate
Foo::Bar::User->iterate( sub {
print $_->name . "\n";
} );
The C<iterate> method enables the processing of large tables one record at
a time without loading having to them all into memory in advance.
This plays well to the strength of SQLite, allowing it to do the work of
loading arbitrarily large stream of records from disk while retaining the
full power of Perl when processing the records.
The last argument to C<iterate> must be a subroutine reference that will be
called for each element in the list, with the object provided in the topic
variable C<$_>.
This makes the C<iterate> code fragment above functionally equivalent to the
following, except with an O(1) memory cost instead of O(n).
foreach ( Foo::Bar::User->select ) {
print $_->name . "\n";
}
You can filter the list via SQL in the same way you can with C<select>.
Foo::Bar::User->iterate(
'order by ?', 'name',
sub {
print $_->name . "\n";
}
);
You can also use it in raw form from the root namespace for better control.
Using this form also allows for the use of arbitrarily complex queries,
including joins. Instead of being objects, rows are provided as ARRAY
references when used in this form.
Foo::Bar->iterate(
'select name from user order by name',
sub {
print $_->[0] . "\n";
}
);
=head2 count
my $everyone = Foo::Bar::User->count;
my $young = Foo::Bar::User->count( 'where age <= ?', 13 );
You can count the total number of elements in a table by calling
the C<count> method with no arguments. You can also narrow your
count by passing sql conditions to the method in the same manner
as with the C<select> method.
=head2 delete
# Delete a single object from the database
$user->delete;
# Delete a range of rows from the database
Foo::Bar::User->delete( 'where age <= ?', 13 );
The C<delete> method will delete the single row representing an object,
based on the primary key or SQLite rowid of that object.
The object that you delete will be left intact and untouched, and you
remain free to do with it whatever you wish.
=head2 delete_where
# Delete a range of rows from the database
Foo::Bar::User->delete( 'age <= ?', 13 );
The C<delete_where> static method allows the delete of large numbers of
rows from a database while protecting against accidentally doing a
boundless delete (the C<truncate> method is provided specifically for
this purpose).
It takes the same parameters for deleting as the C<select> method,
with the exception that the "where" keyword is automatically provided
for your and should not be passed in.
This ensures that providing an empty of null condition results in an
invalid SQL query and the deletion will not occur.
Returns the number of rows deleted from the database (which may be zero).
=head2 truncate
# Clear out all records from the table
Foo::Bar::User->truncate;
The C<truncate> method takes no parameters and is used for only one
purpose, to completely empty a table of all rows.
Having a separate method from C<delete> not only prevents accidents,
but will also do the deletion via the direct SQLite C<TRUNCATE TABLE>
query. This uses a different deletion mechanism, and is
B<significantly> faster than a plain SQL C<DELETE>.
=head1 TO DO
- Support for intuiting reverse relations from foreign keys
- Document the 'create' and 'table' params
=head1 SUPPORT
Bugs should be reported via the CPAN bug tracker at
L<http://rt.cpan.org/NoAuth/ReportBug.html?Queue=ORLite>
For other issues, contact the author.
=head1 AUTHOR
Adam Kennedy E<lt>adamk@cpan.orgE<gt>
=head1 SEE ALSO
L<ORLite::Mirror>, L<ORLite::Migrate>, L<ORLite::Pod>
=head1 COPYRIGHT
Copyright 2008 - 2012 Adam Kennedy.
This program is free software; you can redistribute
it and/or modify it under the same terms as Perl itself.
The full text of the license can be found in the
LICENSE file included with this module.
=cut
|