This file is indexed.

/usr/share/perl5/PPI/Node.pm is in libppi-perl 1.236-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
package PPI::Node;

=pod

=head1 NAME

PPI::Node - Abstract PPI Node class, an Element that can contain other Elements

=head1 INHERITANCE

  PPI::Node
  isa PPI::Element

=head1 SYNOPSIS

  # Create a typical node (a Document in this case)
  my $Node = PPI::Document->new;
  
  # Add an element to the node( in this case, a token )
  my $Token = PPI::Token::Word->new('my');
  $Node->add_element( $Token );
  
  # Get the elements for the Node
  my @elements = $Node->children;
  
  # Find all the barewords within a Node
  my $barewords = $Node->find( 'PPI::Token::Word' );
  
  # Find by more complex criteria
  my $my_tokens = $Node->find( sub { $_[1]->content eq 'my' } );
  
  # Remove all the whitespace
  $Node->prune( 'PPI::Token::Whitespace' );
  
  # Remove by more complex criteria
  $Node->prune( sub { $_[1]->content eq 'my' } );

=head1 DESCRIPTION

The C<PPI::Node> class provides an abstract base class for the Element
classes that are able to contain other elements L<PPI::Document>,
L<PPI::Statement>, and L<PPI::Structure>.

As well as those listed below, all of the methods that apply to
L<PPI::Element> objects also apply to C<PPI::Node> objects.

=head1 METHODS

=cut

use strict;
use Carp            ();
use Scalar::Util    qw{refaddr};
use List::MoreUtils ();
use Params::Util    qw{_INSTANCE _CLASS _CODELIKE _NUMBER};
use PPI::Element    ();

use vars qw{$VERSION @ISA *_PARENT};
BEGIN {
	$VERSION = '1.236';
	@ISA     = 'PPI::Element';
	*_PARENT = *PPI::Element::_PARENT;
}





#####################################################################
# The basic constructor

sub new {
	my $class = ref $_[0] || $_[0];
	bless { children => [] }, $class;
}





#####################################################################
# PDOM Methods

=pod

=head2 scope

The C<scope> method returns true if the node represents a lexical scope
boundary, or false if it does not.

=cut

### XS -> PPI/XS.xs:_PPI_Node__scope 0.903+
sub scope() { '' }

=pod

=head2 add_element $Element

The C<add_element> method adds a L<PPI::Element> object to the end of a
C<PPI::Node>. Because Elements maintain links to their parent, an
Element can only be added to a single Node.

Returns true if the L<PPI::Element> was added. Returns C<undef> if the
Element was already within another Node, or the method is not passed 
a L<PPI::Element> object.

=cut

sub add_element {
	my $self = shift;

	# Check the element
	my $Element = _INSTANCE(shift, 'PPI::Element') or return undef;
	$_PARENT{refaddr $Element} and return undef;

	# Add the argument to the elements
	push @{$self->{children}}, $Element;
	Scalar::Util::weaken(
		$_PARENT{refaddr $Element} = $self
	);

	1;
}

# In a typical run profile, add_element is the number 1 resource drain.
# This is a highly optimised unsafe version, for internal use only.
sub __add_element {
	Scalar::Util::weaken(
		$_PARENT{refaddr $_[1]} = $_[0]
	);
	push @{$_[0]->{children}}, $_[1];
}

=pod

=head2 elements

The C<elements> method accesses all child elements B<structurally> within
the C<PPI::Node> object. Note that in the base of the L<PPI::Structure>
classes, this C<DOES> include the brace tokens at either end of the
structure.

Returns a list of zero or more L<PPI::Element> objects.

Alternatively, if called in the scalar context, the C<elements> method
returns a count of the number of elements.

=cut

sub elements {
	if ( wantarray ) {
		return @{$_[0]->{children}};
	} else {
		return scalar @{$_[0]->{children}};
	}
}

=pod

=head2 first_element

The C<first_element> method accesses the first element structurally within
the C<PPI::Node> object. As for the C<elements> method, this does include
the brace tokens for L<PPI::Structure> objects.

Returns a L<PPI::Element> object, or C<undef> if for some reason the
C<PPI::Node> object does not contain any elements.

=cut

# Normally the first element is also the first child
sub first_element {
	$_[0]->{children}->[0];
}

=pod

=head2 last_element

The C<last_element> method accesses the last element structurally within
the C<PPI::Node> object. As for the C<elements> method, this does include
the brace tokens for L<PPI::Structure> objects.

Returns a L<PPI::Element> object, or C<undef> if for some reason the
C<PPI::Node> object does not contain any elements.

=cut

# Normally the last element is also the last child
sub last_element {
	$_[0]->{children}->[-1];
}

=pod

=head2 children

The C<children> method accesses all child elements lexically within the
C<PPI::Node> object. Note that in the case of the L<PPI::Structure>
classes, this does B<NOT> include the brace tokens at either end of the
structure.

Returns a list of zero of more L<PPI::Element> objects.

Alternatively, if called in the scalar context, the C<children> method
returns a count of the number of lexical children.

=cut

# In the default case, this is the same as for the elements method
sub children {
	wantarray ? @{$_[0]->{children}} : scalar @{$_[0]->{children}};
}

=pod

=head2 schildren

The C<schildren> method is really just a convenience, the significant-only
variation of the normal C<children> method.

In list context, returns a list of significant children. In scalar context,
returns the number of significant children.

=cut

sub schildren {
	return grep { $_->significant } @{$_[0]->{children}} if wantarray;
	my $count = 0;
	foreach ( @{$_[0]->{children}} ) {
		$count++ if $_->significant;
	}
	return $count;
}

=pod

=head2 child $index

The C<child> method accesses a child L<PPI::Element> object by its
position within the Node.

Returns a L<PPI::Element> object, or C<undef> if there is no child
element at that node.

=cut

sub child {
	my ( $self, $index ) = @_;
	PPI::Exception->throw( "method child() needs an index" )
	  if not defined _NUMBER $index;
	$self->{children}->[$index];
}

=pod

=head2 schild $index

The lexical structure of the Perl language ignores 'insignificant' items,
such as whitespace and comments, while L<PPI> treats these items as valid
tokens so that it can reassemble the file at any time. Because of this,
in many situations there is a need to find an Element within a Node by
index, only counting lexically significant Elements.

The C<schild> method returns a child Element by index, ignoring
insignificant Elements. The index of a child Element is specified in the
same way as for a normal array, with the first Element at index 0, and
negative indexes used to identify a "from the end" position.

=cut

sub schild {
	my $self = shift;
	my $idx  = 0 + shift;
	my $el   = $self->{children};
	if ( $idx < 0 ) {
		my $cursor = 0;
		while ( exists $el->[--$cursor] ) {
			return $el->[$cursor] if $el->[$cursor]->significant and ++$idx >= 0;
		}
	} else {
		my $cursor = -1;
		while ( exists $el->[++$cursor] ) {
			return $el->[$cursor] if $el->[$cursor]->significant and --$idx < 0;
		}
	}
	undef;
}

=pod

=head2 contains $Element

The C<contains> method is used to determine if another L<PPI::Element>
object is logically "within" a C<PPI::Node>. For the special case of the
brace tokens at either side of a L<PPI::Structure> object, they are
generally considered "within" a L<PPI::Structure> object, even if they are
not actually in the elements for the L<PPI::Structure>.

Returns true if the L<PPI::Element> is within us, false if not, or C<undef>
on error.

=cut

sub contains {
	my $self    = shift;
	my $Element = _INSTANCE(shift, 'PPI::Element') or return undef;

	# Iterate up the Element's parent chain until we either run out
	# of parents, or get to ourself.
	while ( $Element = $Element->parent ) {
		return 1 if refaddr($self) == refaddr($Element);
	}

	'';
}

=pod

=head2 find $class | \&wanted

The C<find> method is used to search within a code tree for
L<PPI::Element> objects that meet a particular condition.

To specify the condition, the method can be provided with either a simple
class name (full or shortened), or a C<CODE>/function reference.

  # Find all single quotes in a Document (which is a Node)
  $Document->find('PPI::Quote::Single');
  
  # The same thing with a shortened class name
  $Document->find('Quote::Single');
  
  # Anything more elaborate, we go with the sub
  $Document->find( sub {
  	# At the top level of the file...
  	$_[1]->parent == $_[0]
  	and (
  		# ...find all comments and POD
  		$_[1]->isa('PPI::Token::Pod')
  		or
  		$_[1]->isa('PPI::Token::Comment')
  	)
  } );

The function will be passed two arguments, the top-level C<PPI::Node>
you are searching in and the current L<PPI::Element> that the condition
is testing.

The anonymous function should return one of three values. Returning true
indicates a condition match, defined-false (C<0> or C<''>) indicates
no-match, and C<undef> indicates no-match and no-descend.

In the last case, the tree walker will skip over anything below the
C<undef>-returning element and move on to the next element at the same
level.

To halt the entire search and return C<undef> immediately, a condition
function should throw an exception (i.e. C<die>).

Note that this same wanted logic is used for all methods documented to
have a C<\&wanted> parameter, as this one does.

The C<find> method returns a reference to an array of L<PPI::Element>
objects that match the condition, false (but defined) if no Elements match
the condition, or C<undef> if you provide a bad condition, or an error
occurs during the search process.

In the case of a bad condition, a warning will be emitted as well.

=cut

sub find {
	my $self   = shift;
	my $wanted = $self->_wanted(shift) or return undef;

	# Use a queue based search, rather than a recursive one
	my @found;
	my @queue = @{$self->{children}};
	my $ok = eval {
		while ( @queue ) {
			my $Element = shift @queue;
			my $rv      = &$wanted( $self, $Element );
			push @found, $Element if $rv;

			# Support "don't descend on undef return"
			next unless defined $rv;

			# Skip if the Element doesn't have any children
			next unless $Element->isa('PPI::Node');

			# Depth-first keeps the queue size down and provides a
			# better logical order.
			if ( $Element->isa('PPI::Structure') ) {
				unshift @queue, $Element->finish if $Element->finish;
				unshift @queue, @{$Element->{children}};
				unshift @queue, $Element->start if $Element->start;
			} else {
				unshift @queue, @{$Element->{children}};
			}
		}
		1;
	};
	if ( !$ok ) {
		# Caught exception thrown from the wanted function
		return undef;
	}

	@found ? \@found : '';
}

=pod

=head2 find_first $class | \&wanted

If the normal C<find> method is like a grep, then C<find_first> is
equivalent to the L<List::Util> C<first> function.

Given an element class or a wanted function, it will search depth-first
through a tree until it finds something that matches the condition,
returning the first Element that it encounters.

See the C<find> method for details on the format of the search condition.

Returns the first L<PPI::Element> object that matches the condition, false
if nothing matches the condition, or C<undef> if given an invalid condition,
or an error occurs.

=cut

sub find_first {
	my $self   = shift;
	my $wanted = $self->_wanted(shift) or return undef;

	# Use the same queue-based search as for ->find
	my @queue = @{$self->{children}};
	my $rv;
	my $ok = eval {
		# The defined() here prevents a ton of calls to PPI::Util::TRUE
		while ( @queue ) {
			my $Element = shift @queue;
			my $element_rv = $wanted->( $self, $Element );
			if ( $element_rv ) {
				$rv = $Element;
				last;
			}

			# Support "don't descend on undef return"
			next if !defined $element_rv;

			# Skip if the Element doesn't have any children
			next if !$Element->isa('PPI::Node');

			# Depth-first keeps the queue size down and provides a
			# better logical order.
			if ( $Element->isa('PPI::Structure') ) {
				unshift @queue, $Element->finish if defined($Element->finish);
				unshift @queue, @{$Element->{children}};
				unshift @queue, $Element->start  if defined($Element->start);
			} else {
				unshift @queue, @{$Element->{children}};
			}
		}
		1;
	};
	if ( !$ok ) {
		# Caught exception thrown from the wanted function
		return undef;
	}

	$rv or '';
}

=pod

=head2 find_any $class | \&wanted

The C<find_any> method is a short-circuiting true/false method that behaves
like the normal C<find> method, but returns true as soon as it finds any
Elements that match the search condition.

See the C<find> method for details on the format of the search condition.

Returns true if any Elements that match the condition can be found, false if
not, or C<undef> if given an invalid condition, or an error occurs.

=cut

sub find_any {
	my $self = shift;
	my $rv   = $self->find_first(@_);
	$rv ? 1 : $rv; # false or undef
}

=pod

=head2 remove_child $Element

If passed a L<PPI::Element> object that is a direct child of the Node,
the C<remove_element> method will remove the C<Element> intact, along
with any of its children. As such, this method acts essentially as a
'cut' function.

If successful, returns the removed element.  Otherwise, returns C<undef>.

=cut

sub remove_child {
	my $self  = shift;
	my $child = _INSTANCE(shift, 'PPI::Element') or return undef;

	# Find the position of the child
	my $key = refaddr $child;
	my $p   = List::MoreUtils::firstidx {
		refaddr $_ == $key
	} @{$self->{children}};
	return undef if $p == -1;

	# Splice it out, and remove the child's parent entry
	splice( @{$self->{children}}, $p, 1 );
	delete $_PARENT{refaddr $child};

	$child;
}

=pod

=head2 prune $class | \&wanted

The C<prune> method is used to strip L<PPI::Element> objects out of a code
tree. The argument is the same as for the C<find> method, either a class
name, or an anonymous subroutine which returns true/false. Any Element
that matches the class|wanted will be deleted from the code tree, along
with any of its children.

The C<prune> method returns the number of C<Element> objects that matched
and were removed, B<non-recursively>. This might also be zero, so avoid a
simple true/false test on the return false of the C<prune> method. It
returns C<undef> on error, which you probably B<should> test for.

=cut

sub prune {
	my $self   = shift;
	my $wanted = $self->_wanted(shift) or return undef;

	# Use a depth-first queue search
	my $pruned = 0;
	my @queue  = $self->children;
	my $ok = eval {
		while ( my $element = shift @queue ) {
			my $rv = &$wanted( $self, $element );
			if ( $rv ) {
				# Delete the child
				$element->delete or return undef;
				$pruned++;
				next;
			}

			# Support the undef == "don't descend"
			next unless defined $rv;

			if ( _INSTANCE($element, 'PPI::Node') ) {
				# Depth-first keeps the queue size down
				unshift @queue, $element->children;
			}
		}
		1;
	};
	if ( !$ok ) {
		# Caught exception thrown from the wanted function
		return undef;		
	}

	$pruned;
}

# This method is likely to be very heavily used, so take
# it slowly and carefully.
### NOTE: Renaming this function or changing either to self will probably
###       break File::Find::Rule::PPI
sub _wanted {
	my $either = shift;
	my $it     = defined($_[0]) ? shift : do {
		Carp::carp('Undefined value passed as search condition') if $^W;
		return undef;
	};

	# Has the caller provided a wanted function directly
	return $it if _CODELIKE($it);
	if ( ref $it ) {
		# No other ref types are supported
		Carp::carp('Illegal non-CODE reference passed as search condition') if $^W;
		return undef;
	}

	# The first argument should be an Element class, possibly in shorthand
	$it = "PPI::$it" unless substr($it, 0, 5) eq 'PPI::';
	unless ( _CLASS($it) and $it->isa('PPI::Element') ) {
		# We got something, but it isn't an element
		Carp::carp("Cannot create search condition for '$it': Not a PPI::Element") if $^W;
		return undef;
	}

	# Create the class part of the wanted function
	my $wanted_class = "\n\treturn '' unless \$_[1]->isa('$it');";

	# Have we been given a second argument to check the content
	my $wanted_content = '';
	if ( defined $_[0] ) {
		my $content = shift;
		if ( ref $content eq 'Regexp' ) {
			$content = "$content";
		} elsif ( ref $content ) {
			# No other ref types are supported
			Carp::carp("Cannot create search condition for '$it': Not a PPI::Element") if $^W;
			return undef;
		} else {
			$content = quotemeta $content;
		}

		# Complete the content part of the wanted function
		$wanted_content .= "\n\treturn '' unless defined \$_[1]->{content};";
		$wanted_content .= "\n\treturn '' unless \$_[1]->{content} =~ /$content/;";
	}

	# Create the complete wanted function
	my $code = "sub {"
		. $wanted_class
		. $wanted_content
		. "\n\t1;"
		. "\n}";

	# Compile the wanted function
	$code = eval $code;
	(ref $code eq 'CODE') ? $code : undef;
}





####################################################################
# PPI::Element overloaded methods

sub tokens {
	map { $_->tokens } @{$_[0]->{children}};
}

### XS -> PPI/XS.xs:_PPI_Element__content 0.900+
sub content {
	join '', map { $_->content } @{$_[0]->{children}};
}

# Clone as normal, but then go down and relink all the _PARENT entries
sub clone {
	my $self  = shift;
	my $clone = $self->SUPER::clone;
	$clone->__link_children;
	$clone;
}

sub location {
	my $self  = shift;
	my $first = $self->{children}->[0] or return undef;
	$first->location;
}





#####################################################################
# Internal Methods

sub DESTROY {
	local $_;
	if ( $_[0]->{children} ) {
		my @queue = $_[0];
		while ( defined($_ = shift @queue) ) {
			unshift @queue, @{delete $_->{children}} if $_->{children};

			# Remove all internal/private weird crosslinking so that
			# the cascading DESTROY calls will get called properly.
			%$_ = ();
		}
	}

	# Remove us from our parent node as normal
	delete $_PARENT{refaddr $_[0]};
}

# Find the position of a child
sub __position {
	my $key = refaddr $_[1];
	List::MoreUtils::firstidx { refaddr $_ == $key } @{$_[0]->{children}};
}

# Insert one or more elements before a child
sub __insert_before_child {
	my $self = shift;
	my $key  = refaddr shift;
	my $p    = List::MoreUtils::firstidx {
	         refaddr $_ == $key
	         } @{$self->{children}};
	foreach ( @_ ) {
		Scalar::Util::weaken(
			$_PARENT{refaddr $_} = $self
			);
	}
	splice( @{$self->{children}}, $p, 0, @_ );
	1;
}

# Insert one or more elements after a child
sub __insert_after_child {
	my $self = shift;
	my $key  = refaddr shift;
	my $p    = List::MoreUtils::firstidx {
	         refaddr $_ == $key
	         } @{$self->{children}};
	foreach ( @_ ) {
		Scalar::Util::weaken(
			$_PARENT{refaddr $_} = $self
			);
	}
	splice( @{$self->{children}}, $p + 1, 0, @_ );
	1;
}

# Replace a child
sub __replace_child {
	my $self = shift;
	my $key  = refaddr shift;
	my $p    = List::MoreUtils::firstidx {
	         refaddr $_ == $key
	         } @{$self->{children}};
	foreach ( @_ ) {
		Scalar::Util::weaken(
			$_PARENT{refaddr $_} = $self
			);
	}
	splice( @{$self->{children}}, $p, 1, @_ );
	1;
}

# Create PARENT links for an entire tree.
# Used when cloning or thawing.
sub __link_children {
	my $self = shift;

	# Relink all our children ( depth first )
	my @queue = ( $self );
	while ( my $Node = shift @queue ) {
		# Link our immediate children
		foreach my $Element ( @{$Node->{children}} ) {
			Scalar::Util::weaken(
				$_PARENT{refaddr($Element)} = $Node
				);
			unshift @queue, $Element if $Element->isa('PPI::Node');
		}

		# If it's a structure, relink the open/close braces
		next unless $Node->isa('PPI::Structure');
		Scalar::Util::weaken(
			$_PARENT{refaddr($Node->start)}  = $Node
			) if $Node->start;
		Scalar::Util::weaken(
			$_PARENT{refaddr($Node->finish)} = $Node
			) if $Node->finish;
	}

	1;
}

1;

=pod

=head1 TO DO

- Move as much as possible to L<PPI::XS>

=head1 SUPPORT

See the L<support section|PPI/SUPPORT> in the main module.

=head1 AUTHOR

Adam Kennedy E<lt>adamk@cpan.orgE<gt>

=head1 COPYRIGHT

Copyright 2001 - 2011 Adam Kennedy.

This program is free software; you can redistribute
it and/or modify it under the same terms as Perl itself.

The full text of the license can be found in the
LICENSE file included with this module.

=cut