This file is indexed.

/usr/include/primesieve/pmath.hpp is in libprimesieve-dev-common 6.3+ds-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
///
/// @file   pmath.hpp
/// @brief  Auxiliary math functions for primesieve.
///
/// Copyright (C) 2017 Kim Walisch, <kim.walisch@gmail.com>
///
/// This file is distributed under the BSD License. See the COPYING
/// file in the top level directory.
///

#ifndef PMATH_HPP
#define PMATH_HPP

#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <limits>
#include <type_traits>

namespace primesieve {

template <typename X, typename Y>
inline X ceilDiv(X x, Y y)
{
  return (X) ((x + y - 1) / y);
}

template <typename T>
inline T numberOfBits(T)
{
  return (T) (sizeof(T) * 8);
}

template <typename T>
inline bool isPow2(T x)
{
  return x != 0 && (x & (x - 1)) == 0;
}

template <typename T>
inline T floorPow2(T x)
{
  for (T i = 1; i < numberOfBits(x); i += i)
    x |= (x >> i);
  return x - (x >> 1);
}

template <typename T>
inline T ilog2(T x)
{
  T bits = numberOfBits(x);
  T one = 1;
  T log2 = 0;

  for (T i = bits / 2; i > 0; i /= 2)
  {
    if (x >= (one << i))
    {
      x >>= i;
      log2 += i;
    }
  }

  return log2;
}

/// Integer square root, Newton's method
/// @see book "Hacker's Delight"
///
template <typename T>
inline T isqrt(T x)
{
  if (x <= 1)
    return x;

  T bits = numberOfBits(x);
  T nlz = (bits - 1) - ilog2(x - 1);
  T s = bits / 2 - nlz / 2;
  T one = 1;

  T g0 = one << s;
  T g1 = (g0 + (x >> s)) >> 1;

  while (g1 < g0)
  {
    g0 = g1;
    g1 = (g0 + (x / g0)) >> 1;
  }

  return g0;
}

/// Returns 2^64-1 if x + y >= 2^64-1
inline uint64_t checkedAdd(uint64_t x, uint64_t y)
{
  const uint64_t max = std::numeric_limits<uint64_t>::max();

  if (x >= max - y)
    return max;

  return x + y;
}

/// Returns 0 if x - y <= 0
inline uint64_t checkedSub(uint64_t x, uint64_t y)
{
  return (x > y) ? x - y : 0;
}

template <typename A, typename B, typename C>
inline B inBetween(A min, B x, C max)
{
  using T = typename std::common_type<A, B, C>::type;

  if ((T) x < (T) min)
    return (B) min;
  if ((T) x > (T) max)
    return (B) max;

  return x;
}

/// prime_count_approx(x) >= pi(x)
inline std::size_t prime_count_approx(uint64_t start, uint64_t stop)
{
  if (start > stop)
    return 0;
  if (stop <= 10)
    return 4;

  // pi(x) <= x / (log(x) - 1.1) + 5, for x >= 4
  double x = (double) stop;
  double logx = std::log(x);
  double div = logx - 1.1;
  double pix = (stop - start) / div + 5;

  return (std::size_t) pix;
}

inline std::size_t prime_count_approx(uint64_t stop)
{
  return prime_count_approx(0, stop);
}

/// Approximation of the maximum prime gap near n
template <typename T>
inline T max_prime_gap(T n)
{
  double x = (double) n;
  x = std::max(1.0, x);
  double logx = std::log(x);
  double prime_gap = logx * logx;
  return (T) prime_gap;
}

} // namespace

#endif