/usr/lib/python2.7/test/math_testcases.txt is in libpython2.7-testsuite 2.7.15~rc1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 | -- Testcases for functions in math.
--
-- Each line takes the form:
--
-- <testid> <function> <input_value> -> <output_value> <flags>
--
-- where:
--
-- <testid> is a short name identifying the test,
--
-- <function> is the function to be tested (exp, cos, asinh, ...),
--
-- <input_value> is a string representing a floating-point value
--
-- <output_value> is the expected (ideal) output value, again
-- represented as a string.
--
-- <flags> is a list of the floating-point flags required by C99
--
-- The possible flags are:
--
-- divide-by-zero : raised when a finite input gives a
-- mathematically infinite result.
--
-- overflow : raised when a finite input gives a finite result that
-- is too large to fit in the usual range of an IEEE 754 double.
--
-- invalid : raised for invalid inputs (e.g., sqrt(-1))
--
-- ignore-sign : indicates that the sign of the result is
-- unspecified; e.g., if the result is given as inf,
-- then both -inf and inf should be accepted as correct.
--
-- Flags may appear in any order.
--
-- Lines beginning with '--' (like this one) start a comment, and are
-- ignored. Blank lines, or lines containing only whitespace, are also
-- ignored.
-- Many of the values below were computed with the help of
-- version 2.4 of the MPFR library for multiple-precision
-- floating-point computations with correct rounding. All output
-- values in this file are (modulo yet-to-be-discovered bugs)
-- correctly rounded, provided that each input and output decimal
-- floating-point value below is interpreted as a representation of
-- the corresponding nearest IEEE 754 double-precision value. See the
-- MPFR homepage at http://www.mpfr.org for more information about the
-- MPFR project.
-------------------------
-- erf: error function --
-------------------------
erf0000 erf 0.0 -> 0.0
erf0001 erf -0.0 -> -0.0
erf0002 erf inf -> 1.0
erf0003 erf -inf -> -1.0
erf0004 erf nan -> nan
-- tiny values
erf0010 erf 1e-308 -> 1.1283791670955125e-308
erf0011 erf 5e-324 -> 4.9406564584124654e-324
erf0012 erf 1e-10 -> 1.1283791670955126e-10
-- small integers
erf0020 erf 1 -> 0.84270079294971489
erf0021 erf 2 -> 0.99532226501895271
erf0022 erf 3 -> 0.99997790950300136
erf0023 erf 4 -> 0.99999998458274209
erf0024 erf 5 -> 0.99999999999846256
erf0025 erf 6 -> 1.0
erf0030 erf -1 -> -0.84270079294971489
erf0031 erf -2 -> -0.99532226501895271
erf0032 erf -3 -> -0.99997790950300136
erf0033 erf -4 -> -0.99999998458274209
erf0034 erf -5 -> -0.99999999999846256
erf0035 erf -6 -> -1.0
-- huge values should all go to +/-1, depending on sign
erf0040 erf -40 -> -1.0
erf0041 erf 1e16 -> 1.0
erf0042 erf -1e150 -> -1.0
erf0043 erf 1.7e308 -> 1.0
-- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
-- incorrectly signalled overflow on some platforms.
erf0100 erf 26.2 -> 1.0
erf0101 erf 26.4 -> 1.0
erf0102 erf 26.6 -> 1.0
erf0103 erf 26.8 -> 1.0
erf0104 erf 27.0 -> 1.0
erf0105 erf 27.2 -> 1.0
erf0106 erf 27.4 -> 1.0
erf0107 erf 27.6 -> 1.0
erf0110 erf -26.2 -> -1.0
erf0111 erf -26.4 -> -1.0
erf0112 erf -26.6 -> -1.0
erf0113 erf -26.8 -> -1.0
erf0114 erf -27.0 -> -1.0
erf0115 erf -27.2 -> -1.0
erf0116 erf -27.4 -> -1.0
erf0117 erf -27.6 -> -1.0
----------------------------------------
-- erfc: complementary error function --
----------------------------------------
erfc0000 erfc 0.0 -> 1.0
erfc0001 erfc -0.0 -> 1.0
erfc0002 erfc inf -> 0.0
erfc0003 erfc -inf -> 2.0
erfc0004 erfc nan -> nan
-- tiny values
erfc0010 erfc 1e-308 -> 1.0
erfc0011 erfc 5e-324 -> 1.0
erfc0012 erfc 1e-10 -> 0.99999999988716204
-- small integers
erfc0020 erfc 1 -> 0.15729920705028513
erfc0021 erfc 2 -> 0.0046777349810472662
erfc0022 erfc 3 -> 2.2090496998585441e-05
erfc0023 erfc 4 -> 1.541725790028002e-08
erfc0024 erfc 5 -> 1.5374597944280349e-12
erfc0025 erfc 6 -> 2.1519736712498913e-17
erfc0030 erfc -1 -> 1.8427007929497148
erfc0031 erfc -2 -> 1.9953222650189528
erfc0032 erfc -3 -> 1.9999779095030015
erfc0033 erfc -4 -> 1.9999999845827421
erfc0034 erfc -5 -> 1.9999999999984626
erfc0035 erfc -6 -> 2.0
-- as x -> infinity, erfc(x) behaves like exp(-x*x)/x/sqrt(pi)
erfc0040 erfc 20 -> 5.3958656116079012e-176
erfc0041 erfc 25 -> 8.3001725711965228e-274
erfc0042 erfc 27 -> 5.2370464393526292e-319
erfc0043 erfc 28 -> 0.0
-- huge values
erfc0050 erfc -40 -> 2.0
erfc0051 erfc 1e16 -> 0.0
erfc0052 erfc -1e150 -> 2.0
erfc0053 erfc 1.7e308 -> 0.0
-- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
-- incorrectly signalled overflow on some platforms.
erfc0100 erfc 26.2 -> 1.6432507924389461e-300
erfc0101 erfc 26.4 -> 4.4017768588035426e-305
erfc0102 erfc 26.6 -> 1.0885125885442269e-309
erfc0103 erfc 26.8 -> 2.4849621571966629e-314
erfc0104 erfc 27.0 -> 5.2370464393526292e-319
erfc0105 erfc 27.2 -> 9.8813129168249309e-324
erfc0106 erfc 27.4 -> 0.0
erfc0107 erfc 27.6 -> 0.0
erfc0110 erfc -26.2 -> 2.0
erfc0111 erfc -26.4 -> 2.0
erfc0112 erfc -26.6 -> 2.0
erfc0113 erfc -26.8 -> 2.0
erfc0114 erfc -27.0 -> 2.0
erfc0115 erfc -27.2 -> 2.0
erfc0116 erfc -27.4 -> 2.0
erfc0117 erfc -27.6 -> 2.0
---------------------------------------------------------
-- lgamma: log of absolute value of the gamma function --
---------------------------------------------------------
-- special values
lgam0000 lgamma 0.0 -> inf divide-by-zero
lgam0001 lgamma -0.0 -> inf divide-by-zero
lgam0002 lgamma inf -> inf
lgam0003 lgamma -inf -> inf
lgam0004 lgamma nan -> nan
-- negative integers
lgam0010 lgamma -1 -> inf divide-by-zero
lgam0011 lgamma -2 -> inf divide-by-zero
lgam0012 lgamma -1e16 -> inf divide-by-zero
lgam0013 lgamma -1e300 -> inf divide-by-zero
lgam0014 lgamma -1.79e308 -> inf divide-by-zero
-- small positive integers give factorials
lgam0020 lgamma 1 -> 0.0
lgam0021 lgamma 2 -> 0.0
lgam0022 lgamma 3 -> 0.69314718055994529
lgam0023 lgamma 4 -> 1.791759469228055
lgam0024 lgamma 5 -> 3.1780538303479458
lgam0025 lgamma 6 -> 4.7874917427820458
-- half integers
lgam0030 lgamma 0.5 -> 0.57236494292470008
lgam0031 lgamma 1.5 -> -0.12078223763524522
lgam0032 lgamma 2.5 -> 0.28468287047291918
lgam0033 lgamma 3.5 -> 1.2009736023470743
lgam0034 lgamma -0.5 -> 1.2655121234846454
lgam0035 lgamma -1.5 -> 0.86004701537648098
lgam0036 lgamma -2.5 -> -0.056243716497674054
lgam0037 lgamma -3.5 -> -1.309006684993042
-- values near 0
lgam0040 lgamma 0.1 -> 2.252712651734206
lgam0041 lgamma 0.01 -> 4.5994798780420219
lgam0042 lgamma 1e-8 -> 18.420680738180209
lgam0043 lgamma 1e-16 -> 36.841361487904734
lgam0044 lgamma 1e-30 -> 69.077552789821368
lgam0045 lgamma 1e-160 -> 368.41361487904732
lgam0046 lgamma 1e-308 -> 709.19620864216608
lgam0047 lgamma 5.6e-309 -> 709.77602713741896
lgam0048 lgamma 5.5e-309 -> 709.79404564292167
lgam0049 lgamma 1e-309 -> 711.49879373516012
lgam0050 lgamma 1e-323 -> 743.74692474082133
lgam0051 lgamma 5e-324 -> 744.44007192138122
lgam0060 lgamma -0.1 -> 2.3689613327287886
lgam0061 lgamma -0.01 -> 4.6110249927528013
lgam0062 lgamma -1e-8 -> 18.420680749724522
lgam0063 lgamma -1e-16 -> 36.841361487904734
lgam0064 lgamma -1e-30 -> 69.077552789821368
lgam0065 lgamma -1e-160 -> 368.41361487904732
lgam0066 lgamma -1e-308 -> 709.19620864216608
lgam0067 lgamma -5.6e-309 -> 709.77602713741896
lgam0068 lgamma -5.5e-309 -> 709.79404564292167
lgam0069 lgamma -1e-309 -> 711.49879373516012
lgam0070 lgamma -1e-323 -> 743.74692474082133
lgam0071 lgamma -5e-324 -> 744.44007192138122
-- values near negative integers
lgam0080 lgamma -0.99999999999999989 -> 36.736800569677101
lgam0081 lgamma -1.0000000000000002 -> 36.043653389117154
lgam0082 lgamma -1.9999999999999998 -> 35.350506208557213
lgam0083 lgamma -2.0000000000000004 -> 34.657359027997266
lgam0084 lgamma -100.00000000000001 -> -331.85460524980607
lgam0085 lgamma -99.999999999999986 -> -331.85460524980596
-- large inputs
lgam0100 lgamma 170 -> 701.43726380873704
lgam0101 lgamma 171 -> 706.57306224578736
lgam0102 lgamma 171.624 -> 709.78077443669895
lgam0103 lgamma 171.625 -> 709.78591682948365
lgam0104 lgamma 172 -> 711.71472580228999
lgam0105 lgamma 2000 -> 13198.923448054265
lgam0106 lgamma 2.55998332785163e305 -> 1.7976931348623099e+308
lgam0107 lgamma 2.55998332785164e305 -> inf overflow
lgam0108 lgamma 1.7e308 -> inf overflow
-- inputs for which gamma(x) is tiny
lgam0120 lgamma -100.5 -> -364.90096830942736
lgam0121 lgamma -160.5 -> -656.88005261126432
lgam0122 lgamma -170.5 -> -707.99843314507882
lgam0123 lgamma -171.5 -> -713.14301641168481
lgam0124 lgamma -176.5 -> -738.95247590846486
lgam0125 lgamma -177.5 -> -744.13144651738037
lgam0126 lgamma -178.5 -> -749.3160351186001
lgam0130 lgamma -1000.5 -> -5914.4377011168517
lgam0131 lgamma -30000.5 -> -279278.6629959144
lgam0132 lgamma -4503599627370495.5 -> -1.5782258434492883e+17
-- results close to 0: positive argument ...
lgam0150 lgamma 0.99999999999999989 -> 6.4083812134800075e-17
lgam0151 lgamma 1.0000000000000002 -> -1.2816762426960008e-16
lgam0152 lgamma 1.9999999999999998 -> -9.3876980655431170e-17
lgam0153 lgamma 2.0000000000000004 -> 1.8775396131086244e-16
-- ... and negative argument
lgam0160 lgamma -2.7476826467 -> -5.2477408147689136e-11
lgam0161 lgamma -2.457024738 -> 3.3464637541912932e-10
---------------------------
-- gamma: Gamma function --
---------------------------
-- special values
gam0000 gamma 0.0 -> inf divide-by-zero
gam0001 gamma -0.0 -> -inf divide-by-zero
gam0002 gamma inf -> inf
gam0003 gamma -inf -> nan invalid
gam0004 gamma nan -> nan
-- negative integers inputs are invalid
gam0010 gamma -1 -> nan invalid
gam0011 gamma -2 -> nan invalid
gam0012 gamma -1e16 -> nan invalid
gam0013 gamma -1e300 -> nan invalid
-- small positive integers give factorials
gam0020 gamma 1 -> 1
gam0021 gamma 2 -> 1
gam0022 gamma 3 -> 2
gam0023 gamma 4 -> 6
gam0024 gamma 5 -> 24
gam0025 gamma 6 -> 120
-- half integers
gam0030 gamma 0.5 -> 1.7724538509055161
gam0031 gamma 1.5 -> 0.88622692545275805
gam0032 gamma 2.5 -> 1.3293403881791370
gam0033 gamma 3.5 -> 3.3233509704478426
gam0034 gamma -0.5 -> -3.5449077018110322
gam0035 gamma -1.5 -> 2.3632718012073548
gam0036 gamma -2.5 -> -0.94530872048294190
gam0037 gamma -3.5 -> 0.27008820585226911
-- values near 0
gam0040 gamma 0.1 -> 9.5135076986687306
gam0041 gamma 0.01 -> 99.432585119150602
gam0042 gamma 1e-8 -> 99999999.422784343
gam0043 gamma 1e-16 -> 10000000000000000
gam0044 gamma 1e-30 -> 9.9999999999999988e+29
gam0045 gamma 1e-160 -> 1.0000000000000000e+160
gam0046 gamma 1e-308 -> 1.0000000000000000e+308
gam0047 gamma 5.6e-309 -> 1.7857142857142848e+308
gam0048 gamma 5.5e-309 -> inf overflow
gam0049 gamma 1e-309 -> inf overflow
gam0050 gamma 1e-323 -> inf overflow
gam0051 gamma 5e-324 -> inf overflow
gam0060 gamma -0.1 -> -10.686287021193193
gam0061 gamma -0.01 -> -100.58719796441078
gam0062 gamma -1e-8 -> -100000000.57721567
gam0063 gamma -1e-16 -> -10000000000000000
gam0064 gamma -1e-30 -> -9.9999999999999988e+29
gam0065 gamma -1e-160 -> -1.0000000000000000e+160
gam0066 gamma -1e-308 -> -1.0000000000000000e+308
gam0067 gamma -5.6e-309 -> -1.7857142857142848e+308
gam0068 gamma -5.5e-309 -> -inf overflow
gam0069 gamma -1e-309 -> -inf overflow
gam0070 gamma -1e-323 -> -inf overflow
gam0071 gamma -5e-324 -> -inf overflow
-- values near negative integers
gam0080 gamma -0.99999999999999989 -> -9007199254740992.0
gam0081 gamma -1.0000000000000002 -> 4503599627370495.5
gam0082 gamma -1.9999999999999998 -> 2251799813685248.5
gam0083 gamma -2.0000000000000004 -> -1125899906842623.5
gam0084 gamma -100.00000000000001 -> -7.5400833348831090e-145
gam0085 gamma -99.999999999999986 -> 7.5400833348840962e-145
-- large inputs
gam0100 gamma 170 -> 4.2690680090047051e+304
gam0101 gamma 171 -> 7.2574156153079990e+306
gam0102 gamma 171.624 -> 1.7942117599248104e+308
gam0103 gamma 171.625 -> inf overflow
gam0104 gamma 172 -> inf overflow
gam0105 gamma 2000 -> inf overflow
gam0106 gamma 1.7e308 -> inf overflow
-- inputs for which gamma(x) is tiny
gam0120 gamma -100.5 -> -3.3536908198076787e-159
gam0121 gamma -160.5 -> -5.2555464470078293e-286
gam0122 gamma -170.5 -> -3.3127395215386074e-308
gam0123 gamma -171.5 -> 1.9316265431711902e-310
gam0124 gamma -176.5 -> -1.1956388629358166e-321
gam0125 gamma -177.5 -> 4.9406564584124654e-324
gam0126 gamma -178.5 -> -0.0
gam0127 gamma -179.5 -> 0.0
gam0128 gamma -201.0001 -> 0.0
gam0129 gamma -202.9999 -> -0.0
gam0130 gamma -1000.5 -> -0.0
gam0131 gamma -1000000000.3 -> -0.0
gam0132 gamma -4503599627370495.5 -> 0.0
-- inputs that cause problems for the standard reflection formula,
-- thanks to loss of accuracy in 1-x
gam0140 gamma -63.349078729022985 -> 4.1777971677761880e-88
gam0141 gamma -127.45117632943295 -> 1.1831110896236810e-214
-----------------------------------------------------------
-- expm1: exp(x) - 1, without precision loss for small x --
-----------------------------------------------------------
-- special values
expm10000 expm1 0.0 -> 0.0
expm10001 expm1 -0.0 -> -0.0
expm10002 expm1 inf -> inf
expm10003 expm1 -inf -> -1.0
expm10004 expm1 nan -> nan
-- expm1(x) ~ x for tiny x
expm10010 expm1 5e-324 -> 5e-324
expm10011 expm1 1e-320 -> 1e-320
expm10012 expm1 1e-300 -> 1e-300
expm10013 expm1 1e-150 -> 1e-150
expm10014 expm1 1e-20 -> 1e-20
expm10020 expm1 -5e-324 -> -5e-324
expm10021 expm1 -1e-320 -> -1e-320
expm10022 expm1 -1e-300 -> -1e-300
expm10023 expm1 -1e-150 -> -1e-150
expm10024 expm1 -1e-20 -> -1e-20
-- moderate sized values, where direct evaluation runs into trouble
expm10100 expm1 1e-10 -> 1.0000000000500000e-10
expm10101 expm1 -9.9999999999999995e-08 -> -9.9999995000000163e-8
expm10102 expm1 3.0000000000000001e-05 -> 3.0000450004500034e-5
expm10103 expm1 -0.0070000000000000001 -> -0.0069755570667648951
expm10104 expm1 -0.071499208740094633 -> -0.069002985744820250
expm10105 expm1 -0.063296004180116799 -> -0.061334416373633009
expm10106 expm1 0.02390954035597756 -> 0.024197665143819942
expm10107 expm1 0.085637352649044901 -> 0.089411184580357767
expm10108 expm1 0.5966174947411006 -> 0.81596588596501485
expm10109 expm1 0.30247206212075139 -> 0.35319987035848677
expm10110 expm1 0.74574727375889516 -> 1.1080161116737459
expm10111 expm1 0.97767512926555711 -> 1.6582689207372185
expm10112 expm1 0.8450154566787712 -> 1.3280137976535897
expm10113 expm1 -0.13979260323125264 -> -0.13046144381396060
expm10114 expm1 -0.52899322039643271 -> -0.41080213643695923
expm10115 expm1 -0.74083261478900631 -> -0.52328317124797097
expm10116 expm1 -0.93847766984546055 -> -0.60877704724085946
expm10117 expm1 10.0 -> 22025.465794806718
expm10118 expm1 27.0 -> 532048240600.79865
expm10119 expm1 123 -> 2.6195173187490626e+53
expm10120 expm1 -12.0 -> -0.99999385578764666
expm10121 expm1 -35.100000000000001 -> -0.99999999999999944
-- extreme negative values
expm10201 expm1 -37.0 -> -0.99999999999999989
expm10200 expm1 -38.0 -> -1.0
expm10210 expm1 -710.0 -> -1.0
-- the formula expm1(x) = 2 * sinh(x/2) * exp(x/2) doesn't work so
-- well when exp(x/2) is subnormal or underflows to zero; check we're
-- not using it!
expm10211 expm1 -1420.0 -> -1.0
expm10212 expm1 -1450.0 -> -1.0
expm10213 expm1 -1500.0 -> -1.0
expm10214 expm1 -1e50 -> -1.0
expm10215 expm1 -1.79e308 -> -1.0
-- extreme positive values
expm10300 expm1 300 -> 1.9424263952412558e+130
expm10301 expm1 700 -> 1.0142320547350045e+304
-- the next test (expm10302) is disabled because it causes failure on
-- OS X 10.4/Intel: apparently all values over 709.78 produce an
-- overflow on that platform. See issue #7575.
-- expm10302 expm1 709.78271289328393 -> 1.7976931346824240e+308
expm10303 expm1 709.78271289348402 -> inf overflow
expm10304 expm1 1000 -> inf overflow
expm10305 expm1 1e50 -> inf overflow
expm10306 expm1 1.79e308 -> inf overflow
-- weaker version of expm10302
expm10307 expm1 709.5 -> 1.3549863193146328e+308
|