/usr/lib/python2.7/test/test_complex.py is in libpython2.7-testsuite 2.7.15~rc1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 | import unittest
from test import test_support
from random import random
from math import atan2, isnan, copysign
INF = float("inf")
NAN = float("nan")
# These tests ensure that complex math does the right thing
# decorator for skipping tests on non-IEEE 754 platforms
have_getformat = hasattr(float, "__getformat__")
requires_IEEE_754 = unittest.skipUnless(have_getformat and
float.__getformat__("double").startswith("IEEE"),
"test requires IEEE 754 doubles")
class ComplexTest(unittest.TestCase):
def assertAlmostEqual(self, a, b):
if isinstance(a, complex):
if isinstance(b, complex):
unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
else:
unittest.TestCase.assertAlmostEqual(self, a.real, b)
unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
else:
if isinstance(b, complex):
unittest.TestCase.assertAlmostEqual(self, a, b.real)
unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
else:
unittest.TestCase.assertAlmostEqual(self, a, b)
def assertCloseAbs(self, x, y, eps=1e-9):
"""Return true iff floats x and y "are close"."""
# put the one with larger magnitude second
if abs(x) > abs(y):
x, y = y, x
if y == 0:
return abs(x) < eps
if x == 0:
return abs(y) < eps
# check that relative difference < eps
self.assertTrue(abs((x-y)/y) < eps)
def assertFloatsAreIdentical(self, x, y):
"""assert that floats x and y are identical, in the sense that:
(1) both x and y are nans, or
(2) both x and y are infinities, with the same sign, or
(3) both x and y are zeros, with the same sign, or
(4) x and y are both finite and nonzero, and x == y
"""
msg = 'floats {!r} and {!r} are not identical'
if isnan(x) or isnan(y):
if isnan(x) and isnan(y):
return
elif x == y:
if x != 0.0:
return
# both zero; check that signs match
elif copysign(1.0, x) == copysign(1.0, y):
return
else:
msg += ': zeros have different signs'
self.fail(msg.format(x, y))
def assertClose(self, x, y, eps=1e-9):
"""Return true iff complexes x and y "are close"."""
self.assertCloseAbs(x.real, y.real, eps)
self.assertCloseAbs(x.imag, y.imag, eps)
def check_div(self, x, y):
"""Compute complex z=x*y, and check that z/x==y and z/y==x."""
z = x * y
if x != 0:
q = z / x
self.assertClose(q, y)
q = z.__div__(x)
self.assertClose(q, y)
q = z.__truediv__(x)
self.assertClose(q, y)
if y != 0:
q = z / y
self.assertClose(q, x)
q = z.__div__(y)
self.assertClose(q, x)
q = z.__truediv__(y)
self.assertClose(q, x)
def test_div(self):
simple_real = [float(i) for i in xrange(-5, 6)]
simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
for x in simple_complex:
for y in simple_complex:
self.check_div(x, y)
# A naive complex division algorithm (such as in 2.0) is very prone to
# nonsense errors for these (overflows and underflows).
self.check_div(complex(1e200, 1e200), 1+0j)
self.check_div(complex(1e-200, 1e-200), 1+0j)
# Just for fun.
for i in xrange(100):
self.check_div(complex(random(), random()),
complex(random(), random()))
self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)
# FIXME: The following currently crashes on Alpha
# self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
def test_truediv(self):
self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
for denom_real, denom_imag in [(0, NAN), (NAN, 0), (NAN, NAN)]:
z = complex(0, 0) / complex(denom_real, denom_imag)
self.assertTrue(isnan(z.real))
self.assertTrue(isnan(z.imag))
def test_floordiv(self):
self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2)
self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)
def test_coerce(self):
self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)
def test_no_implicit_coerce(self):
# Python 2.7 removed implicit coercion from the complex type
class A(object):
def __coerce__(self, other):
raise RuntimeError
__hash__ = None
def __cmp__(self, other):
return -1
a = A()
self.assertRaises(TypeError, lambda: a + 2.0j)
self.assertTrue(a < 2.0j)
def test_richcompare(self):
self.assertEqual(complex.__eq__(1+1j, 1L<<10000), False)
self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)
self.assertIs(complex.__eq__(1+1j, 1+1j), True)
self.assertIs(complex.__eq__(1+1j, 2+2j), False)
self.assertIs(complex.__ne__(1+1j, 1+1j), False)
self.assertIs(complex.__ne__(1+1j, 2+2j), True)
self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)
def test_richcompare_boundaries(self):
def check(n, deltas, is_equal, imag = 0.0):
for delta in deltas:
i = n + delta
z = complex(i, imag)
self.assertIs(complex.__eq__(z, i), is_equal(delta))
self.assertIs(complex.__ne__(z, i), not is_equal(delta))
# For IEEE-754 doubles the following should hold:
# x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0
# where the interval is representable, of course.
for i in range(1, 10):
pow = 52 + i
mult = 2 ** i
check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)
check(2 ** pow, range(1, 101), lambda delta: False, float(i))
check(2 ** 53, range(-100, 0), lambda delta: True)
def test_mod(self):
self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j)
a = 3.33+4.43j
try:
a % 0
except ZeroDivisionError:
pass
else:
self.fail("modulo parama can't be 0")
def test_divmod(self):
self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j)
def test_pow(self):
self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
self.assertAlmostEqual(pow(1j, -1), 1/1j)
self.assertAlmostEqual(pow(1j, 200), 1)
self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
a = 3.33+4.43j
self.assertEqual(a ** 0j, 1)
self.assertEqual(a ** 0.+0.j, 1)
self.assertEqual(3j ** 0j, 1)
self.assertEqual(3j ** 0, 1)
try:
0j ** a
except ZeroDivisionError:
pass
else:
self.fail("should fail 0.0 to negative or complex power")
try:
0j ** (3-2j)
except ZeroDivisionError:
pass
else:
self.fail("should fail 0.0 to negative or complex power")
# The following is used to exercise certain code paths
self.assertEqual(a ** 105, a ** 105)
self.assertEqual(a ** -105, a ** -105)
self.assertEqual(a ** -30, a ** -30)
self.assertEqual(0.0j ** 0, 1)
b = 5.1+2.3j
self.assertRaises(ValueError, pow, a, b, 0)
def test_boolcontext(self):
for i in xrange(100):
self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
self.assertTrue(not complex(0.0, 0.0))
def test_conjugate(self):
self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
def test_constructor(self):
class OS:
def __init__(self, value): self.value = value
def __complex__(self): return self.value
class NS(object):
def __init__(self, value): self.value = value
def __complex__(self): return self.value
self.assertEqual(complex(OS(1+10j)), 1+10j)
self.assertEqual(complex(NS(1+10j)), 1+10j)
self.assertRaises(TypeError, complex, OS(None))
self.assertRaises(TypeError, complex, NS(None))
self.assertAlmostEqual(complex("1+10j"), 1+10j)
self.assertAlmostEqual(complex(10), 10+0j)
self.assertAlmostEqual(complex(10.0), 10+0j)
self.assertAlmostEqual(complex(10L), 10+0j)
self.assertAlmostEqual(complex(10+0j), 10+0j)
self.assertAlmostEqual(complex(1,10), 1+10j)
self.assertAlmostEqual(complex(1,10L), 1+10j)
self.assertAlmostEqual(complex(1,10.0), 1+10j)
self.assertAlmostEqual(complex(1L,10), 1+10j)
self.assertAlmostEqual(complex(1L,10L), 1+10j)
self.assertAlmostEqual(complex(1L,10.0), 1+10j)
self.assertAlmostEqual(complex(1.0,10), 1+10j)
self.assertAlmostEqual(complex(1.0,10L), 1+10j)
self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
self.assertAlmostEqual(complex(3.14), 3.14+0j)
self.assertAlmostEqual(complex(314), 314.0+0j)
self.assertAlmostEqual(complex(314L), 314.0+0j)
self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
self.assertAlmostEqual(complex(314, 0), 314.0+0j)
self.assertAlmostEqual(complex(314L, 0L), 314.0+0j)
self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
self.assertAlmostEqual(complex("1"), 1+0j)
self.assertAlmostEqual(complex("1j"), 1j)
self.assertAlmostEqual(complex(), 0)
self.assertAlmostEqual(complex("-1"), -1)
self.assertAlmostEqual(complex("+1"), +1)
self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
self.assertAlmostEqual(complex("J"), 1j)
self.assertAlmostEqual(complex("( j )"), 1j)
self.assertAlmostEqual(complex("+J"), 1j)
self.assertAlmostEqual(complex("( -j)"), -1j)
self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)
class complex2(complex): pass
self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
self.assertAlmostEqual(complex(real=17+23j), 17+23j)
self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
# check that the sign of a zero in the real or imaginary part
# is preserved when constructing from two floats. (These checks
# are harmless on systems without support for signed zeros.)
def split_zeros(x):
"""Function that produces different results for 0. and -0."""
return atan2(x, -1.)
self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))
c = 3.14 + 1j
self.assertTrue(complex(c) is c)
del c
self.assertRaises(TypeError, complex, "1", "1")
self.assertRaises(TypeError, complex, 1, "1")
if test_support.have_unicode:
self.assertEqual(complex(unicode(" 3.14+J ")), 3.14+1j)
# SF bug 543840: complex(string) accepts strings with \0
# Fixed in 2.3.
self.assertRaises(ValueError, complex, '1+1j\0j')
self.assertRaises(TypeError, int, 5+3j)
self.assertRaises(TypeError, long, 5+3j)
self.assertRaises(TypeError, float, 5+3j)
self.assertRaises(ValueError, complex, "")
self.assertRaises(TypeError, complex, None)
self.assertRaises(ValueError, complex, "\0")
self.assertRaises(ValueError, complex, "3\09")
self.assertRaises(TypeError, complex, "1", "2")
self.assertRaises(TypeError, complex, "1", 42)
self.assertRaises(TypeError, complex, 1, "2")
self.assertRaises(ValueError, complex, "1+")
self.assertRaises(ValueError, complex, "1+1j+1j")
self.assertRaises(ValueError, complex, "--")
self.assertRaises(ValueError, complex, "(1+2j")
self.assertRaises(ValueError, complex, "1+2j)")
self.assertRaises(ValueError, complex, "1+(2j)")
self.assertRaises(ValueError, complex, "(1+2j)123")
if test_support.have_unicode:
self.assertRaises(ValueError, complex, unicode("x"))
self.assertRaises(ValueError, complex, "1j+2")
self.assertRaises(ValueError, complex, "1e1ej")
self.assertRaises(ValueError, complex, "1e++1ej")
self.assertRaises(ValueError, complex, ")1+2j(")
# the following three are accepted by Python 2.6
self.assertRaises(ValueError, complex, "1..1j")
self.assertRaises(ValueError, complex, "1.11.1j")
self.assertRaises(ValueError, complex, "1e1.1j")
if test_support.have_unicode:
# check that complex accepts long unicode strings
self.assertEqual(type(complex(unicode("1"*500))), complex)
class EvilExc(Exception):
pass
class evilcomplex:
def __complex__(self):
raise EvilExc
self.assertRaises(EvilExc, complex, evilcomplex())
class float2:
def __init__(self, value):
self.value = value
def __float__(self):
return self.value
self.assertAlmostEqual(complex(float2(42.)), 42)
self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
self.assertRaises(TypeError, complex, float2(None))
class complex0(complex):
"""Test usage of __complex__() when inheriting from 'complex'"""
def __complex__(self):
return 42j
class complex1(complex):
"""Test usage of __complex__() with a __new__() method"""
def __new__(self, value=0j):
return complex.__new__(self, 2*value)
def __complex__(self):
return self
class complex2(complex):
"""Make sure that __complex__() calls fail if anything other than a
complex is returned"""
def __complex__(self):
return None
self.assertAlmostEqual(complex(complex0(1j)), 42j)
self.assertAlmostEqual(complex(complex1(1j)), 2j)
self.assertRaises(TypeError, complex, complex2(1j))
def test_subclass(self):
class xcomplex(complex):
def __add__(self,other):
return xcomplex(complex(self) + other)
__radd__ = __add__
def __sub__(self,other):
return xcomplex(complex(self) + other)
__rsub__ = __sub__
def __mul__(self,other):
return xcomplex(complex(self) * other)
__rmul__ = __mul__
def __div__(self,other):
return xcomplex(complex(self) / other)
def __rdiv__(self,other):
return xcomplex(other / complex(self))
__truediv__ = __div__
__rtruediv__ = __rdiv__
def __floordiv__(self,other):
return xcomplex(complex(self) // other)
def __rfloordiv__(self,other):
return xcomplex(other // complex(self))
def __pow__(self,other):
return xcomplex(complex(self) ** other)
def __rpow__(self,other):
return xcomplex(other ** complex(self) )
def __mod__(self,other):
return xcomplex(complex(self) % other)
def __rmod__(self,other):
return xcomplex(other % complex(self))
infix_binops = ('+', '-', '*', '**', '%', '//', '/')
xcomplex_values = (xcomplex(1), xcomplex(123.0),
xcomplex(-10+2j), xcomplex(3+187j),
xcomplex(3-78j))
test_values = (1, 123.0, 10-19j, xcomplex(1+2j),
xcomplex(1+87j), xcomplex(10+90j))
for op in infix_binops:
for x in xcomplex_values:
for y in test_values:
a = 'x %s y' % op
b = 'y %s x' % op
self.assertTrue(type(eval(a)) is type(eval(b)) is xcomplex)
@requires_IEEE_754
def test_constructor_special_numbers(self):
class complex2(complex):
pass
for x in 0.0, -0.0, INF, -INF, NAN:
for y in 0.0, -0.0, INF, -INF, NAN:
z = complex(x, y)
self.assertFloatsAreIdentical(z.real, x)
self.assertFloatsAreIdentical(z.imag, y)
z = complex2(x, y)
self.assertIs(type(z), complex2)
self.assertFloatsAreIdentical(z.real, x)
self.assertFloatsAreIdentical(z.imag, y)
z = complex(complex2(x, y))
self.assertIs(type(z), complex)
self.assertFloatsAreIdentical(z.real, x)
self.assertFloatsAreIdentical(z.imag, y)
z = complex2(complex(x, y))
self.assertIs(type(z), complex2)
self.assertFloatsAreIdentical(z.real, x)
self.assertFloatsAreIdentical(z.imag, y)
def test_hash(self):
for x in xrange(-30, 30):
self.assertEqual(hash(x), hash(complex(x, 0)))
x /= 3.0 # now check against floating point
self.assertEqual(hash(x), hash(complex(x, 0.)))
def test_abs(self):
nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]
for num in nums:
self.assertAlmostEqual((num.real**2 + num.imag**2) ** 0.5, abs(num))
def test_repr(self):
self.assertEqual(repr(1+6j), '(1+6j)')
self.assertEqual(repr(1-6j), '(1-6j)')
self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)')
self.assertEqual(1-6j,complex(repr(1-6j)))
self.assertEqual(1+6j,complex(repr(1+6j)))
self.assertEqual(-6j,complex(repr(-6j)))
self.assertEqual(6j,complex(repr(6j)))
self.assertEqual(repr(complex(1., INF)), "(1+infj)")
self.assertEqual(repr(complex(1., -INF)), "(1-infj)")
self.assertEqual(repr(complex(INF, 1)), "(inf+1j)")
self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)")
self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)")
self.assertEqual(repr(complex(1, NAN)), "(1+nanj)")
self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)")
self.assertEqual(repr(complex(0, INF)), "infj")
self.assertEqual(repr(complex(0, -INF)), "-infj")
self.assertEqual(repr(complex(0, NAN)), "nanj")
def test_neg(self):
self.assertEqual(-(1+6j), -1-6j)
def test_file(self):
a = 3.33+4.43j
b = 5.1+2.3j
fo = None
try:
fo = open(test_support.TESTFN, "wb")
print >>fo, a, b
fo.close()
fo = open(test_support.TESTFN, "rb")
self.assertEqual(fo.read(), "%s %s\n" % (a, b))
finally:
if (fo is not None) and (not fo.closed):
fo.close()
test_support.unlink(test_support.TESTFN)
def test_getnewargs(self):
self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))
if float.__getformat__("double").startswith("IEEE"):
def test_plus_minus_0j(self):
# test that -0j and 0j literals are not identified
z1, z2 = 0j, -0j
self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.))
self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.))
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
"test requires IEEE 754 doubles")
def test_overflow(self):
self.assertEqual(complex("1e500"), complex(INF, 0.0))
self.assertEqual(complex("-1e500j"), complex(0.0, -INF))
self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF))
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
"test requires IEEE 754 doubles")
def test_repr_roundtrip(self):
vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
vals += [-v for v in vals]
# complex(repr(z)) should recover z exactly, even for complex
# numbers involving an infinity, nan, or negative zero
for x in vals:
for y in vals:
z = complex(x, y)
roundtrip = complex(repr(z))
self.assertFloatsAreIdentical(z.real, roundtrip.real)
self.assertFloatsAreIdentical(z.imag, roundtrip.imag)
# if we predefine some constants, then eval(repr(z)) should
# also work, except that it might change the sign of zeros
inf, nan = float('inf'), float('nan')
infj, nanj = complex(0.0, inf), complex(0.0, nan)
for x in vals:
for y in vals:
z = complex(x, y)
roundtrip = eval(repr(z))
# adding 0.0 has no effect beside changing -0.0 to 0.0
self.assertFloatsAreIdentical(0.0 + z.real,
0.0 + roundtrip.real)
self.assertFloatsAreIdentical(0.0 + z.imag,
0.0 + roundtrip.imag)
def test_format(self):
# empty format string is same as str()
self.assertEqual(format(1+3j, ''), str(1+3j))
self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j))
self.assertEqual(format(3j, ''), str(3j))
self.assertEqual(format(3.2j, ''), str(3.2j))
self.assertEqual(format(3+0j, ''), str(3+0j))
self.assertEqual(format(3.2+0j, ''), str(3.2+0j))
# empty presentation type should still be analogous to str,
# even when format string is nonempty (issue #5920).
self.assertEqual(format(3.2+0j, '-'), str(3.2+0j))
self.assertEqual(format(3.2+0j, '<'), str(3.2+0j))
z = 4/7. - 100j/7.
self.assertEqual(format(z, ''), str(z))
self.assertEqual(format(z, '-'), str(z))
self.assertEqual(format(z, '<'), str(z))
self.assertEqual(format(z, '10'), str(z))
z = complex(0.0, 3.0)
self.assertEqual(format(z, ''), str(z))
self.assertEqual(format(z, '-'), str(z))
self.assertEqual(format(z, '<'), str(z))
self.assertEqual(format(z, '2'), str(z))
z = complex(-0.0, 2.0)
self.assertEqual(format(z, ''), str(z))
self.assertEqual(format(z, '-'), str(z))
self.assertEqual(format(z, '<'), str(z))
self.assertEqual(format(z, '3'), str(z))
self.assertEqual(format(1+3j, 'g'), '1+3j')
self.assertEqual(format(3j, 'g'), '0+3j')
self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j')
self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j')
self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j')
self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j')
self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j')
self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j')
self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j')
self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j')
self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j')
self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j')
self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j')
self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j')
self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j')
self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j')
self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j')
self.assertEqual(format(1.5+3j, '<20g'), '1.5+3j ')
self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************')
self.assertEqual(format(1.5+3j, '>20g'), ' 1.5+3j')
self.assertEqual(format(1.5+3j, '^20g'), ' 1.5+3j ')
self.assertEqual(format(1.5+3j, '<20'), '(1.5+3j) ')
self.assertEqual(format(1.5+3j, '>20'), ' (1.5+3j)')
self.assertEqual(format(1.5+3j, '^20'), ' (1.5+3j) ')
self.assertEqual(format(1.123-3.123j, '^20.2'), ' (1.1-3.1j) ')
self.assertEqual(format(1.5+3j, '20.2f'), ' 1.50+3.00j')
self.assertEqual(format(1.5+3j, '>20.2f'), ' 1.50+3.00j')
self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j ')
self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j')
self.assertEqual(format(1.5e20+3j, '>40.2f'), ' 150000000000000000000.00+3.00j')
self.assertEqual(format(1.5e20+3j, '^40,.2f'), ' 150,000,000,000,000,000,000.00+3.00j ')
self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ')
self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j')
# alternate is invalid
self.assertRaises(ValueError, (1.5+0.5j).__format__, '#f')
# zero padding is invalid
self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f')
# '=' alignment is invalid
self.assertRaises(ValueError, (1.5+3j).__format__, '=20')
# integer presentation types are an error
for t in 'bcdoxX':
self.assertRaises(ValueError, (1.5+0.5j).__format__, t)
# make sure everything works in ''.format()
self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*')
# issue 3382: 'f' and 'F' with inf's and nan's
self.assertEqual('{0:f}'.format(INF+0j), 'inf+0.000000j')
self.assertEqual('{0:F}'.format(INF+0j), 'INF+0.000000j')
self.assertEqual('{0:f}'.format(-INF+0j), '-inf+0.000000j')
self.assertEqual('{0:F}'.format(-INF+0j), '-INF+0.000000j')
self.assertEqual('{0:f}'.format(complex(INF, INF)), 'inf+infj')
self.assertEqual('{0:F}'.format(complex(INF, INF)), 'INF+INFj')
self.assertEqual('{0:f}'.format(complex(INF, -INF)), 'inf-infj')
self.assertEqual('{0:F}'.format(complex(INF, -INF)), 'INF-INFj')
self.assertEqual('{0:f}'.format(complex(-INF, INF)), '-inf+infj')
self.assertEqual('{0:F}'.format(complex(-INF, INF)), '-INF+INFj')
self.assertEqual('{0:f}'.format(complex(-INF, -INF)), '-inf-infj')
self.assertEqual('{0:F}'.format(complex(-INF, -INF)), '-INF-INFj')
self.assertEqual('{0:f}'.format(complex(NAN, 0)), 'nan+0.000000j')
self.assertEqual('{0:F}'.format(complex(NAN, 0)), 'NAN+0.000000j')
self.assertEqual('{0:f}'.format(complex(NAN, NAN)), 'nan+nanj')
self.assertEqual('{0:F}'.format(complex(NAN, NAN)), 'NAN+NANj')
def test_main():
with test_support.check_warnings(("complex divmod.., // and % are "
"deprecated", DeprecationWarning)):
test_support.run_unittest(ComplexTest)
if __name__ == "__main__":
test_main()
|