This file is indexed.

/usr/include/range/v3/utility/random.hpp is in librange-v3-dev 0.3.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
/// \file
// Range v3 library
//
//  Copyright Casey Carter 2016
//
//  Use, modification and distribution is subject to the
//  Boost Software License, Version 1.0. (See accompanying
//  file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)
//
// Project home: https://github.com/ericniebler/range-v3
//

/*
 * Random-Number Utilities (randutil)
 *     Addresses common issues with C++11 random number generation.
 *     Makes good seeding easier, and makes using RNGs easy while retaining
 *     all the power.
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2015 Melissa E. O'Neill
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#ifndef RANGES_V3_UTILITY_RANDOM_HPP
#define RANGES_V3_UTILITY_RANDOM_HPP

#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <array>
#include <atomic>
#include <chrono>
#include <initializer_list>
#include <mutex>
#include <new>
#include <random>
#include <typeinfo>
#include <utility>
#include <meta/meta.hpp>
#include <range/v3/range_fwd.hpp>
#include <range/v3/algorithm/copy.hpp>
#include <range/v3/algorithm/generate.hpp>
#include <range/v3/utility/concepts.hpp>
#include <range/v3/utility/functional.hpp>
#include <range/v3/utility/iterator_concepts.hpp>

#if RANGES_CXX_THREAD >= RANGES_CXX_THREAD_11
#include <thread>
#endif

// Ugly platform-specific code for auto_seeded

// Clang/C2 bug: __has_builtin(__builtin_readcyclecounter) reports true, but
// there is no corresponding builtin in C2.
#if !(defined(__clang__) && defined(__c2__))
#ifdef __has_builtin
    #if __has_builtin(__builtin_readcyclecounter)
        #define RANGES_CPU_ENTROPY __builtin_readcyclecounter()
    #endif
#endif
#endif
#ifndef RANGES_CPU_ENTROPY
    #ifdef __i386__
        #ifdef __GNUC__
            #define RANGES_CPU_ENTROPY __builtin_ia32_rdtsc()
        #else
            #include <immintrin.h>
            #define RANGES_CPU_ENTROPY __rdtsc()
        #endif
    #else
        #define RANGES_CPU_ENTROPY 0
    #endif
#endif

RANGES_DIAGNOSTIC_PUSH
RANGES_DIAGNOSTIC_IGNORE_PRAGMAS
RANGES_DIAGNOSTIC_IGNORE_CXX17_COMPAT

namespace ranges
{
    inline namespace v3
    {
        /// \addtogroup group-concepts
        /// @{
        namespace concepts
        {
            struct UniformRandomNumberGenerator
            {
                template<typename Gen>
                using result_t = result_of_t<Gen&()>;

                template<typename Gen, typename Result = result_t<Gen>>
                auto requires_() -> decltype(
                    concepts::valid_expr(
                        concepts::model_of<UnsignedIntegral, Result>(),
                        concepts::has_type<Result>(uncvref_t<Gen>::min()),
                        concepts::has_type<Result>(uncvref_t<Gen>::max()),
                        concepts::is_true(meta::bool_<
                            (uncvref_t<Gen>::min() < uncvref_t<Gen>::max())>())
                    ));
            };
        }

        template<typename Gen>
        using UniformRandomNumberGenerator =
            concepts::models<concepts::UniformRandomNumberGenerator, Gen>;
        /// @}

        /// \cond
        namespace detail
        {
            namespace randutils
            {
                template<typename T,
                    CONCEPT_REQUIRES_(Integral<T>())>
                RANGES_CXX14_CONSTEXPR std::uint32_t crushto32(T value)
                RANGES_INTENDED_MODULAR_ARITHMETIC
                {
                    if(sizeof(T) <= 4)
                        return static_cast<std::uint32_t>(value);
                    else {
                        auto result = static_cast<std::uint64_t>(value);
                        result *= 0xbc2ad017d719504d;
                        return static_cast<std::uint32_t>(result ^ (result >> 32));
                    }
                }

                template<typename T>
                RANGES_CXX14_CONSTEXPR std::uint32_t hash(T && value)
                {
                    auto hasher = std::hash<uncvref_t<T>>{};
                    return randutils::crushto32(hasher(static_cast<T&&>(value)));
                }

                constexpr std::uint32_t fnv(std::uint32_t hash, const char* pos)
                RANGES_INTENDED_MODULAR_ARITHMETIC
                {
                    return *pos == '\0' ? hash : randutils::fnv(
                        (hash * 16777619U) ^ static_cast<unsigned char>(*pos), pos+1);
                }

                constexpr std::size_t weird_seed_sources = 11;
                constexpr std::size_t seed_count = weird_seed_sources + 8;
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 6
                inline
#else
                template<class = void>
#endif
                std::array<std::uint32_t, seed_count> local_entropy(std::uint32_t s1, std::uint32_t s2)
                {
                    CONCEPT_ASSERT(seed_count >= weird_seed_sources);
                    std::array<std::uint32_t, seed_count> seeds;
                    auto it = seeds.begin();

                    static std::atomic<std::uint32_t> counter;
                    *it++ = counter.fetch_add(std::uint32_t{0xedf19156}, std::memory_order_relaxed);

                    // The heap can vary from run to run as well.
                    void* malloc_addr = std::malloc(sizeof(int));
                    std::free(malloc_addr);
                    *it++ = randutils::hash(malloc_addr);
                    *it++ = randutils::hash(&malloc_addr);

                    // Classic seed, the time.  It ought to change, especially since
                    // this is (hopefully) nanosecond resolution time.
                    auto hitime = std::chrono::high_resolution_clock::now()
                                    .time_since_epoch().count();
                    *it++ = randutils::crushto32(hitime);

                    // Address of the thing being initialized.  That can mean that
                    // different seed sequences in different places in memory will be
                    // different.  Even for the same object, it may vary from run to
                    // run in systems with ASLR, such as OS X, but on Linux it might not
                    // unless we compile with -fPIC -pic.
                    *it++ = s1;

                    // The address of the time function.  It should hopefully be in
                    // a system library that hopefully isn't always in the same place
                    // (might not change until system is rebooted though)
                    *it++ = randutils::hash(&std::chrono::high_resolution_clock::now);

                    // The address of the exit function.  It should hopefully be in
                    // a system library that hopefully isn't always in the same place
                    // (might not change until system is rebooted though).  Hopefully
                    // it's in a different library from time_func.
                    {
                        using namespace std;
                        *it++ = randutils::hash(&_Exit);
                    }

                    // The address of a local function.  That may be in a totally
                    // different part of memory.  On OS X it'll vary from run to run thanks
                    // to ASLR, on Linux it might not unless we compile with -fPIC -pic.
                    // Need the cast because it's an overloaded function and we need to
                    // pick the right one.
                    *it++ = randutils::hash(
                        static_cast<std::uint32_t(*)(std::uint64_t)>(&randutils::crushto32));

#if RANGES_CXX_THREAD >= RANGES_CXX_THREAD_11
                    // Hash our thread id.  It seems to vary from run to run on OS X, not
                    // so much on Linux.
                    *it++ = randutils::hash(std::this_thread::get_id());
#endif
                    // Hash of the ID of a type.  May or may not vary, depending on
                    // implementation.
                    *it++ = s2;

                    // Platform-specific entropy
                    *it++ = randutils::crushto32(RANGES_CPU_ENTROPY);

                    RANGES_ASSERT(static_cast<std::size_t>(it - seeds.begin()) <= weird_seed_sources);

                    // Hopefully high-quality entropy from random_device.
                    std::random_device rd{};
                    ranges::generate(it, seeds.end(), ranges::ref(rd));

                    return seeds;
                }

                template<typename I, CONCEPT_REQUIRES_(UnsignedIntegral<I>())>
                constexpr I fast_exp(I x, I power, I result = I{1})
                {
                    return power == I{0} ? result
                        : randutils::fast_exp(x * x, power >> 1, result * (power & I{1} ? x : 1));
                }

                //////////////////////////////////////////////////////////////////////////////
                //
                // seed_seq_fe
                //
                //////////////////////////////////////////////////////////////////////////////

                /*
                * seed_seq_fe implements a fixed-entropy seed sequence; it conforms to all
                * the requirements of a Seed Sequence concept.
                *
                * seed_seq_fe<N> implements a seed sequence which seeds based on a store of
                * N * 32 bits of entropy.  Typically, it would be initialized with N or more
                * integers.
                *
                * seed_seq_fe128 and seed_seq_fe256 are provided as convenience typedefs for
                * 128- and 256-bit entropy stores respectively.  These variants outperform
                * std::seed_seq, while being better mixing the bits it is provided as entropy.
                * In almost all common use cases, they serve as better drop-in replacements
                * for seed_seq.
                *
                * Technical details
                *
                * Assuming it constructed with M seed integers as input, it exhibits the
                * following properties
                *
                * * Diffusion/Avalanche:  A single-bit change in any of the M inputs has a
                *   50% chance of flipping every bit in the bitstream produced by generate.
                *   Initializing the N-word entropy store with M words requires O(N * M)
                *   time precisely because of the avalanche requirements.  Once constructed,
                *   calls to generate are linear in the number of words generated.
                *
                * * Bias freedom/Bijection: If M == N, the state of the entropy store is a
                *   bijection from the M inputs (i.e., no states occur twice, none are
                *   omitted). If M > N the number of times each state can occur is the same
                *   (each state occurs 2**(32*(M-N)) times, where ** is the power function).
                *   If M < N, some states cannot occur (bias) but no state occurs more
                *   than once (it's impossible to avoid bias if M < N; ideally N should not
                *   be chosen so that it is more than M).
                *
                *   Likewise, the generate function has similar properties (with the entropy
                *   store as the input data).  If more outputs are requested than there is
                *   entropy, some outputs cannot occur.  For example, the Mersenne Twister
                *   will request 624 outputs, to initialize its 19937-bit state, which is
                *   much larger than a 128-bit or 256-bit entropy pool.  But in practice,
                *   limiting the Mersenne Twister to 2**128 possible initializations gives
                *   us enough initializations to give a unique initialization to trillions
                *   of computers for billions of years.  If you really have 624 words of
                *   *real* high-quality entropy you want to use, you probably don't need
                *   an entropy mixer like this class at all.  But if you *really* want to,
                *   nothing is stopping you from creating a randutils::seed_seq_fe<624>.
                *
                * * As a consequence of the above properties, if all parts of the provided
                *   seed data are kept constant except one, and the remaining part is varied
                *   through K different states, K different output sequences will be produced.
                *
                * * Also, because the amount of entropy stored is fixed, this class never
                *   performs dynamic allocation and is free of the possibility of generating
                *   an exception.
                *
                * Ideas used to implement this code include hashing, a simple PCG generator
                * based on an MCG base with an XorShift output function and permutation
                * functions on tuples.
                *
                * More detail at
                *     http://www.pcg-random.org/posts/developing-a-seed_seq-alternative.html
                */

                template<std::size_t count = 4, typename IntRep = std::uint32_t,
                    std::size_t mix_rounds = 1 + (count <= 2)>
                struct seed_seq_fe {
                public:
                    CONCEPT_ASSERT(UnsignedIntegral<IntRep>());
                    typedef IntRep result_type;

                private:
                    static constexpr std::uint32_t INIT_A = 0x43b0d7e5;
                    static constexpr std::uint32_t MULT_A = 0x931e8875;

                    static constexpr std::uint32_t INIT_B = 0x8b51f9dd;
                    static constexpr std::uint32_t MULT_B = 0x58f38ded;

                    static constexpr std::uint32_t MIX_MULT_L = 0xca01f9dd;
                    static constexpr std::uint32_t MIX_MULT_R = 0x4973f715;
                    static constexpr std::uint32_t XSHIFT = sizeof(IntRep)*8/2;

                    std::array<IntRep, count> mixer_;

                    template<typename I, typename S,
                        CONCEPT_REQUIRES_(InputIterator<I>() && Sentinel<S, I>() &&
                            ConvertibleTo<reference_t<I>, IntRep>())>
                    void mix_entropy(I begin, S end)
                    {
                        auto hash_const = INIT_A;
                        auto hash = [&](IntRep value) RANGES_INTENDED_MODULAR_ARITHMETIC
                        {
                            value ^= hash_const;
                            hash_const *= MULT_A;
                            value *= hash_const;
                            value ^= value >> XSHIFT;
                            return value;
                        };
                        auto mix = [](IntRep x, IntRep y) RANGES_INTENDED_MODULAR_ARITHMETIC
                        {
                            IntRep result = MIX_MULT_L*x - MIX_MULT_R*y;
                            result ^= result >> XSHIFT;
                            return result;
                        };

                        for(auto& elem : mixer_)
                        {
                            if(begin != end)
                                elem = hash(static_cast<IntRep>(*begin++));
                            else
                                elem = hash(IntRep{0});
                        }
                        for(auto& src : mixer_)
                            for(auto& dest : mixer_)
                                if(&src != &dest)
                                    dest = mix(dest,hash(src));
                        for(; begin != end; ++begin)
                            for(auto& dest : mixer_)
                                dest = mix(dest,hash(static_cast<IntRep>(*begin)));
                    }

                public:
                    seed_seq_fe(const seed_seq_fe&)     = delete;
                    void operator=(const seed_seq_fe&)  = delete;

                    template<typename T,
                        CONCEPT_REQUIRES_(ConvertibleTo<T const&, IntRep>())>
                    seed_seq_fe(std::initializer_list<T> init)
                    {
                        seed(init.begin(), init.end());
                    }

                    template<typename I, typename S,
                        CONCEPT_REQUIRES_(InputIterator<I>() && Sentinel<S, I>() &&
                            ConvertibleTo<reference_t<I>, IntRep>())>
                    seed_seq_fe(I begin, S end)
                    {
                        seed(begin, end);
                    }

                    // generating functions
                    template<typename I, typename S,
                        CONCEPT_REQUIRES_(RandomAccessIterator<I>() && Sentinel<S, I>())>
                    void generate(I dest_begin, S dest_end) const
                    RANGES_INTENDED_MODULAR_ARITHMETIC
                    {
                        auto src_begin = mixer_.begin();
                        auto src_end   = mixer_.end();
                        auto src       = src_begin;
                        auto hash_const = INIT_B;
                        for(auto dest = dest_begin; dest != dest_end; ++dest)
                        {
                            auto dataval = *src;
                            if(++src == src_end)
                                src = src_begin;
                            dataval ^= hash_const;
                            hash_const *= MULT_B;
                            dataval *= hash_const;
                            dataval ^= dataval >> XSHIFT;
                            *dest = dataval;
                        }
                    }

                    constexpr std::size_t size() const
                    {
                        return count;
                    }

                    template<typename O,
                        CONCEPT_REQUIRES_(WeaklyIncrementable<O>() &&
                            IndirectlyCopyable<decltype(mixer_.begin()), O>())>
                    void param(O dest) const
                    RANGES_INTENDED_MODULAR_ARITHMETIC
                    {
                        const IntRep INV_A = randutils::fast_exp(MULT_A, IntRep(-1));
                        const IntRep MIX_INV_L = randutils::fast_exp(MIX_MULT_L, IntRep(-1));

                        auto mixer_copy = mixer_;
                        for(std::size_t round = 0; round < mix_rounds; ++round)
                        {
                            // Advance to the final value.  We'll backtrack from that.
                            auto hash_const = INIT_A*randutils::fast_exp(MULT_A, IntRep(count * count));

                            for(auto src = mixer_copy.rbegin(); src != mixer_copy.rend(); ++src)
                                for(auto dest = mixer_copy.rbegin(); dest != mixer_copy.rend();
                                    ++dest)
                                    if(src != dest)
                                    {
                                        IntRep revhashed = *src;
                                        auto mult_const = hash_const;
                                        hash_const *= INV_A;
                                        revhashed ^= hash_const;
                                        revhashed *= mult_const;
                                        revhashed ^= revhashed >> XSHIFT;
                                        IntRep unmixed = *dest;
                                        unmixed ^= unmixed >> XSHIFT;
                                        unmixed += MIX_MULT_R*revhashed;
                                        unmixed *= MIX_INV_L;
                                        *dest = unmixed;
                                    }
                            for(auto i = mixer_copy.rbegin(); i != mixer_copy.rend(); ++i)
                            {
                                IntRep unhashed = *i;
                                unhashed ^= unhashed >> XSHIFT;
                                unhashed *= randutils::fast_exp(hash_const, IntRep(-1));
                                hash_const *= INV_A;
                                unhashed ^= hash_const;
                                *i = unhashed;
                            }
                        }
                        ranges::copy(mixer_copy, dest);
                    }

                    template<typename I, typename S,
                        CONCEPT_REQUIRES_(InputIterator<I>() && Sentinel<S, I>() &&
                            ConvertibleTo<reference_t<I>, IntRep>())>
                    void seed(I begin, S end)
                    {
                        mix_entropy(begin, end);
                        // For very small sizes, we do some additional mixing.  For normal
                        // sizes, this loop never performs any iterations.
                        for(std::size_t i = 1; i < mix_rounds; ++i)
                            stir();
                    }

                    seed_seq_fe& stir()
                    {
                        mix_entropy(mixer_.begin(), mixer_.end());
                        return *this;
                    }

                };

                using seed_seq_fe128 = seed_seq_fe<4, std::uint32_t>;
                using seed_seq_fe256 = seed_seq_fe<8, std::uint32_t>;

                //////////////////////////////////////////////////////////////////////////////
                //
                // auto_seeded
                //
                //////////////////////////////////////////////////////////////////////////////

                /*
                * randutils::auto_seeded
                *
                *   Extends a seed sequence class with a nondeterministic default constructor.
                *   Uses a variety of local sources of entropy to portably initialize any
                *   seed sequence to a good default state.
                *
                *   In normal use, it's accessed via one of the following type aliases, which
                *   use seed_seq_fe128 and seed_seq_fe256 above.
                *
                *       randutils::auto_seed_128
                *       randutils::auto_seed_256
                *
                *   It's discussed in detail at
                *       http://www.pcg-random.org/posts/simple-portable-cpp-seed-entropy.html
                *   and its motivation (why you can't just use std::random_device) here
                *       http://www.pcg-random.org/posts/cpps-random_device.html
                */

                template<typename SeedSeq>
                struct auto_seeded : public SeedSeq {
                    auto_seeded()
                        : auto_seeded(randutils::local_entropy(
                            randutils::hash(this), randutils::crushto32(typeid(*this).hash_code())))
                    {}
                    template<std::size_t N>
                    auto_seeded(std::array<std::uint32_t, N> const& seeds)
                        : SeedSeq(seeds.begin(), seeds.end())
                    {}
                    using SeedSeq::SeedSeq;

                    const SeedSeq& base() const
                    {
                        return *this;
                    }
                    SeedSeq& base()
                    {
                        return *this;
                    }
                };

                using auto_seed_128 = auto_seeded<seed_seq_fe128>;
                using auto_seed_256 = auto_seeded<seed_seq_fe256>;
            }

            using default_URNG =
                meta::if_c<(sizeof(void*) >= 8), std::mt19937_64, std::mt19937>;

#if !RANGES_CXX_THREAD_LOCAL
            template<typename URNG>
            class sync_URNG
              : private URNG
            {
                mutable std::mutex mtx_;
            public:
                using URNG::URNG;
                sync_URNG() = default;
                using typename URNG::result_type;
                result_type operator()()
                {
                    std::lock_guard<std::mutex> guard{mtx_};
                    return static_cast<URNG &>(*this)();
                }
                using URNG::min;
                using URNG::max;
            };
            using default_random_engine = sync_URNG<default_URNG>;
#else
            using default_random_engine = default_URNG;
#endif

            template<typename T = void>
            default_random_engine& get_random_engine()
            {
                using Seeder = meta::if_c<
                    (sizeof(default_URNG) > 16),
                    randutils::auto_seed_256,
                    randutils::auto_seed_128>;

#if RANGES_CXX_THREAD_LOCAL >= RANGES_CXX_THREAD_LOCAL_11
                static thread_local default_random_engine engine{Seeder{}.base()};

#elif RANGES_CXX_THREAD_LOCAL
                static __thread bool initialized = false;
                static __thread meta::_t<std::aligned_storage<
                    sizeof(default_random_engine),
                    alignof(default_random_engine)>> storage;

                if(!initialized)
                {
                    ::new(static_cast<void*>(&storage)) default_random_engine{Seeder{}.base()};
                    initialized = true;
                }
                auto& engine = reinterpret_cast<default_random_engine&>(storage);

#else
                static default_random_engine engine{Seeder{}.base()};
#endif // RANGES_CXX_THREAD_LOCAL

                return engine;
            }
        }
        /// \endcond
    }
}

RANGES_DIAGNOSTIC_POP

#undef RANGES_CPU_ENTROPY

#endif