This file is indexed.

/usr/include/sparsehash/internal/densehashtable.h is in libsparsehash-dev 2.0.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
//
// A dense hashtable is a particular implementation of
// a hashtable: one that is meant to minimize memory allocation.
// It does this by using an array to store all the data.  We
// steal a value from the key space to indicate "empty" array
// elements (ie indices where no item lives) and another to indicate
// "deleted" elements.
//
// (Note it is possible to change the value of the delete key
// on the fly; you can even remove it, though after that point
// the hashtable is insert_only until you set it again.  The empty
// value however can't be changed.)
//
// To minimize allocation and pointer overhead, we use internal
// probing, in which the hashtable is a single table, and collisions
// are resolved by trying to insert again in another bucket.  The
// most cache-efficient internal probing schemes are linear probing
// (which suffers, alas, from clumping) and quadratic probing, which
// is what we implement by default.
//
// Type requirements: value_type is required to be Copy Constructible
// and Default Constructible. It is not required to be (and commonly
// isn't) Assignable.
//
// You probably shouldn't use this code directly.  Use dense_hash_map<>
// or dense_hash_set<> instead.

// You can change the following below:
// HT_OCCUPANCY_PCT      -- how full before we double size
// HT_EMPTY_PCT          -- how empty before we halve size
// HT_MIN_BUCKETS        -- default smallest bucket size
//
// You can also change enlarge_factor (which defaults to
// HT_OCCUPANCY_PCT), and shrink_factor (which defaults to
// HT_EMPTY_PCT) with set_resizing_parameters().
//
// How to decide what values to use?
// shrink_factor's default of .4 * OCCUPANCY_PCT, is probably good.
// HT_MIN_BUCKETS is probably unnecessary since you can specify
// (indirectly) the starting number of buckets at construct-time.
// For enlarge_factor, you can use this chart to try to trade-off
// expected lookup time to the space taken up.  By default, this
// code uses quadratic probing, though you can change it to linear
// via JUMP_ below if you really want to.
//
// From http://www.augustana.ca/~mohrj/courses/1999.fall/csc210/lecture_notes/hashing.html
// NUMBER OF PROBES / LOOKUP       Successful            Unsuccessful
// Quadratic collision resolution   1 - ln(1-L) - L/2    1/(1-L) - L - ln(1-L)
// Linear collision resolution     [1+1/(1-L)]/2         [1+1/(1-L)2]/2
//
// -- enlarge_factor --           0.10  0.50  0.60  0.75  0.80  0.90  0.99
// QUADRATIC COLLISION RES.
//    probes/successful lookup    1.05  1.44  1.62  2.01  2.21  2.85  5.11
//    probes/unsuccessful lookup  1.11  2.19  2.82  4.64  5.81  11.4  103.6
// LINEAR COLLISION RES.
//    probes/successful lookup    1.06  1.5   1.75  2.5   3.0   5.5   50.5
//    probes/unsuccessful lookup  1.12  2.5   3.6   8.5   13.0  50.0  5000.0

#ifndef _DENSEHASHTABLE_H_
#define _DENSEHASHTABLE_H_

#include <sparsehash/internal/sparseconfig.h>
#include <assert.h>
#include <stdio.h>              // for FILE, fwrite, fread
#include <algorithm>            // For swap(), eg
#include <iterator>             // For iterator tags
#include <limits>               // for numeric_limits
#include <memory>               // For uninitialized_fill
#include <utility>              // for pair
#include <sparsehash/internal/hashtable-common.h>
#include <sparsehash/internal/libc_allocator_with_realloc.h>
#include <sparsehash/type_traits.h>
#include <stdexcept>                 // For length_error

_START_GOOGLE_NAMESPACE_

namespace base {   // just to make google->opensource transition easier
using GOOGLE_NAMESPACE::true_type;
using GOOGLE_NAMESPACE::false_type;
using GOOGLE_NAMESPACE::integral_constant;
using GOOGLE_NAMESPACE::is_same;
using GOOGLE_NAMESPACE::remove_const;
}

// The probing method
// Linear probing
// #define JUMP_(key, num_probes)    ( 1 )
// Quadratic probing
#define JUMP_(key, num_probes)    ( num_probes )

// Hashtable class, used to implement the hashed associative containers
// hash_set and hash_map.

// Value: what is stored in the table (each bucket is a Value).
// Key: something in a 1-to-1 correspondence to a Value, that can be used
//      to search for a Value in the table (find() takes a Key).
// HashFcn: Takes a Key and returns an integer, the more unique the better.
// ExtractKey: given a Value, returns the unique Key associated with it.
//             Must inherit from unary_function, or at least have a
//             result_type enum indicating the return type of operator().
// SetKey: given a Value* and a Key, modifies the value such that
//         ExtractKey(value) == key.  We guarantee this is only called
//         with key == deleted_key or key == empty_key.
// EqualKey: Given two Keys, says whether they are the same (that is,
//           if they are both associated with the same Value).
// Alloc: STL allocator to use to allocate memory.

template <class Value, class Key, class HashFcn,
          class ExtractKey, class SetKey, class EqualKey, class Alloc>
class dense_hashtable;

template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct dense_hashtable_iterator;

template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct dense_hashtable_const_iterator;

// We're just an array, but we need to skip over empty and deleted elements
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct dense_hashtable_iterator {
 private:
  typedef typename A::template rebind<V>::other value_alloc_type;

 public:
  typedef dense_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A>       iterator;
  typedef dense_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;

  typedef std::forward_iterator_tag iterator_category;  // very little defined!
  typedef V value_type;
  typedef typename value_alloc_type::difference_type difference_type;
  typedef typename value_alloc_type::size_type size_type;
  typedef typename value_alloc_type::reference reference;
  typedef typename value_alloc_type::pointer pointer;

  // "Real" constructor and default constructor
  dense_hashtable_iterator(const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
                           pointer it, pointer it_end, bool advance)
    : ht(h), pos(it), end(it_end)   {
    if (advance)  advance_past_empty_and_deleted();
  }
  dense_hashtable_iterator() { }
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // Happy dereferencer
  reference operator*() const { return *pos; }
  pointer operator->() const { return &(operator*()); }

  // Arithmetic.  The only hard part is making sure that
  // we're not on an empty or marked-deleted array element
  void advance_past_empty_and_deleted() {
    while ( pos != end && (ht->test_empty(*this) || ht->test_deleted(*this)) )
      ++pos;
  }
  iterator& operator++()   {
    assert(pos != end); ++pos; advance_past_empty_and_deleted(); return *this;
  }
  iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }

  // Comparison.
  bool operator==(const iterator& it) const { return pos == it.pos; }
  bool operator!=(const iterator& it) const { return pos != it.pos; }


  // The actual data
  const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
  pointer pos, end;
};


// Now do it all again, but with const-ness!
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct dense_hashtable_const_iterator {
 private:
  typedef typename A::template rebind<V>::other value_alloc_type;

 public:
  typedef dense_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A>       iterator;
  typedef dense_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;

  typedef std::forward_iterator_tag iterator_category;  // very little defined!
  typedef V value_type;
  typedef typename value_alloc_type::difference_type difference_type;
  typedef typename value_alloc_type::size_type size_type;
  typedef typename value_alloc_type::const_reference reference;
  typedef typename value_alloc_type::const_pointer pointer;

  // "Real" constructor and default constructor
  dense_hashtable_const_iterator(
      const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
      pointer it, pointer it_end, bool advance)
    : ht(h), pos(it), end(it_end)   {
    if (advance)  advance_past_empty_and_deleted();
  }
  dense_hashtable_const_iterator()
    : ht(NULL), pos(pointer()), end(pointer()) { }
  // This lets us convert regular iterators to const iterators
  dense_hashtable_const_iterator(const iterator &it)
    : ht(it.ht), pos(it.pos), end(it.end) { }
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // Happy dereferencer
  reference operator*() const { return *pos; }
  pointer operator->() const { return &(operator*()); }

  // Arithmetic.  The only hard part is making sure that
  // we're not on an empty or marked-deleted array element
  void advance_past_empty_and_deleted() {
    while ( pos != end && (ht->test_empty(*this) || ht->test_deleted(*this)) )
      ++pos;
  }
  const_iterator& operator++()   {
    assert(pos != end); ++pos; advance_past_empty_and_deleted(); return *this;
  }
  const_iterator operator++(int) { const_iterator tmp(*this); ++*this; return tmp; }

  // Comparison.
  bool operator==(const const_iterator& it) const { return pos == it.pos; }
  bool operator!=(const const_iterator& it) const { return pos != it.pos; }


  // The actual data
  const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
  pointer pos, end;
};

template <class Value, class Key, class HashFcn,
          class ExtractKey, class SetKey, class EqualKey, class Alloc>
class dense_hashtable {
 private:
  typedef typename Alloc::template rebind<Value>::other value_alloc_type;

 public:
  typedef Key key_type;
  typedef Value value_type;
  typedef HashFcn hasher;
  typedef EqualKey key_equal;
  typedef Alloc allocator_type;

  typedef typename value_alloc_type::size_type size_type;
  typedef typename value_alloc_type::difference_type difference_type;
  typedef typename value_alloc_type::reference reference;
  typedef typename value_alloc_type::const_reference const_reference;
  typedef typename value_alloc_type::pointer pointer;
  typedef typename value_alloc_type::const_pointer const_pointer;
  typedef dense_hashtable_iterator<Value, Key, HashFcn,
                                   ExtractKey, SetKey, EqualKey, Alloc>
  iterator;

  typedef dense_hashtable_const_iterator<Value, Key, HashFcn,
                                         ExtractKey, SetKey, EqualKey, Alloc>
  const_iterator;

  // These come from tr1.  For us they're the same as regular iterators.
  typedef iterator local_iterator;
  typedef const_iterator const_local_iterator;

  // How full we let the table get before we resize, by default.
  // Knuth says .8 is good -- higher causes us to probe too much,
  // though it saves memory.
  static const int HT_OCCUPANCY_PCT;  // defined at the bottom of this file

  // How empty we let the table get before we resize lower, by default.
  // (0.0 means never resize lower.)
  // It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
  static const int HT_EMPTY_PCT;      // defined at the bottom of this file

  // Minimum size we're willing to let hashtables be.
  // Must be a power of two, and at least 4.
  // Note, however, that for a given hashtable, the initial size is a
  // function of the first constructor arg, and may be >HT_MIN_BUCKETS.
  static const size_type HT_MIN_BUCKETS = 4;

  // By default, if you don't specify a hashtable size at
  // construction-time, we use this size.  Must be a power of two, and
  // at least HT_MIN_BUCKETS.
  static const size_type HT_DEFAULT_STARTING_BUCKETS = 32;

  // ITERATOR FUNCTIONS
  iterator begin()             { return iterator(this, table,
                                                 table + num_buckets, true); }
  iterator end()               { return iterator(this, table + num_buckets,
                                                 table + num_buckets, true); }
  const_iterator begin() const { return const_iterator(this, table,
                                                       table+num_buckets,true);}
  const_iterator end() const   { return const_iterator(this, table + num_buckets,
                                                       table+num_buckets,true);}

  // These come from tr1 unordered_map.  They iterate over 'bucket' n.
  // We'll just consider bucket n to be the n-th element of the table.
  local_iterator begin(size_type i) {
    return local_iterator(this, table + i, table + i+1, false);
  }
  local_iterator end(size_type i) {
    local_iterator it = begin(i);
    if (!test_empty(i) && !test_deleted(i))
      ++it;
    return it;
  }
  const_local_iterator begin(size_type i) const {
    return const_local_iterator(this, table + i, table + i+1, false);
  }
  const_local_iterator end(size_type i) const {
    const_local_iterator it = begin(i);
    if (!test_empty(i) && !test_deleted(i))
      ++it;
    return it;
  }

  // ACCESSOR FUNCTIONS for the things we templatize on, basically
  hasher hash_funct() const               { return settings; }
  key_equal key_eq() const                { return key_info; }
  allocator_type get_allocator() const {
    return allocator_type(val_info);
  }

  // Accessor function for statistics gathering.
  int num_table_copies() const { return settings.num_ht_copies(); }

 private:
  // Annoyingly, we can't copy values around, because they might have
  // const components (they're probably pair<const X, Y>).  We use
  // explicit destructor invocation and placement new to get around
  // this.  Arg.
  void set_value(pointer dst, const_reference src) {
    dst->~value_type();   // delete the old value, if any
    new(dst) value_type(src);
  }

  void destroy_buckets(size_type first, size_type last) {
    for ( ; first != last; ++first)
      table[first].~value_type();
  }

  // DELETE HELPER FUNCTIONS
  // This lets the user describe a key that will indicate deleted
  // table entries.  This key should be an "impossible" entry --
  // if you try to insert it for real, you won't be able to retrieve it!
  // (NB: while you pass in an entire value, only the key part is looked
  // at.  This is just because I don't know how to assign just a key.)
 private:
  void squash_deleted() {           // gets rid of any deleted entries we have
    if ( num_deleted ) {            // get rid of deleted before writing
      dense_hashtable tmp(*this);   // copying will get rid of deleted
      swap(tmp);                    // now we are tmp
    }
    assert(num_deleted == 0);
  }

  // Test if the given key is the deleted indicator.  Requires
  // num_deleted > 0, for correctness of read(), and because that
  // guarantees that key_info.delkey is valid.
  bool test_deleted_key(const key_type& key) const {
    assert(num_deleted > 0);
    return equals(key_info.delkey, key);
  }

 public:
  void set_deleted_key(const key_type &key) {
    // the empty indicator (if specified) and the deleted indicator
    // must be different
    assert((!settings.use_empty() || !equals(key, get_key(val_info.emptyval)))
           && "Passed the empty-key to set_deleted_key");
    // It's only safe to change what "deleted" means if we purge deleted guys
    squash_deleted();
    settings.set_use_deleted(true);
    key_info.delkey = key;
  }
  void clear_deleted_key() {
    squash_deleted();
    settings.set_use_deleted(false);
  }
  key_type deleted_key() const {
    assert(settings.use_deleted()
           && "Must set deleted key before calling deleted_key");
    return key_info.delkey;
  }

  // These are public so the iterators can use them
  // True if the item at position bucknum is "deleted" marker
  bool test_deleted(size_type bucknum) const {
    // Invariant: !use_deleted() implies num_deleted is 0.
    assert(settings.use_deleted() || num_deleted == 0);
    return num_deleted > 0 && test_deleted_key(get_key(table[bucknum]));
  }
  bool test_deleted(const iterator &it) const {
    // Invariant: !use_deleted() implies num_deleted is 0.
    assert(settings.use_deleted() || num_deleted == 0);
    return num_deleted > 0 && test_deleted_key(get_key(*it));
  }
  bool test_deleted(const const_iterator &it) const {
    // Invariant: !use_deleted() implies num_deleted is 0.
    assert(settings.use_deleted() || num_deleted == 0);
    return num_deleted > 0 && test_deleted_key(get_key(*it));
  }

 private:
  void check_use_deleted(const char* caller) {
    (void)caller;    // could log it if the assert failed
    assert(settings.use_deleted());
  }

  // Set it so test_deleted is true.  true if object didn't used to be deleted.
  bool set_deleted(iterator &it) {
    check_use_deleted("set_deleted()");
    bool retval = !test_deleted(it);
    // &* converts from iterator to value-type.
    set_key(&(*it), key_info.delkey);
    return retval;
  }
  // Set it so test_deleted is false.  true if object used to be deleted.
  bool clear_deleted(iterator &it) {
    check_use_deleted("clear_deleted()");
    // Happens automatically when we assign something else in its place.
    return test_deleted(it);
  }

  // We also allow to set/clear the deleted bit on a const iterator.
  // We allow a const_iterator for the same reason you can delete a
  // const pointer: it's convenient, and semantically you can't use
  // 'it' after it's been deleted anyway, so its const-ness doesn't
  // really matter.
  bool set_deleted(const_iterator &it) {
    check_use_deleted("set_deleted()");
    bool retval = !test_deleted(it);
    set_key(const_cast<pointer>(&(*it)), key_info.delkey);
    return retval;
  }
  // Set it so test_deleted is false.  true if object used to be deleted.
  bool clear_deleted(const_iterator &it) {
    check_use_deleted("clear_deleted()");
    return test_deleted(it);
  }

  // EMPTY HELPER FUNCTIONS
  // This lets the user describe a key that will indicate empty (unused)
  // table entries.  This key should be an "impossible" entry --
  // if you try to insert it for real, you won't be able to retrieve it!
  // (NB: while you pass in an entire value, only the key part is looked
  // at.  This is just because I don't know how to assign just a key.)
 public:
  // These are public so the iterators can use them
  // True if the item at position bucknum is "empty" marker
  bool test_empty(size_type bucknum) const {
    assert(settings.use_empty());  // we always need to know what's empty!
    return equals(get_key(val_info.emptyval), get_key(table[bucknum]));
  }
  bool test_empty(const iterator &it) const {
    assert(settings.use_empty());  // we always need to know what's empty!
    return equals(get_key(val_info.emptyval), get_key(*it));
  }
  bool test_empty(const const_iterator &it) const {
    assert(settings.use_empty());  // we always need to know what's empty!
    return equals(get_key(val_info.emptyval), get_key(*it));
  }

 private:
  void fill_range_with_empty(pointer table_start, pointer table_end) {
    std::uninitialized_fill(table_start, table_end, val_info.emptyval);
  }

 public:
  // TODO(csilvers): change all callers of this to pass in a key instead,
  //                 and take a const key_type instead of const value_type.
  void set_empty_key(const_reference val) {
    // Once you set the empty key, you can't change it
    assert(!settings.use_empty() && "Calling set_empty_key multiple times");
    // The deleted indicator (if specified) and the empty indicator
    // must be different.
    assert((!settings.use_deleted() || !equals(get_key(val), key_info.delkey))
           && "Setting the empty key the same as the deleted key");
    settings.set_use_empty(true);
    set_value(&val_info.emptyval, val);

    assert(!table);                  // must set before first use
    // num_buckets was set in constructor even though table was NULL
    table = val_info.allocate(num_buckets);
    assert(table);
    fill_range_with_empty(table, table + num_buckets);
  }
  // TODO(user): return a key_type rather than a value_type
  value_type empty_key() const {
    assert(settings.use_empty());
    return val_info.emptyval;
  }

  // FUNCTIONS CONCERNING SIZE
 public:
  size_type size() const      { return num_elements - num_deleted; }
  size_type max_size() const  { return val_info.max_size(); }
  bool empty() const          { return size() == 0; }
  size_type bucket_count() const      { return num_buckets; }
  size_type max_bucket_count() const  { return max_size(); }
  size_type nonempty_bucket_count() const { return num_elements; }
  // These are tr1 methods.  Their idea of 'bucket' doesn't map well to
  // what we do.  We just say every bucket has 0 or 1 items in it.
  size_type bucket_size(size_type i) const {
    return begin(i) == end(i) ? 0 : 1;
  }

 private:
  // Because of the above, size_type(-1) is never legal; use it for errors
  static const size_type ILLEGAL_BUCKET = size_type(-1);

  // Used after a string of deletes.  Returns true if we actually shrunk.
  // TODO(csilvers): take a delta so we can take into account inserts
  // done after shrinking.  Maybe make part of the Settings class?
  bool maybe_shrink() {
    assert(num_elements >= num_deleted);
    assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
    assert(bucket_count() >= HT_MIN_BUCKETS);
    bool retval = false;

    // If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
    // we'll never shrink until you get relatively big, and we'll never
    // shrink below HT_DEFAULT_STARTING_BUCKETS.  Otherwise, something
    // like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
    // shrink us down to HT_MIN_BUCKETS buckets, which is too small.
    const size_type num_remain = num_elements - num_deleted;
    const size_type shrink_threshold = settings.shrink_threshold();
    if (shrink_threshold > 0 && num_remain < shrink_threshold &&
        bucket_count() > HT_DEFAULT_STARTING_BUCKETS) {
      const float shrink_factor = settings.shrink_factor();
      size_type sz = bucket_count() / 2;    // find how much we should shrink
      while (sz > HT_DEFAULT_STARTING_BUCKETS &&
             num_remain < sz * shrink_factor) {
        sz /= 2;                            // stay a power of 2
      }
      dense_hashtable tmp(*this, sz);       // Do the actual resizing
      swap(tmp);                            // now we are tmp
      retval = true;
    }
    settings.set_consider_shrink(false);    // because we just considered it
    return retval;
  }

  // We'll let you resize a hashtable -- though this makes us copy all!
  // When you resize, you say, "make it big enough for this many more elements"
  // Returns true if we actually resized, false if size was already ok.
  bool resize_delta(size_type delta) {
    bool did_resize = false;
    if ( settings.consider_shrink() ) {  // see if lots of deletes happened
      if ( maybe_shrink() )
        did_resize = true;
    }
    if (num_elements >=
        (std::numeric_limits<size_type>::max)() - delta) {
      throw std::length_error("resize overflow");
    }
    if ( bucket_count() >= HT_MIN_BUCKETS &&
         (num_elements + delta) <= settings.enlarge_threshold() )
      return did_resize;                          // we're ok as we are

    // Sometimes, we need to resize just to get rid of all the
    // "deleted" buckets that are clogging up the hashtable.  So when
    // deciding whether to resize, count the deleted buckets (which
    // are currently taking up room).  But later, when we decide what
    // size to resize to, *don't* count deleted buckets, since they
    // get discarded during the resize.
    const size_type needed_size = settings.min_buckets(num_elements + delta, 0);
    if ( needed_size <= bucket_count() )      // we have enough buckets
      return did_resize;

    size_type resize_to =
      settings.min_buckets(num_elements - num_deleted + delta, bucket_count());

    if (resize_to < needed_size &&    // may double resize_to
        resize_to < (std::numeric_limits<size_type>::max)() / 2) {
      // This situation means that we have enough deleted elements,
      // that once we purge them, we won't actually have needed to
      // grow.  But we may want to grow anyway: if we just purge one
      // element, say, we'll have to grow anyway next time we
      // insert.  Might as well grow now, since we're already going
      // through the trouble of copying (in order to purge the
      // deleted elements).
      const size_type target =
          static_cast<size_type>(settings.shrink_size(resize_to*2));
      if (num_elements - num_deleted + delta >= target) {
        // Good, we won't be below the shrink threshhold even if we double.
        resize_to *= 2;
      }
    }
    dense_hashtable tmp(*this, resize_to);
    swap(tmp);                             // now we are tmp
    return true;
  }

  // We require table be not-NULL and empty before calling this.
  void resize_table(size_type /*old_size*/, size_type new_size,
                    base::true_type) {
    table = val_info.realloc_or_die(table, new_size);
  }

  void resize_table(size_type old_size, size_type new_size, base::false_type) {
    val_info.deallocate(table, old_size);
    table = val_info.allocate(new_size);
  }

  // Used to actually do the rehashing when we grow/shrink a hashtable
  void copy_from(const dense_hashtable &ht, size_type min_buckets_wanted) {
    clear_to_size(settings.min_buckets(ht.size(), min_buckets_wanted));

    // We use a normal iterator to get non-deleted bcks from ht
    // We could use insert() here, but since we know there are
    // no duplicates and no deleted items, we can be more efficient
    assert((bucket_count() & (bucket_count()-1)) == 0);      // a power of two
    for ( const_iterator it = ht.begin(); it != ht.end(); ++it ) {
      size_type num_probes = 0;              // how many times we've probed
      size_type bucknum;
      const size_type bucket_count_minus_one = bucket_count() - 1;
      for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
           !test_empty(bucknum);                               // not empty
           bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one) {
        ++num_probes;
        assert(num_probes < bucket_count()
               && "Hashtable is full: an error in key_equal<> or hash<>");
      }
      set_value(&table[bucknum], *it);       // copies the value to here
      num_elements++;
    }
    settings.inc_num_ht_copies();
  }

  // Required by the spec for hashed associative container
 public:
  // Though the docs say this should be num_buckets, I think it's much
  // more useful as num_elements.  As a special feature, calling with
  // req_elements==0 will cause us to shrink if we can, saving space.
  void resize(size_type req_elements) {       // resize to this or larger
    if ( settings.consider_shrink() || req_elements == 0 )
      maybe_shrink();
    if ( req_elements > num_elements )
      resize_delta(req_elements - num_elements);
  }

  // Get and change the value of shrink_factor and enlarge_factor.  The
  // description at the beginning of this file explains how to choose
  // the values.  Setting the shrink parameter to 0.0 ensures that the
  // table never shrinks.
  void get_resizing_parameters(float* shrink, float* grow) const {
    *shrink = settings.shrink_factor();
    *grow = settings.enlarge_factor();
  }
  void set_resizing_parameters(float shrink, float grow) {
    settings.set_resizing_parameters(shrink, grow);
    settings.reset_thresholds(bucket_count());
  }

  // CONSTRUCTORS -- as required by the specs, we take a size,
  // but also let you specify a hashfunction, key comparator,
  // and key extractor.  We also define a copy constructor and =.
  // DESTRUCTOR -- needs to free the table
  explicit dense_hashtable(size_type expected_max_items_in_table = 0,
                           const HashFcn& hf = HashFcn(),
                           const EqualKey& eql = EqualKey(),
                           const ExtractKey& ext = ExtractKey(),
                           const SetKey& set = SetKey(),
                           const Alloc& alloc = Alloc())
      : settings(hf),
        key_info(ext, set, eql),
        num_deleted(0),
        num_elements(0),
        num_buckets(expected_max_items_in_table == 0
                    ? HT_DEFAULT_STARTING_BUCKETS
                    : settings.min_buckets(expected_max_items_in_table, 0)),
        val_info(alloc_impl<value_alloc_type>(alloc)),
        table(NULL) {
    // table is NULL until emptyval is set.  However, we set num_buckets
    // here so we know how much space to allocate once emptyval is set
    settings.reset_thresholds(bucket_count());
  }

  // As a convenience for resize(), we allow an optional second argument
  // which lets you make this new hashtable a different size than ht
  dense_hashtable(const dense_hashtable& ht,
                  size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
      : settings(ht.settings),
        key_info(ht.key_info),
        num_deleted(0),
        num_elements(0),
        num_buckets(0),
        val_info(ht.val_info),
        table(NULL) {
    if (!ht.settings.use_empty()) {
      // If use_empty isn't set, copy_from will crash, so we do our own copying.
      assert(ht.empty());
      num_buckets = settings.min_buckets(ht.size(), min_buckets_wanted);
      settings.reset_thresholds(bucket_count());
      return;
    }
    settings.reset_thresholds(bucket_count());
    copy_from(ht, min_buckets_wanted);   // copy_from() ignores deleted entries
  }

  dense_hashtable& operator= (const dense_hashtable& ht) {
    if (&ht == this)  return *this;        // don't copy onto ourselves
    if (!ht.settings.use_empty()) {
      assert(ht.empty());
      dense_hashtable empty_table(ht);  // empty table with ht's thresholds
      this->swap(empty_table);
      return *this;
    }
    settings = ht.settings;
    key_info = ht.key_info;
    set_value(&val_info.emptyval, ht.val_info.emptyval);
    // copy_from() calls clear and sets num_deleted to 0 too
    copy_from(ht, HT_MIN_BUCKETS);
    // we purposefully don't copy the allocator, which may not be copyable
    return *this;
  }

  ~dense_hashtable() {
    if (table) {
      destroy_buckets(0, num_buckets);
      val_info.deallocate(table, num_buckets);
    }
  }

  // Many STL algorithms use swap instead of copy constructors
  void swap(dense_hashtable& ht) {
    std::swap(settings, ht.settings);
    std::swap(key_info, ht.key_info);
    std::swap(num_deleted, ht.num_deleted);
    std::swap(num_elements, ht.num_elements);
    std::swap(num_buckets, ht.num_buckets);
    { value_type tmp;     // for annoying reasons, swap() doesn't work
      set_value(&tmp, val_info.emptyval);
      set_value(&val_info.emptyval, ht.val_info.emptyval);
      set_value(&ht.val_info.emptyval, tmp);
    }
    std::swap(table, ht.table);
    settings.reset_thresholds(bucket_count());  // also resets consider_shrink
    ht.settings.reset_thresholds(ht.bucket_count());
    // we purposefully don't swap the allocator, which may not be swap-able
  }

 private:
  void clear_to_size(size_type new_num_buckets) {
    if (!table) {
      table = val_info.allocate(new_num_buckets);
    } else {
      destroy_buckets(0, num_buckets);
      if (new_num_buckets != num_buckets) {   // resize, if necessary
        typedef base::integral_constant<bool,
            base::is_same<value_alloc_type,
                          libc_allocator_with_realloc<value_type> >::value>
            realloc_ok;
        resize_table(num_buckets, new_num_buckets, realloc_ok());
      }
    }
    assert(table);
    fill_range_with_empty(table, table + new_num_buckets);
    num_elements = 0;
    num_deleted = 0;
    num_buckets = new_num_buckets;          // our new size
    settings.reset_thresholds(bucket_count());
  }

 public:
  // It's always nice to be able to clear a table without deallocating it
  void clear() {
    // If the table is already empty, and the number of buckets is
    // already as we desire, there's nothing to do.
    const size_type new_num_buckets = settings.min_buckets(0, 0);
    if (num_elements == 0 && new_num_buckets == num_buckets) {
      return;
    }
    clear_to_size(new_num_buckets);
  }

  // Clear the table without resizing it.
  // Mimicks the stl_hashtable's behaviour when clear()-ing in that it
  // does not modify the bucket count
  void clear_no_resize() {
    if (num_elements > 0) {
      assert(table);
      destroy_buckets(0, num_buckets);
      fill_range_with_empty(table, table + num_buckets);
    }
    // don't consider to shrink before another erase()
    settings.reset_thresholds(bucket_count());
    num_elements = 0;
    num_deleted = 0;
  }

  // LOOKUP ROUTINES
 private:
  // Returns a pair of positions: 1st where the object is, 2nd where
  // it would go if you wanted to insert it.  1st is ILLEGAL_BUCKET
  // if object is not found; 2nd is ILLEGAL_BUCKET if it is.
  // Note: because of deletions where-to-insert is not trivial: it's the
  // first deleted bucket we see, as long as we don't find the key later
  std::pair<size_type, size_type> find_position(const key_type &key) const {
    size_type num_probes = 0;              // how many times we've probed
    const size_type bucket_count_minus_one = bucket_count() - 1;
    size_type bucknum = hash(key) & bucket_count_minus_one;
    size_type insert_pos = ILLEGAL_BUCKET; // where we would insert
    while ( 1 ) {                          // probe until something happens
      if ( test_empty(bucknum) ) {         // bucket is empty
        if ( insert_pos == ILLEGAL_BUCKET )   // found no prior place to insert
          return std::pair<size_type,size_type>(ILLEGAL_BUCKET, bucknum);
        else
          return std::pair<size_type,size_type>(ILLEGAL_BUCKET, insert_pos);

      } else if ( test_deleted(bucknum) ) {// keep searching, but mark to insert
        if ( insert_pos == ILLEGAL_BUCKET )
          insert_pos = bucknum;

      } else if ( equals(key, get_key(table[bucknum])) ) {
        return std::pair<size_type,size_type>(bucknum, ILLEGAL_BUCKET);
      }
      ++num_probes;                        // we're doing another probe
      bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
      assert(num_probes < bucket_count()
             && "Hashtable is full: an error in key_equal<> or hash<>");
    }
  }

 public:

  iterator find(const key_type& key) {
    if ( size() == 0 ) return end();
    std::pair<size_type, size_type> pos = find_position(key);
    if ( pos.first == ILLEGAL_BUCKET )     // alas, not there
      return end();
    else
      return iterator(this, table + pos.first, table + num_buckets, false);
  }

  const_iterator find(const key_type& key) const {
    if ( size() == 0 ) return end();
    std::pair<size_type, size_type> pos = find_position(key);
    if ( pos.first == ILLEGAL_BUCKET )     // alas, not there
      return end();
    else
      return const_iterator(this, table + pos.first, table+num_buckets, false);
  }

  // This is a tr1 method: the bucket a given key is in, or what bucket
  // it would be put in, if it were to be inserted.  Shrug.
  size_type bucket(const key_type& key) const {
    std::pair<size_type, size_type> pos = find_position(key);
    return pos.first == ILLEGAL_BUCKET ? pos.second : pos.first;
  }

  // Counts how many elements have key key.  For maps, it's either 0 or 1.
  size_type count(const key_type &key) const {
    std::pair<size_type, size_type> pos = find_position(key);
    return pos.first == ILLEGAL_BUCKET ? 0 : 1;
  }

  // Likewise, equal_range doesn't really make sense for us.  Oh well.
  std::pair<iterator,iterator> equal_range(const key_type& key) {
    iterator pos = find(key);      // either an iterator or end
    if (pos == end()) {
      return std::pair<iterator,iterator>(pos, pos);
    } else {
      const iterator startpos = pos++;
      return std::pair<iterator,iterator>(startpos, pos);
    }
  }
  std::pair<const_iterator,const_iterator> equal_range(const key_type& key)
      const {
    const_iterator pos = find(key);      // either an iterator or end
    if (pos == end()) {
      return std::pair<const_iterator,const_iterator>(pos, pos);
    } else {
      const const_iterator startpos = pos++;
      return std::pair<const_iterator,const_iterator>(startpos, pos);
    }
  }


  // INSERTION ROUTINES
 private:
  // Private method used by insert_noresize and find_or_insert.
  iterator insert_at(const_reference obj, size_type pos) {
    if (size() >= max_size()) {
      throw std::length_error("insert overflow");
    }
    if ( test_deleted(pos) ) {      // just replace if it's been del.
      // shrug: shouldn't need to be const.
      const_iterator delpos(this, table + pos, table + num_buckets, false);
      clear_deleted(delpos);
      assert( num_deleted > 0);
      --num_deleted;                // used to be, now it isn't
    } else {
      ++num_elements;               // replacing an empty bucket
    }
    set_value(&table[pos], obj);
    return iterator(this, table + pos, table + num_buckets, false);
  }

  // If you know *this is big enough to hold obj, use this routine
  std::pair<iterator, bool> insert_noresize(const_reference obj) {
    // First, double-check we're not inserting delkey or emptyval
    assert((!settings.use_empty() || !equals(get_key(obj),
                                             get_key(val_info.emptyval)))
           && "Inserting the empty key");
    assert((!settings.use_deleted() || !equals(get_key(obj), key_info.delkey))
           && "Inserting the deleted key");
    const std::pair<size_type,size_type> pos = find_position(get_key(obj));
    if ( pos.first != ILLEGAL_BUCKET) {      // object was already there
      return std::pair<iterator,bool>(iterator(this, table + pos.first,
                                          table + num_buckets, false),
                                 false);          // false: we didn't insert
    } else {                                 // pos.second says where to put it
      return std::pair<iterator,bool>(insert_at(obj, pos.second), true);
    }
  }

  // Specializations of insert(it, it) depending on the power of the iterator:
  // (1) Iterator supports operator-, resize before inserting
  template <class ForwardIterator>
  void insert(ForwardIterator f, ForwardIterator l, std::forward_iterator_tag) {
    size_t dist = std::distance(f, l);
    if (dist >= (std::numeric_limits<size_type>::max)()) {
      throw std::length_error("insert-range overflow");
    }
    resize_delta(static_cast<size_type>(dist));
    for ( ; dist > 0; --dist, ++f) {
      insert_noresize(*f);
    }
  }

  // (2) Arbitrary iterator, can't tell how much to resize
  template <class InputIterator>
  void insert(InputIterator f, InputIterator l, std::input_iterator_tag) {
    for ( ; f != l; ++f)
      insert(*f);
  }

 public:
  // This is the normal insert routine, used by the outside world
  std::pair<iterator, bool> insert(const_reference obj) {
    resize_delta(1);                      // adding an object, grow if need be
    return insert_noresize(obj);
  }

  // When inserting a lot at a time, we specialize on the type of iterator
  template <class InputIterator>
  void insert(InputIterator f, InputIterator l) {
    // specializes on iterator type
    insert(f, l,
           typename std::iterator_traits<InputIterator>::iterator_category());
  }

  // DefaultValue is a functor that takes a key and returns a value_type
  // representing the default value to be inserted if none is found.
  template <class DefaultValue>
  value_type& find_or_insert(const key_type& key) {
    // First, double-check we're not inserting emptykey or delkey
    assert((!settings.use_empty() || !equals(key, get_key(val_info.emptyval)))
           && "Inserting the empty key");
    assert((!settings.use_deleted() || !equals(key, key_info.delkey))
           && "Inserting the deleted key");
    const std::pair<size_type,size_type> pos = find_position(key);
    DefaultValue default_value;
    if ( pos.first != ILLEGAL_BUCKET) {  // object was already there
      return table[pos.first];
    } else if (resize_delta(1)) {        // needed to rehash to make room
      // Since we resized, we can't use pos, so recalculate where to insert.
      return *insert_noresize(default_value(key)).first;
    } else {                             // no need to rehash, insert right here
      return *insert_at(default_value(key), pos.second);
    }
  }


  // DELETION ROUTINES
  size_type erase(const key_type& key) {
    // First, double-check we're not trying to erase delkey or emptyval.
    assert((!settings.use_empty() || !equals(key, get_key(val_info.emptyval)))
           && "Erasing the empty key");
    assert((!settings.use_deleted() || !equals(key, key_info.delkey))
           && "Erasing the deleted key");
    const_iterator pos = find(key);   // shrug: shouldn't need to be const
    if ( pos != end() ) {
      assert(!test_deleted(pos));  // or find() shouldn't have returned it
      set_deleted(pos);
      ++num_deleted;
      settings.set_consider_shrink(true); // will think about shrink after next insert
      return 1;                    // because we deleted one thing
    } else {
      return 0;                    // because we deleted nothing
    }
  }

  // We return the iterator past the deleted item.
  void erase(iterator pos) {
    if ( pos == end() ) return;    // sanity check
    if ( set_deleted(pos) ) {      // true if object has been newly deleted
      ++num_deleted;
      settings.set_consider_shrink(true); // will think about shrink after next insert
    }
  }

  void erase(iterator f, iterator l) {
    for ( ; f != l; ++f) {
      if ( set_deleted(f)  )       // should always be true
        ++num_deleted;
    }
    settings.set_consider_shrink(true); // will think about shrink after next insert
  }

  // We allow you to erase a const_iterator just like we allow you to
  // erase an iterator.  This is in parallel to 'delete': you can delete
  // a const pointer just like a non-const pointer.  The logic is that
  // you can't use the object after it's erased anyway, so it doesn't matter
  // if it's const or not.
  void erase(const_iterator pos) {
    if ( pos == end() ) return;    // sanity check
    if ( set_deleted(pos) ) {      // true if object has been newly deleted
      ++num_deleted;
      settings.set_consider_shrink(true); // will think about shrink after next insert
    }
  }
  void erase(const_iterator f, const_iterator l) {
    for ( ; f != l; ++f) {
      if ( set_deleted(f)  )       // should always be true
        ++num_deleted;
    }
    settings.set_consider_shrink(true);   // will think about shrink after next insert
  }


  // COMPARISON
  bool operator==(const dense_hashtable& ht) const {
    if (size() != ht.size()) {
      return false;
    } else if (this == &ht) {
      return true;
    } else {
      // Iterate through the elements in "this" and see if the
      // corresponding element is in ht
      for ( const_iterator it = begin(); it != end(); ++it ) {
        const_iterator it2 = ht.find(get_key(*it));
        if ((it2 == ht.end()) || (*it != *it2)) {
          return false;
        }
      }
      return true;
    }
  }
  bool operator!=(const dense_hashtable& ht) const {
    return !(*this == ht);
  }


  // I/O
  // We support reading and writing hashtables to disk.  Alas, since
  // I don't know how to write a hasher or key_equal, you have to make
  // sure everything but the table is the same.  We compact before writing.
 private:
  // Every time the disk format changes, this should probably change too
  typedef unsigned long MagicNumberType;
  static const MagicNumberType MAGIC_NUMBER = 0x13578642;

 public:
  // I/O -- this is an add-on for writing hash table to disk
  //
  // INPUT and OUTPUT must be either a FILE, *or* a C++ stream
  //    (istream, ostream, etc) *or* a class providing
  //    Read(void*, size_t) and Write(const void*, size_t)
  //    (respectively), which writes a buffer into a stream
  //    (which the INPUT/OUTPUT instance presumably owns).

  typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer;

  // ValueSerializer: a functor.  operator()(OUTPUT*, const value_type&)
  template <typename ValueSerializer, typename OUTPUT>
  bool serialize(ValueSerializer serializer, OUTPUT *fp) {
    squash_deleted();           // so we don't have to worry about delkey
    if ( !sparsehash_internal::write_bigendian_number(fp, MAGIC_NUMBER, 4) )
      return false;
    if ( !sparsehash_internal::write_bigendian_number(fp, num_buckets, 8) )
      return false;
    if ( !sparsehash_internal::write_bigendian_number(fp, num_elements, 8) )
      return false;
    // Now write a bitmap of non-empty buckets.
    for ( size_type i = 0; i < num_buckets; i += 8 ) {
      unsigned char bits = 0;
      for ( int bit = 0; bit < 8; ++bit ) {
        if ( i + bit < num_buckets && !test_empty(i + bit) )
          bits |= (1 << bit);
      }
      if ( !sparsehash_internal::write_data(fp, &bits, sizeof(bits)) )
        return false;
      for ( int bit = 0; bit < 8; ++bit ) {
        if ( bits & (1 << bit) ) {
          if ( !serializer(fp, table[i + bit]) ) return false;
        }
      }
    }
    return true;
  }

  // INPUT: anything we've written an overload of read_data() for.
  // ValueSerializer: a functor.  operator()(INPUT*, value_type*)
  template <typename ValueSerializer, typename INPUT>
  bool unserialize(ValueSerializer serializer, INPUT *fp) {
    assert(settings.use_empty() && "empty_key not set for read");

    clear();                        // just to be consistent
    MagicNumberType magic_read;
    if ( !sparsehash_internal::read_bigendian_number(fp, &magic_read, 4) )
      return false;
    if ( magic_read != MAGIC_NUMBER ) {
      return false;
    }
    size_type new_num_buckets;
    if ( !sparsehash_internal::read_bigendian_number(fp, &new_num_buckets, 8) )
      return false;
    clear_to_size(new_num_buckets);
    if ( !sparsehash_internal::read_bigendian_number(fp, &num_elements, 8) )
      return false;

    // Read the bitmap of non-empty buckets.
    for (size_type i = 0; i < num_buckets; i += 8) {
      unsigned char bits;
      if ( !sparsehash_internal::read_data(fp, &bits, sizeof(bits)) )
        return false;
      for ( int bit = 0; bit < 8; ++bit ) {
        if ( i + bit < num_buckets && (bits & (1 << bit)) ) {  // not empty
          if ( !serializer(fp, &table[i + bit]) ) return false;
        }
      }
    }
    return true;
  }

 private:
  template <class A>
  class alloc_impl : public A {
   public:
    typedef typename A::pointer pointer;
    typedef typename A::size_type size_type;

    // Convert a normal allocator to one that has realloc_or_die()
    alloc_impl(const A& a) : A(a) { }

    // realloc_or_die should only be used when using the default
    // allocator (libc_allocator_with_realloc).
    pointer realloc_or_die(pointer /*ptr*/, size_type /*n*/) {
      fprintf(stderr, "realloc_or_die is only supported for "
                      "libc_allocator_with_realloc\n");
      exit(1);
      return NULL;
    }
  };

  // A template specialization of alloc_impl for
  // libc_allocator_with_realloc that can handle realloc_or_die.
  template <class A>
  class alloc_impl<libc_allocator_with_realloc<A> >
      : public libc_allocator_with_realloc<A> {
   public:
    typedef typename libc_allocator_with_realloc<A>::pointer pointer;
    typedef typename libc_allocator_with_realloc<A>::size_type size_type;

    alloc_impl(const libc_allocator_with_realloc<A>& a)
        : libc_allocator_with_realloc<A>(a) { }

    pointer realloc_or_die(pointer ptr, size_type n) {
      pointer retval = this->reallocate(ptr, n);
      if (retval == NULL) {
        fprintf(stderr, "sparsehash: FATAL ERROR: failed to reallocate "
                "%lu elements for ptr %p", static_cast<unsigned long>(n), ptr);
        exit(1);
      }
      return retval;
    }
  };

  // Package allocator with emptyval to eliminate memory needed for
  // the zero-size allocator.
  // If new fields are added to this class, we should add them to
  // operator= and swap.
  class ValInfo : public alloc_impl<value_alloc_type> {
   public:
    typedef typename alloc_impl<value_alloc_type>::value_type value_type;

    ValInfo(const alloc_impl<value_alloc_type>& a)
        : alloc_impl<value_alloc_type>(a), emptyval() { }
    ValInfo(const ValInfo& v)
        : alloc_impl<value_alloc_type>(v), emptyval(v.emptyval) { }

    value_type emptyval;    // which key marks unused entries
  };


  // Package functors with another class to eliminate memory needed for
  // zero-size functors.  Since ExtractKey and hasher's operator() might
  // have the same function signature, they must be packaged in
  // different classes.
  struct Settings :
      sparsehash_internal::sh_hashtable_settings<key_type, hasher,
                                                 size_type, HT_MIN_BUCKETS> {
    explicit Settings(const hasher& hf)
        : sparsehash_internal::sh_hashtable_settings<key_type, hasher,
                                                     size_type, HT_MIN_BUCKETS>(
            hf, HT_OCCUPANCY_PCT / 100.0f, HT_EMPTY_PCT / 100.0f) {}
  };

  // Packages ExtractKey and SetKey functors.
  class KeyInfo : public ExtractKey, public SetKey, public EqualKey {
   public:
    KeyInfo(const ExtractKey& ek, const SetKey& sk, const EqualKey& eq)
        : ExtractKey(ek),
          SetKey(sk),
          EqualKey(eq) {
    }

    // We want to return the exact same type as ExtractKey: Key or const Key&
    typename ExtractKey::result_type get_key(const_reference v) const {
      return ExtractKey::operator()(v);
    }
    void set_key(pointer v, const key_type& k) const {
      SetKey::operator()(v, k);
    }
    bool equals(const key_type& a, const key_type& b) const {
      return EqualKey::operator()(a, b);
    }

    // Which key marks deleted entries.
    // TODO(csilvers): make a pointer, and get rid of use_deleted (benchmark!)
    typename base::remove_const<key_type>::type delkey;
  };

  // Utility functions to access the templated operators
  size_type hash(const key_type& v) const {
    return settings.hash(v);
  }
  bool equals(const key_type& a, const key_type& b) const {
    return key_info.equals(a, b);
  }
  typename ExtractKey::result_type get_key(const_reference v) const {
    return key_info.get_key(v);
  }
  void set_key(pointer v, const key_type& k) const {
    key_info.set_key(v, k);
  }

 private:
  // Actual data
  Settings settings;
  KeyInfo key_info;

  size_type num_deleted;  // how many occupied buckets are marked deleted
  size_type num_elements;
  size_type num_buckets;
  ValInfo val_info;       // holds emptyval, and also the allocator
  pointer table;
};


// We need a global swap as well
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
inline void swap(dense_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
                 dense_hashtable<V,K,HF,ExK,SetK,EqK,A> &y) {
  x.swap(y);
}

#undef JUMP_

template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const typename dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
  dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;

// How full we let the table get before we resize.  Knuth says .8 is
// good -- higher causes us to probe too much, though saves memory.
// However, we go with .5, getting better performance at the cost of
// more space (a trade-off densehashtable explicitly chooses to make).
// Feel free to play around with different values, though, via
// max_load_factor() and/or set_resizing_parameters().
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT = 50;

// How empty we let the table get before we resize lower.
// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing.
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_PCT
  = static_cast<int>(0.4 *
                     dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT);

_END_GOOGLE_NAMESPACE_

#endif /* _DENSEHASHTABLE_H_ */