This file is indexed.

/usr/include/vmmlib/cp3_tensor.hpp is in libvmmlib-dev 1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/* 
 * VMMLib - Tensor Classes
 *  
 * @author Susanne Suter
 * @author Jonas Boesch
 *
 * The cp3 tensor class is consists of three basis matrices u1-u3 and R lambda values for a given rank-R approximation
 * CP stands for Candecomp/Parafac (1970)
 * - Carroll & Chang, 1970: Analysis of Individual Differences in Multidimensional Scaling via an N-way generalization of ``Eckart--Young'' decompositions, Psychometrika.
 * - Harshman, 1970: Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multi-modal factor analysis,UCLA Working Papers in Phonetics.
 * - De Lathauwer, De Moor, Vandewalle, 2000: A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl.
 * - Kolda & Bader, 2009: Tensor Decompositions and Applications, SIAM Review.
 * 
 */

#ifndef __VMML__CP3_TENSOR__HPP__
#define __VMML__CP3_TENSOR__HPP__

#include <vmmlib/t3_hopm.hpp>
#include <vmmlib/tensor3_iterator.hpp>
#include <vmmlib/matrix_pseudoinverse.hpp>

namespace vmml
{
	
	template< size_t R, size_t I1, size_t I2, size_t I3, typename T_value = float, typename T_coeff = float >
	class cp3_tensor
	{
	public:    		
		typedef float T_internal;	

		typedef tensor3< I1, I2, I3, T_value > t3_type;
		typedef typename t3_type::iterator t3_iterator;
		typedef typename t3_type::const_iterator t3_const_iterator;
		
		typedef tensor3< I1, I2, I3, T_internal > t3_comp_type;
		
		typedef tensor3< I1, I2, I3, T_coeff > t3_coeff_type;
		typedef typename t3_coeff_type::iterator t3_coeff_iterator;
		typedef typename t3_coeff_type::const_iterator t3_coeff_const_iterator;
		
		typedef matrix< I1, R, T_coeff > u1_type;
		typedef typename u1_type::iterator u1_iterator;
		typedef typename u1_type::const_iterator u1_const_iterator;
		
		typedef matrix< I2, R, T_coeff > u2_type;
		typedef typename u2_type::iterator u2_iterator;
		typedef typename u2_type::const_iterator u2_const_iterator;
		
		typedef matrix< I3, R, T_coeff > u3_type;
		typedef typename u3_type::iterator u3_iterator;
		typedef typename u3_type::const_iterator u3_const_iterator;
		
		typedef matrix< I1, R, T_internal > u1_comp_type;
		typedef matrix< I2, R, T_internal > u2_comp_type;
		typedef matrix< I3, R, T_internal > u3_comp_type;
		
		typedef vector< R, T_internal > lambda_comp_type;
		typedef vector< R, T_coeff > lambda_type;

		cp3_tensor(  u1_type& U1, u2_type& U2, u3_type& U3, lambda_type& lambdas_ );
		cp3_tensor();
		~cp3_tensor();
		
		void get_lambdas( lambda_type& data_ ) const { data_  = *_lambdas; } ;
		void get_u1( u1_type& U1 ) const { U1 = *_u1; } ;
		void get_u2( u2_type& U2 ) const { U2 = *_u2; } ;
		void get_u3( u3_type& U3 ) const { U3 = *_u3; } ;
		
		void set_core( const lambda_type& lambdas_ )  { _lambdas = lambda_type( lambdas_ ); _lambdas_comp.cast_from( _lambdas ); } ;
		void set_u1( u1_type& U1 ) { *_u1 = U1; _u1_comp->cast_from( U1 ); } ;
		void set_u2( u2_type& U2 ) { *_u2 = U2; _u1_comp->cast_from( U2 ); } ;
		void set_u3( u3_type& U3 ) { *_u3 = U3; _u1_comp->cast_from( U3 ); } ;
		
		void set_lambda_comp( lambda_comp_type& lambdas_ )  { _lambdas_comp = lambda_comp_type( lambdas_ ); _lambdas.cast_from( _lambdas_comp ); } ;
		void set_u1_comp( u1_comp_type& U1 ) { *_u1_comp = U1; _u1->cast_from( U1 ); } ;
		void set_u2_comp( u2_comp_type& U2 ) { *_u2_comp = U2; _u1->cast_from( U2 ); } ;
		void set_u3_comp( u3_comp_type& U3 ) { *_u3_comp = U3; _u1->cast_from( U3 ); } ;
		
		void get_lambda_comp( lambda_comp_type& data_ ) const { data_ = _lambdas_comp; } ;
		void get_u1_comp( u1_comp_type& U1 ) const { U1 = *_u1_comp; } ;
		void get_u2_comp( u2_comp_type& U2 ) const { U2 = *_u2_comp; } ;
		void get_u3_comp( u3_comp_type& U3 ) const { U3 = *_u3_comp; } ;
		
		void export_to( std::vector< T_coeff >& data_ ) const;
		void import_from( std::vector< T_coeff >& data_ );	
		
		void reconstruct( t3_type& data_ ) const;
		template< typename T_init >
		void decompose( const t3_type& data_, T_init init, const size_t max_iterations_ = 100 ); 
		template< typename T_init >
		void cp_als( const t3_type& data_, T_init init, const size_t max_iterations_ = 100 );
		
		size_t nnz() const;
		
	protected:
		cp3_tensor( const cp3_tensor< R, I1, I1, I1, T_value, T_coeff >& other ) {};
		cp3_tensor< R, I1, I1, I1, T_value, T_coeff > operator=( const cp3_tensor< R, I1, I1, I1, T_value, T_coeff >& other ) { return *this; };

        void cast_members();
        void cast_comp_members();
		
	private:
		lambda_type* _lambdas ;
		u1_type* _u1 ;
		u2_type* _u2 ;
		u3_type* _u3 ;
		
        lambda_comp_type* _lambdas_comp ;
        u1_comp_type* _u1_comp ;
        u2_comp_type* _u2_comp ;
        u3_comp_type* _u3_comp ;
		
	}; // class cp3_tensor
	
	
#define VMML_TEMPLATE_STRING			template< size_t R, size_t I1, size_t I2, size_t I3, typename T_value, typename T_coeff >
#define VMML_TEMPLATE_CLASSNAME			cp3_tensor< R, I1, I2, I3, T_value, T_coeff >
	
	
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::cp3_tensor( u1_type& U1, u2_type& U2, u3_type& U3, lambda_type& lambdas_ )
{
	set_lambdas(lambdas_);
	set_u1( U1);
	set_u2( U2);
	set_u3( U3);
}

VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::cp3_tensor()
{
	_lambdas = new vector< R, T_coeff>(); 
	_lambdas->set( 0 );
	_u1 = new u1_type(); _u1->zero();
	_u2 = new u2_type(); _u2->zero();
	_u3 = new u3_type(); _u3->zero();
	_lambdas_comp = new vector< R, T_internal>; 
	_lambdas_comp->set( 0 );
	_u1_comp = new u1_comp_type; _u1_comp->zero();
	_u2_comp = new u2_comp_type; _u2_comp->zero();
	_u3_comp = new u3_comp_type; _u3_comp->zero();
}
	
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::~cp3_tensor()
{
	delete _u1;
	delete _u2;
	delete _u3;
	delete _lambdas;
	delete _u1_comp;
	delete _u2_comp;
	delete _u3_comp;
	delete _lambdas_comp;
}
	
	
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::cast_members()
{
	_u1->cast_from( *_u1_comp );
	_u2->cast_from( *_u2_comp );
	_u3->cast_from( *_u3_comp );	
	_lambdas->cast_from( *_lambdas_comp );
}

VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::cast_comp_members()
{
	_u1_comp->cast_from( *_u1 );
	_u2_comp->cast_from( *_u2 );
	_u3_comp->cast_from( *_u3 );	
	_lambdas_comp->cast_from( _lambdas );
}
	
	
VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::reconstruct( t3_type& data_ ) const
{
	//FIXME: check data types
    t3_comp_type data;
    data.cast_from( data_ );
	
	typedef t3_hopm< R, I1, I2, I3, T_internal > hopm_type;
	hopm_type::reconstruct( data, *_u1_comp, *_u2_comp, *_u3_comp, *_lambdas_comp );
	 
     //convert reconstructed data, which is in type T_internal (double, float) to T_value (uint8 or uint16)
    if( (sizeof(T_value) == 1) || (sizeof(T_value) == 2) ){
	data_.float_t_to_uint_t( data );
    } else {
	   data_.cast_from( data );
    }
}


VMML_TEMPLATE_STRING
template< typename T_init >
void 
VMML_TEMPLATE_CLASSNAME::decompose( const t3_type& data_, T_init init, const size_t max_iterations_  )
{
	cp_als( data_, init, max_iterations_ );
}

VMML_TEMPLATE_STRING
template< typename T_init >
void 
VMML_TEMPLATE_CLASSNAME::cp_als( const t3_type& data_, T_init init, const size_t max_iterations_  )
{
	t3_comp_type data;
	data.cast_from( data_ );
	
	typedef t3_hopm< R, I1, I2, I3, T_internal > hopm_type;
	hopm_type::als( data, *_u1_comp, *_u2_comp, *_u3_comp, *_lambdas_comp, init, max_iterations_ );

 	cast_members();
}

	
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::export_to( std::vector< T_coeff >& data_ ) const
{
	u1_const_iterator  it = _u1.begin(),
	it_end = _u1.end();
	for( ; it != it_end; ++it )
	{
		data_.push_back( *it );
	}
	
	u2_const_iterator  u2_it = _u2.begin(),
	u2_it_end = _u2.end();
	for( ; u2_it != u2_it_end; ++u2_it )
	{
		data_.push_back( *u2_it );
	}
	
	u3_const_iterator  u3_it = _u3.begin(),
	u3_it_end = _u3.end();
	for( ; u3_it != u3_it_end; ++u3_it )
	{
		data_.push_back( *u3_it );
	}
	
	//TODO: iterate over lambdas
}


VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::import_from( std::vector< T_coeff >& data_ )
{
	size_t i = 0; //iterator over data_
	
	u1_iterator  it = _u1.begin(),
	it_end = _u1.end();
	for( ; it != it_end; ++it, ++i )
	{
		*it = data_.at(i);
	}
	
	u2_iterator  u2_it = _u2.begin(),
	u2_it_end = _u2.end();
	for( ; u2_it != u2_it_end; ++u2_it, ++i )
	{
		*u2_it = data_.at(i);
	}
	
	u3_iterator  u3_it = _u3.begin(),
	u3_it_end = _u3.end();
	for( ; u3_it != u3_it_end; ++u3_it, ++i )
	{
		*u3_it = data_.at(i);
	}
	
	//TODO: import lambdas
	
}	

VMML_TEMPLATE_STRING
size_t
VMML_TEMPLATE_CLASSNAME::nnz() const
{
	size_t counter = 0;
	
	counter += _u1_comp->nnz();
	counter += _u2_comp->nnz();
	counter += _u3_comp->nnz();
	counter += _lambdas_comp->nnz();
	
	return counter;
}
	

		
#undef VMML_TEMPLATE_STRING
#undef VMML_TEMPLATE_CLASSNAME
		
	} // namespace vmml
	
#endif