This file is indexed.

/usr/include/vmmlib/lapack_sym_eigs.hpp is in libvmmlib-dev 1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#ifndef __VMML__VMMLIB_LAPACK_SYM_EIGS__HPP__
#define __VMML__VMMLIB_LAPACK_SYM_EIGS__HPP__

#include <vmmlib/matrix.hpp>
#include <vmmlib/vector.hpp>
#include <vmmlib/exception.hpp>

#include <vmmlib/lapack_types.hpp>
#include <vmmlib/lapack_includes.hpp>

#include <string>
#include <vector>

/** 
 *
 *   a wrapper for lapack's DSYEVX routine. 
 *   DSYEVX computes selected eigenvalues and, optionally, eigenvectors
 *   of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
 *   selected by specifying either a range of values or a range of indices
 *   for the desired eigenvalues.
 *   
 *   returns a boolean to indicate success of the operation. 
 *   if the return value is false, you can get the parameters using
 *   get_params(). 
 *   error states:
 *
 *  INFO    (output) INTEGER
 *          = 0:  successful exit.
 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 *          > 0:  if DBDSQR did not converge, INFO specifies how many
 *                superdiagonals of an intermediate bidiagonal form B
 *                did not converge to zero. See the description of WORK
 *                above for details.
 *
 *   more information in: http://www.netlib.org/lapack/double/dsyevx.f (see also:
 *   http://www.netlib.org/lapack/double/dsyev.f , but    needs more space)
 **
 */

namespace vmml
{
	
namespace lapack
{

	// XYYZZZ 
	// X    = data type: S - float, D - double
	// YY   = matrix type, GE - general, TR - triangular
	// ZZZ  = function name
	
	
	template< typename float_t >
	struct eigs_params
	{
		char            jobz;
		char            range;
		char            uplo;
		lapack_int      n;
		float_t*        a;
		lapack_int      lda; //leading dimension of input array
		float_t*        vl;
		float_t*        vu;
		lapack_int      il;
		lapack_int      iu;
		float_t         abstol;
		lapack_int      m; //number of found eigenvalues
		float_t*        w; //first m eigenvalues
		float_t*        z; //first m eigenvectors
		lapack_int      ldz; //leading dimension of z
		float_t*        work;
		lapack_int      lwork;
		lapack_int*     iwork;
		lapack_int*     ifail;
		lapack_int      info;
		
		friend std::ostream& operator << ( std::ostream& os, 
										  const eigs_params< float_t >& p )
		{
			os 
			<< " (1)\tjobz "     << p.jobz << std::endl
			<< " (2)\trange "    << p.range << std::endl
			<< " (3)\tuplo "     << p.uplo << std::endl
			<< " (4)\tn "        << p.n << std::endl
			<< " (5)\ta "        << *p.a << std::endl
			<< " (6)\tlda "      << p.lda << std::endl
			<< " (7)\tvl "       << p.vl << std::endl 
			<< " (8)\tvu "       << p.vu << std::endl
			<< " (9)\til "       << p.il << std::endl
			<< " (10)\tiu "       << p.iu << std::endl
			<< " (11)\tabstol "   << p.abstol << std::endl
			<< " (12)\tm "        << p.m << std::endl
			<< " (13)\tw "        << p.w << std::endl
			<< " (14)\tz "        << p.z << std::endl
			<< " (15)\tldz "      << p.ldz << std::endl
			<< " (16)\twork "     << *p.work << std::endl
			<< " (17)\tlwork "    << p.lwork << std::endl
			<< " (18)\tiwork "    << *p.iwork << std::endl
			<< " (19)\tifail "    << *p.ifail << std::endl
			<< " (20)\tinfo "     << p.info 
			<< std::endl;
			return os;
		}
		
	};
	
	
#if 0
	/* Subroutine */ 

	int dsyevx_( char *jobz, char *range, char *uplo, integer *n, doublereal *a, integer *lda, doublereal *vl, 
				doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer *m, doublereal *w, doublereal *z, 
				integer *ldz, doublereal *work, integer* lwork, integer* iwork, integer* ifail, integer* info );
	
#endif
	
	
	template< typename float_t >
	inline void
	sym_eigs_call( eigs_params< float_t >& p )
	{
		VMMLIB_ERROR( "not implemented for this type.", VMMLIB_HERE );
	}
	
	
	template<>
	inline void
	sym_eigs_call( eigs_params< float >& p )
	{
		//std::cout << "calling lapack sym x eigs (single precision) " << std::endl;
		ssyevx_( 
				&p.jobz,
				&p.range,
				&p.uplo,
				&p.n,
				p.a,
				&p.lda,
				p.vl,
				p.vu,
				&p.il,
				&p.iu,
				&p.abstol,
				&p.m,
				p.w,
				p.z,
				&p.ldz,
				p.work,
				&p.lwork,
				p.iwork,
				p.ifail,
				&p.info
				);
		
	}
	
	
	template<>
	inline void
	sym_eigs_call( eigs_params< double >& p )
	{
		//std::cout << "calling lapack sym x eigs (double precision) " << std::endl;
		dsyevx_( 
				&p.jobz,
				&p.range,
				&p.uplo,
				&p.n,
				p.a,
				&p.lda,
				p.vl,
				p.vu,
				&p.il,
				&p.iu,
				&p.abstol,
				&p.m,
				p.w,
				p.z,
				&p.ldz,
				p.work,
				&p.lwork,
				p.iwork,
				p.ifail,
				&p.info
				);
	}
	
} // namespace lapack



template< size_t N, typename float_t >
struct lapack_sym_eigs
{
	
	typedef matrix< N, N, float_t > m_input_type;
	typedef matrix< N, N, float_t > evectors_type;
	
	typedef vector< N, float_t > evalues_type;
	typedef vector< N, float_t > evector_type;
	typedef typename evalues_type::iterator evalue_iterator;
	typedef typename evalues_type::const_iterator evalue_const_iterator;

    typedef std::pair< float_t, size_t >  eigv_pair_type;
    
	lapack_sym_eigs();
	~lapack_sym_eigs();
	
	// version of reduced sym. eigenvalue decomposition, 
	// computes only the x largest magn. eigenvalues and their corresponding eigenvectors 
	template< size_t X>
	bool compute_x(
					 const m_input_type& A,
					 matrix< N, X, float_t >& eigvectors,
					 vector< X, float_t >& eigvalues
					 );

	// partial sym. eigenvalue decomposition
	// returns only the largest magn. eigenvalue and the corresponding eigenvector 
	bool compute_1st(
				   const m_input_type& A,
				   evector_type& eigvector,
				   float_t& eigvalue
				   );
	
	
	//computes all eigenvalues and eigenvectors for matrix A
	bool compute_all(
				 const m_input_type& A,
				 evectors_type& eigvectors,
				 evalues_type& eigvalues
				 );
		
	inline bool test_success( lapack::lapack_int info );
	
	lapack::eigs_params< float_t > p;
	
	const lapack::eigs_params< float_t >& get_params(){ return p; };

    // comparison functor 
    struct eigenvalue_compare
    {
        inline bool operator()( const eigv_pair_type& a, const eigv_pair_type& b )
        {
            return fabs( a.first ) > fabs( b.first );
        }
    };
       
}; // struct lapack_sym_eigs


template< size_t N, typename float_t >
lapack_sym_eigs< N, float_t >::lapack_sym_eigs()
{
	p.jobz      = 'V'; // Compute eigenvalues and eigenvectors.
	p.range     = 'A'; // all eigenvalues will be found.
	p.uplo      = 'U'; // Upper triangle of A is stored; or Lower triangle of A is stored.
	p.n         = N;
	p.a         = 0; //If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A.
	p.lda       = N;
	p.vl        = 0; //Not referenced if RANGE = 'A' or 'I'.
	p.vu        = 0; //Not referenced if RANGE = 'A' or 'I'.	 
	p.il        = 0; //Not referenced if RANGE = 'A' or 'V'.
	p.iu        = 0; //Not referenced if RANGE = 'A' or 'V'.	
	p.abstol    = 0.0001; //lie in an interval [a,b] of width less than or equal to ABSTOL + EPS *   max( |a|,|b| )
	p.m         = N; //The total number of eigenvalues found.  0 <= M <= N.
	p.w         = 0; //first m eigenvalues
	p.z         = 0; //first m eigenvectors
	p.ldz       = N; // The leading dimension of the array Z.  LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N).
	p.work      = new float_t;
	//FIXME: check if correct datatype
	p.iwork     = new lapack::lapack_int[5*N]; //[5*N]; // INTEGER array, dimension (5*N)
	p.ifail     = new lapack::lapack_int[N]; //[N];
	p.lwork     = -1; //8N
	
	// workspace query
	lapack::sym_eigs_call( p );
	
	p.lwork = static_cast< lapack::lapack_int >( p.work[0] );
	delete p.work;
	
	p.work = new float_t[ p.lwork ];
	
}



template< size_t N, typename float_t >
lapack_sym_eigs< N, float_t >::~lapack_sym_eigs()
{
	delete[] p.work; 
	delete[] p.iwork;
	delete[] p.ifail;
}
	
template< size_t N, typename float_t >
bool
lapack_sym_eigs< N, float_t >::compute_all(
                                        const m_input_type& A,
                                        evectors_type& eigvectors,
                                        evalues_type& eigvalues
                                        )
{
	// lapack destroys the contents of the input matrix
	m_input_type AA( A );

	p.range     = 'A'; // all eigenvalues will be found.
	p.a         = AA.array;
	p.ldz       = N;
    p.w         = eigvalues.array;
    p.z         = eigvectors.array;
	
	//debug std::cout << p << std::endl;
	
	lapack::sym_eigs_call< float_t >( p );
	
	return p.info == 0;
}	


template< size_t N, typename float_t >
template< size_t X >
bool
lapack_sym_eigs< N, float_t >::compute_x(
                                        const m_input_type& A,
                                        matrix< N, X, float_t >& eigvectors,
                                        vector< X, float_t >& eigvalues
                                        )
{
	//(1) get all eigenvalues and eigenvectors
	evectors_type* all_eigvectors = new evectors_type();
	evalues_type all_eigvalues;	
	compute_all( A, *all_eigvectors, all_eigvalues );
	
	//(2) sort the eigenvalues
	//std::pair< data, original_index >;
	std::vector< eigv_pair_type > eig_permutations;
	
	evalue_const_iterator it = all_eigvalues.begin(), it_end = all_eigvalues.end();
	size_t counter = 0;
	for( ; it != it_end; ++it, ++counter )
	{
		eig_permutations.push_back( eigv_pair_type( *it, counter ) );
	}
    
    std::sort(
                eig_permutations.begin(),
                eig_permutations.end(), 
                eigenvalue_compare()
			  );

	//sort the eigenvectors according to eigenvalue permutations
	evectors_type* sorted_eigvectors = new evectors_type();
	evalues_type sorted_eigvalues;	
	typename std::vector< eigv_pair_type >::const_iterator it2 = eig_permutations.begin(), it2_end = eig_permutations.end();
	evalue_iterator evalues_it = sorted_eigvalues.begin();

	for( counter = 0; it2 != it2_end; ++it2, ++evalues_it, ++counter )
	{
		*evalues_it = it2->first;
		sorted_eigvectors->set_column( counter, all_eigvectors->get_column( it2->second ));
	}	
	
	//(3) select the largest magnitude eigenvalues and the corresponding eigenvectors
	typename vector< X, float_t >::iterator it3 = eigvalues.begin(), it3_end = eigvalues.end();
	evalues_it = sorted_eigvalues.begin();
	for( ; it3 != it3_end; ++it3, ++evalues_it )
	{
		*it3 = *evalues_it;
	}

	sorted_eigvectors->get_sub_matrix( eigvectors );
	
	delete all_eigvectors;
	delete sorted_eigvectors;	
	
    return p.info == 0;
}	

template< size_t N, typename float_t >
bool
lapack_sym_eigs< N, float_t >::compute_1st(
										 const m_input_type& A,
										 evector_type& eigvector,
										 float_t& eigvalue
										 )
{
	//(1) get all eigenvalues and eigenvectors
	evectors_type* all_eigvectors = new evectors_type();
	evalues_type all_eigvalues;	
	compute_all( A, *all_eigvectors, all_eigvalues );
	
	//(2) sort the eigenvalues
	//std::pair< data, original_index >;
	std::vector< eigv_pair_type > eig_permutations;
	
	evalue_const_iterator it = all_eigvalues.begin(), it_end = all_eigvalues.end();
	size_t counter = 0;
	for( ; it != it_end; ++it, ++counter )
	{
		eig_permutations.push_back( eigv_pair_type( *it, counter ) );
	}
	
	std::sort(
			  eig_permutations.begin(),
			  eig_permutations.end(), 
			  eigenvalue_compare()
			  );
	
	//(2) select the largest magnitude eigenvalue and the corresponding eigenvector
	typename std::vector< eigv_pair_type >::const_iterator it2 = eig_permutations.begin();
	
	eigvalue = it2->first;
	all_eigvectors->get_column( it2->second, eigvector );
	
	delete all_eigvectors;
	
	return p.info == 0;
}	

	
	
	
} // namespace vmml

#endif