/usr/include/vmmlib/t3_hopm.hpp is in libvmmlib-dev 1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | /*
* VMMLib - Tensor Classes
*
* @author Susanne Suter
*
* the higher-order power method (HOPM) is also known as CP-ALS (ALS: alternating least squares)
* CP stands for Candecomp/Parafac (1970)
* references:
* - Carroll & Chang, 1970: Analysis of Individual Differences in Multidimensional Scaling via an N-way generalization of ``Eckart--Young'' decompositions, Psychometrika.
* - Harshman, 1970: Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multi-modal factor analysis, UCLA Working Papers in Phonetics.
* - De Lathauwer, De Moor, Vandewalle, 2000: A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl.
* - Kolda & Bader, 2009: Tensor Decompositions and Applications, SIAM Review.
* - Bader & Kolda, 2006: Algorithm 862: Matlab tensor classes for fast algorithm prototyping. ACM Transactions on Mathematical Software.
*
*/
#ifndef __VMML__T3_HOPM__HPP__
#define __VMML__T3_HOPM__HPP__
#include <vmmlib/t3_hosvd.hpp>
#include <vmmlib/matrix_pseudoinverse.hpp>
#include <vmmlib/blas_dgemm.hpp>
#include <vmmlib/blas_dot.hpp>
namespace vmml
{
template< size_t R, size_t I1, size_t I2, size_t I3, typename T = float >
class t3_hopm
{
public:
typedef tensor3< I1, I2, I3, T > t3_type;
typedef vector< R, T > lambda_type;
typedef matrix< I1, R, T > u1_type;
typedef matrix< I2, R, T > u2_type;
typedef matrix< I3, R, T > u3_type;
typedef matrix< R, I1, T > u1_inv_type;
typedef matrix< R, I2, T > u2_inv_type;
typedef matrix< R, I3, T > u3_inv_type;
typedef matrix< I1, I2*I3, T > u1_unfolded_type;
typedef matrix< I2, I1*I3, T > u2_unfolded_type;
typedef matrix< I3, I1*I2, T > u3_unfolded_type;
typedef matrix< R, R , T > m_r2_type;
typedef typename lambda_type::iterator lvalue_iterator;
typedef typename lambda_type::const_iterator lvalue_const_iterator;
typedef std::pair< T, size_t > lambda_pair_type;
//higher-order power method (lathauwer et al., 2000b)
template< typename T_init >
static void als( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_, lambda_type& lambdas_, T_init init, const size_t max_iterations_ = 100 );
static void reconstruct( t3_type& data_, const u1_type& u1_, const u2_type& u2_, const u3_type& u3_, const lambda_type& lambdas_ );
//ktensor = kruskal tensor, i.e., lambda, U1, U2, U3
static double norm_ktensor( const u1_type& u1_, const u2_type& u2_, const u3_type& u3_, const lambda_type& lambdas_ );
// init functors
struct init_hosvd
{
inline void operator()( const t3_type& data_, u2_type& u2_, u3_type& u3_ )
{
t3_hosvd< R, R, R, I1, I2, I3, T >::apply_mode2( data_, u2_ );
t3_hosvd< R, R, R, I1, I2, I3, T >::apply_mode3( data_, u3_ );
}
};
struct init_random
{
inline void operator()( const t3_type& data_, u2_type& u2_, u3_type& u3_ )
{
srand( time(NULL) );
u2_.set_random();
u3_.set_random();
}
};
//FIXME: check test on linux
#if 0
struct init_dct
{
inline void operator()( const t3_type& data_, u2_type& u2_, u3_type& u3_ )
{
u2_.set_dct();
u3_.set_dct();
}
};
#endif
protected:
static void optimize_mode1( const t3_type& data_, u1_type& u1, const u2_type& u2_, const u3_type& u3_, lambda_type& lambdas_ );
static void optimize_mode2( const t3_type& data_, const u1_type& u1_, u2_type& u2_, const u3_type& u3_, lambda_type& lambdas_ );
static void optimize_mode3( const t3_type& data_, const u1_type& u1_, const u2_type& u2_, u3_type& u3_, lambda_type& lambdas_ );
template< size_t J, size_t K, size_t L >
static void optimize( const matrix< J, K*L, T >& unfolding_,
matrix< J, R, T >& uj_,
const matrix< K, R, T >& uk_, const matrix< L, R, T >& ul_,
vector< R, T>& lambdas_
);
static void sort_dec( u1_type& u1_, u2_type& u2_, u3_type& u3_, lambda_type& lambdas_ );
// comparison functor
struct lambda_compare
{
inline bool operator()( const lambda_pair_type& a, const lambda_pair_type& b )
{
return fabs( a.first ) > fabs( b.first );
}
};
};
#define VMML_TEMPLATE_STRING template< size_t R, size_t I1, size_t I2, size_t I3, typename T >
#define VMML_TEMPLATE_CLASSNAME t3_hopm< R, I1, I2, I3, T >
VMML_TEMPLATE_STRING
template< typename T_init>
void
VMML_TEMPLATE_CLASSNAME::als( const t3_type& data_,
u1_type& u1_, u2_type& u2_, u3_type& u3_,
lambda_type& lambdas_,
T_init init,
const size_t max_iterations_ )
{
t3_type* approximated_data = new t3_type;
t3_type* residual_data = new t3_type;
residual_data->zero();
double max_f_norm = data_.frobenius_norm();
double normresidual = 0;
double norm1 = 0;
double norm2 = 0;
double norm3 = 0;
double fit = 0;
if (max_f_norm == 0 )
fit = 1;
double fitchange = 1;
double fitold = fit;
double fitchange_tolerance = 1.0e-4;
//intialize u1-u3
//inital guess not needed for u1 since it will be computed in the first optimization step
init( data_, u2_, u3_ );
assert( u2_.is_valid() && u3_.is_valid() );
assert( lambdas_.is_valid() );
#if CP_LOG
std::cout << "CP ALS: HOPM (for tensor3) " << std::endl;
#endif
size_t i = 0;
while( (fitchange >= fitchange_tolerance) && ( i < max_iterations_ ) ) //do until converges
{
fitold = fit;
optimize_mode1( data_, u1_, u2_, u3_, lambdas_ );
optimize_mode2( data_, u1_, u2_, u3_, lambdas_ );
optimize_mode3( data_, u1_, u2_, u3_, lambdas_ );
#if 0
//Reconstruct tensor and measure norm of approximation
//slower version since cp reconstruction is slow
reconstruct( *approximated_data, u1_, u2_, u3_, lambdas_ );
approx_norm = approximated_data->frobenius_norm();
*residual_data = data_ - *approximated_data;
normresidual = residual_data->frobenius_norm();
#else
//normresidual = sqrt( normX^2 + norm(P)^2 - 2 * innerprod(X,P) );
norm1 = data_.frobenius_norm();
norm1 *= norm1;
norm2 = norm_ktensor( u1_, u2_, u3_, lambdas_);
norm2 *= norm2;
norm3 = 2* data_.tensor_inner_product( lambdas_, u1_, u2_, u3_ );
normresidual = sqrt(norm1 + norm2 - norm3);
#endif
fit = 1 - ( normresidual / max_f_norm );
fitchange = fabs(fitold - fit);
#if CP_LOG
std::cout << "iteration '" << i
<< "', fit: " << fit
<< ", fitdelta: " << fitchange
<< ", normresidual: " << normresidual
<< std::endl;
#endif
++i;
} // end ALS
//sort lambdas by decreasing magnitude
sort_dec( u1_, u2_, u3_, lambdas_ );
delete residual_data;
delete approximated_data;
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::optimize_mode1( const t3_type& data_, u1_type& u1_, const u2_type& u2_, const u3_type& u3_, lambda_type& lambdas_ )
{
u1_unfolded_type* unfolding = new u1_unfolded_type; // -> u1
//data_.horizontal_unfolding_bwd( *unfolding ); //lathauwer
data_.frontal_unfolding_fwd( *unfolding );
assert( u2_.is_valid() && u3_.is_valid() );
optimize( *unfolding, u1_, u2_, u3_, lambdas_ );
delete unfolding;
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::optimize_mode2( const t3_type& data_, const u1_type& u1_, u2_type& u2_, const u3_type& u3_, lambda_type& lambdas_ )
{
u2_unfolded_type* unfolding = new u2_unfolded_type; // -> u2
data_.frontal_unfolding_bwd( *unfolding ); //lathauwer
//data_.horizontal_unfolding_fwd( *unfolding );
assert( u1_.is_valid() && u3_.is_valid() );
optimize( *unfolding, u2_, u1_, u3_, lambdas_ );
delete unfolding;
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::optimize_mode3( const t3_type& data_, const u1_type& u1_, const u2_type& u2_, u3_type& u3_, lambda_type& lambdas_ )
{
u3_unfolded_type* unfolding = new u3_unfolded_type; //-> u3
//data_.horizontal_unfolding_bwd( *unfolding );//lathauwer
data_.lateral_unfolding_fwd( *unfolding );
assert( u1_.is_valid() && u2_.is_valid() );
optimize( *unfolding, u3_, u1_, u2_, lambdas_ );
delete unfolding;
}
VMML_TEMPLATE_STRING
template< size_t J, size_t K, size_t L >
void
VMML_TEMPLATE_CLASSNAME::optimize(
const matrix< J, K*L, T >& unfolding_,
matrix< J, R, T >& uj_,
const matrix< K, R, T >& uk_, const matrix< L, R, T >& ul_,
vector< R, T>& lambdas_
)
{
typedef matrix< K*L, R, T > krp_matrix_type;
krp_matrix_type* krp_prod = new krp_matrix_type;
assert( uk_.is_valid() && ul_.is_valid() );
ul_.khatri_rao_product( uk_, *krp_prod );
matrix< J, R, T >* u_new = new matrix< J, R, T >;
blas_dgemm< J, K*L, R, T> blas_dgemm1;
blas_dgemm1.compute( unfolding_, *krp_prod, *u_new );
//square matrix of U_l and U_k
m_r2_type* uk_r = new m_r2_type;
m_r2_type* ul_r = new m_r2_type;
blas_dgemm< R, K, R, T> blas_dgemm2;
blas_dgemm2.compute_t( uk_, *uk_r );
assert( uk_r->is_valid() );
blas_dgemm< R, L, R, T> blas_dgemm3;
blas_dgemm3.compute_t( ul_, *ul_r );
assert( ul_r->is_valid() );
uk_r->multiply_piecewise( *ul_r );
assert( uk_r->is_valid() );
m_r2_type* pinv_t = new m_r2_type;
compute_pseudoinverse< m_r2_type > compute_pinv;
compute_pinv( *uk_r, *pinv_t );
blas_dgemm< J, R, R, T> blas_dgemm4;
blas_dgemm4.compute_bt( *u_new, *pinv_t, uj_ );
assert( uj_.is_valid() );
*u_new = uj_;
u_new->multiply_piecewise( *u_new ); //2 norm
u_new->columnwise_sum( lambdas_ );
assert( lambdas_.is_valid() );
lambdas_.sqrt_elementwise();
lambda_type* tmp = new lambda_type;
*tmp = lambdas_;
tmp->reciprocal_safe();
assert( tmp->is_valid() );
m_r2_type* diag_lambdas = new m_r2_type;
diag_lambdas->diag( *tmp );
matrix< J, R, T >* tmp_uj = new matrix< J, R, T >( uj_ );
blas_dgemm4.compute( *tmp_uj, *diag_lambdas, uj_ );
assert( uj_.is_valid() );
delete krp_prod;
delete uk_r;
delete ul_r;
delete pinv_t;
delete u_new;
delete diag_lambdas;
delete tmp;
delete tmp_uj;
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::reconstruct( t3_type& data_, const u1_type& u1_, const u2_type& u2_, const u3_type& u3_, const lambda_type& lambdas_ )
{
u1_inv_type* u1_t = new u1_inv_type;
u2_inv_type* u2_t = new u2_inv_type;
u3_inv_type* u3_t = new u3_inv_type;
typedef matrix< R, I2 * I3, T > m_temp_type;
m_temp_type* temp = new m_temp_type;
u1_.transpose_to( *u1_t );
u2_.transpose_to( *u2_t );
u3_.transpose_to( *u3_t );
data_.reconstruct_CP( lambdas_, *u1_t, *u2_t, *u3_t, *temp );
delete temp;
delete u1_t;
delete u2_t;
delete u3_t;
}
VMML_TEMPLATE_STRING
double
VMML_TEMPLATE_CLASSNAME::norm_ktensor( const u1_type& u1_, const u2_type& u2_, const u3_type& u3_, const lambda_type& lambdas_ )
{
m_r2_type* coeff2_matrix = new m_r2_type;
m_r2_type* cov_u1 = new m_r2_type;
m_r2_type* cov_u2 = new m_r2_type;
m_r2_type* cov_u3 = new m_r2_type;
blas_dgemm< R, 1, R, T >* blas_l2 = new blas_dgemm< R, 1, R, T>;
blas_l2->compute_vv_outer( lambdas_, lambdas_, *coeff2_matrix );
delete blas_l2;
blas_dgemm< R, I1, R, T >* blas_u1cov = new blas_dgemm< R, I1, R, T>;
blas_u1cov->compute_t( u1_, *cov_u1 );
delete blas_u1cov;
blas_dgemm< R, I2, R, T >* blas_u2cov = new blas_dgemm< R, I2, R, T>;
blas_u2cov->compute_t( u2_, *cov_u2 );
delete blas_u2cov;
blas_dgemm< R, I3, R, T >* blas_u3cov = new blas_dgemm< R, I3, R, T>;
blas_u3cov->compute_t( u3_, *cov_u3 );
delete blas_u3cov;
coeff2_matrix->multiply_piecewise( *cov_u1 );
coeff2_matrix->multiply_piecewise( *cov_u2 );
coeff2_matrix->multiply_piecewise( *cov_u3 );
double nrm = coeff2_matrix->sum_elements();
delete coeff2_matrix;
delete cov_u1;
delete cov_u2;
delete cov_u3;
return sqrt( nrm);
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::sort_dec( u1_type& u1_, u2_type& u2_, u3_type& u3_, lambda_type& lambdas_ )
{
//keep copy of original matrices
u1_type *orig_u1 = new u1_type( u1_ );
u2_type *orig_u2 = new u2_type( u2_ );
u3_type *orig_u3 = new u3_type( u3_ );
lambda_type sorted_lvalues;
//(1) store permutations of the lambdas (According to larges magnitude
std::vector< lambda_pair_type > lambda_permut;
lvalue_const_iterator it = lambdas_.begin(), it_end = lambdas_.end();
size_t counter = 0;
for( ; it != it_end; ++it, ++counter )
{
lambda_permut.push_back( lambda_pair_type ( *it, counter ) );
}
std::sort(
lambda_permut.begin(),
lambda_permut.end(),
lambda_compare()
);
//(2) sort the matrix vectors according to lambda permutations and set sorted lambdas
typename std::vector< lambda_pair_type >::const_iterator it2 = lambda_permut.begin(), it2_end = lambda_permut.end();
lvalue_iterator lvalues_it = lambdas_.begin();
for( counter = 0; it2 != it2_end; ++it2, ++counter, ++lvalues_it )
{
*lvalues_it = it2->first;
u1_.set_column( counter, orig_u1->get_column( it2->second ));
u2_.set_column( counter, orig_u2->get_column( it2->second ));
u3_.set_column( counter, orig_u3->get_column( it2->second ));
}
delete orig_u1;
delete orig_u2;
delete orig_u3;
}
#undef VMML_TEMPLATE_STRING
#undef VMML_TEMPLATE_CLASSNAME
}//end vmml namespace
#endif
|