This file is indexed.

/usr/include/vmmlib/t3_hosvd.hpp is in libvmmlib-dev 1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/* 
 * VMMLib - Tensor Classes
 *  
 * @author Susanne Suter
 *
 * The Tucker3 tensor class is consists of the same components (core tensor, basis matrices u1-u3) as the tucker3 model described in:
 * - Tucker, 1966: Some mathematical notes on three-mode factor analysis, Psychometrika.
 * - Kroonenberg & De Leeuw, 1980: Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika. (TUCKALS)
 * - De Lathauwer, De Moor, Vandewalle, 2000a: A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl.
 * - Kolda & Bader, 2009: Tensor Decompositions and Applications, SIAM Review.
 * - Bader & Kolda, 2006: Algorithm 862: Matlab tensor classes for fast algorithm prototyping. ACM Transactions on Mathematical Software.
 * 
 */

#ifndef __VMML__T3_HOSVD__HPP__
#define __VMML__T3_HOSVD__HPP__

#include <vmmlib/tensor3.hpp>
#include <vmmlib/lapack_svd.hpp>
#include <vmmlib/lapack_sym_eigs.hpp>
#include <vmmlib/blas_dgemm.hpp>

enum hosvd_method {
	eigs_e,
	svd_e
}; 


namespace vmml
{
	
	template< size_t R1, size_t R2, size_t R3, size_t I1, size_t I2, size_t I3, typename T = float >
	class t3_hosvd
	{
	public:    
		
		typedef double T_svd;
		
		typedef tensor3< I1, I2, I3, T > t3_type;
		
		typedef matrix< I1, R1, T > u1_type;
		typedef matrix< I2, R2, T > u2_type;
		typedef matrix< I3, R3, T > u3_type;
		
		typedef matrix< I1, I2*I3, T > u1_unfolded_type;
		typedef matrix< I2, I1*I3, T > u2_unfolded_type;
		typedef matrix< I3, I1*I2, T > u3_unfolded_type;
		
		typedef matrix< I1, I1, T > u1_cov_type;
		typedef matrix< I2, I2, T > u2_cov_type;
		typedef matrix< I3, I3, T > u3_cov_type;
		
		/*	higher-order singular value decomposition (HOSVD) with full rank decomposition (also known as Tucker decomposition). 
		 see: De Lathauer et al, 2000a: A multilinear singular value decomposition. 
		 the hosvd can be computed (a) with n-mode PCA, i.e., an eigenvalue decomposition on the covariance matrix of every mode's matricization, and 
		 (b) by performing a 2D SVD on the matricization of every mode. Matrix matricization means that a tensor I1xI2xI3 is unfolded/sliced into one matrix
		 with the dimensions I1xI2I3, which corresponds to a matrizitation alonge mode I1.
		 other known names for HOSVD: n-mode SVD, 3-mode factor analysis (3MFA, tucker3), 3M-PCA, n-mode PCA, higher-order SVD
		 */

		static void apply_mode1( const t3_type& data_, u1_type& u1_, hosvd_method method_ = eigs_e );
		static void apply_mode2( const t3_type& data_, u2_type& u2_, hosvd_method method_ = eigs_e );
		static void apply_mode3( const t3_type& data_, u3_type& u3_, hosvd_method method_ = eigs_e );
		
		static void apply_all( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_, hosvd_method method_ = eigs_e );
		static void hosvd( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_ );
		static void hoeigs( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_ );
		
	protected:
		
		//hosvd
        template< size_t M, size_t N, size_t R >
        static void get_svd_u_red( const matrix< M, N, T >& data_, matrix< M, R, T >& u_ );
		
        static void svd_mode1( const t3_type& data_, u1_type& u1_ );
        static void svd_mode2( const t3_type& data_, u2_type& u2_ );
        static void svd_mode3( const t3_type& data_, u3_type& u3_ );
 		
		//hosvd on eigenvalue decomposition = hoeigs
		template< size_t N, size_t R  >
        static void get_eigs_u_red( const matrix< N, N, T >& data_, matrix< N, R, T >& u_ );
		
		static void eigs_mode1( const t3_type& data_, u1_type& u1_ );
        static void eigs_mode2( const t3_type& data_, u2_type& u2_ );
        static void eigs_mode3( const t3_type& data_, u3_type& u3_ );
		
	}; //end hosvd class
	
#define VMML_TEMPLATE_STRING        template< size_t R1, size_t R2, size_t R3, size_t I1, size_t I2, size_t I3, typename T >
#define VMML_TEMPLATE_CLASSNAME     t3_hosvd< R1, R2, R3, I1, I2, I3, T >


	
VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::hosvd( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_ )
{
	svd_mode1( data_, u1_ );
	svd_mode2( data_, u2_ );
	svd_mode3( data_, u3_ );
}
	
VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::hoeigs( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_ )
{
	eigs_mode1( data_, u1_ );
	eigs_mode2( data_, u2_ );
	eigs_mode3( data_, u3_ );
}
	
VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::apply_all( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_, hosvd_method method_ )
{
	apply_mode1( data_, u1_, method_ );
	apply_mode2( data_, u2_, method_ );
	apply_mode3( data_, u3_, method_ );
}	
	
VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::apply_mode1( const t3_type& data_, u1_type& u1_, hosvd_method method_ )
{
	switch ( method_ )
	{
		case 0:
			eigs_mode1( data_, u1_ );
            break;
		case 1:
			svd_mode1( data_, u1_ );
            break;
		default:
			eigs_mode1( data_, u1_ );
	}
}	


VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::apply_mode2( const t3_type& data_, u2_type& u2_, hosvd_method method_ )
{
	switch ( method_ )
	{
		case 0:
			eigs_mode2( data_, u2_ );
            break;
		case 1:
			svd_mode2( data_, u2_ );
            break;
		default:
			eigs_mode2( data_, u2_ );
	}
}



VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::apply_mode3( const t3_type& data_, u3_type& u3_, hosvd_method method_ )
{
	switch ( method_ )
	{
		case 0:
			eigs_mode3( data_, u3_ );
            break;
		case 1:
			svd_mode3( data_, u3_ );
            break;
		default:
			eigs_mode3( data_, u3_ );
	}
}
	
/* SVD along mode 1, 2, and 3*/ 
	
VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::svd_mode1( const t3_type& data_, u1_type& u1_ )
{
	u1_unfolded_type* u = new u1_unfolded_type; // -> u1
	data_.lateral_unfolding_bwd( *u );
	
	get_svd_u_red( *u, u1_ );
	
	delete u;
}	

VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::svd_mode2( const t3_type& data_, u2_type& u2_ )
{
	u2_unfolded_type* u = new u2_unfolded_type; // -> u2
	data_.frontal_unfolding_bwd( *u );
	
	get_svd_u_red( *u, u2_ );
	
	delete u;
}

VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::svd_mode3( const t3_type& data_, u3_type& u3_ )
{
	u3_unfolded_type* u = new u3_unfolded_type; // -> u3
	data_.horizontal_unfolding_bwd( *u );
	
	get_svd_u_red( *u, u3_ );
	
	delete u;
}
	
/* EIGS for mode 1, 2 and 3*/ 	
	
VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::eigs_mode1( const t3_type& data_, u1_type& u1_ )
{
	//unfolding / matricization
	u1_unfolded_type* m_lateral = new u1_unfolded_type; // -> u1
	data_.lateral_unfolding_bwd( *m_lateral );
	
	//covariance matrix of unfolded data
	u1_cov_type* cov  = new u1_cov_type;
	blas_dgemm< I1, I2*I3, I1, T>* blas_cov = new blas_dgemm< I1, I2*I3, I1, T>;
	blas_cov->compute( *m_lateral, *cov );
	delete blas_cov;
	delete m_lateral;

	//compute x largest magnitude eigenvalues; x = R
	get_eigs_u_red( *cov, u1_ );
	
	delete cov;
}	

VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::eigs_mode2( const t3_type& data_, u2_type& u2_ )
{
	//unfolding / matricization
	u2_unfolded_type* m_frontal = new u2_unfolded_type; // -> u2
	data_.frontal_unfolding_bwd( *m_frontal );
	
	//covariance matrix of unfolded data
	u2_cov_type* cov  = new u2_cov_type;
	blas_dgemm< I2, I1*I3, I2, T>* blas_cov = new blas_dgemm< I2, I1*I3, I2, T>;
	blas_cov->compute( *m_frontal, *cov );
	delete blas_cov;
	delete m_frontal;
	
	//compute x largest magnitude eigenvalues; x = R
	get_eigs_u_red( *cov, u2_ );
	
	delete cov;
}	

VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::eigs_mode3( const t3_type& data_, u3_type& u3_)
{
	//unfolding / matricization
	u3_unfolded_type* m_horizontal = new u3_unfolded_type; // -> u3
	data_.horizontal_unfolding_bwd( *m_horizontal );
	
	//covariance matrix of unfolded data
	u3_cov_type* cov  = new u3_cov_type;
	blas_dgemm< I3, I1*I2, I3, T>* blas_cov = new blas_dgemm< I3, I1*I2, I3, T>;
	blas_cov->compute( *m_horizontal, *cov );
	delete blas_cov;
	delete m_horizontal;
	
	//compute x largest magnitude eigenvalues; x = R
	get_eigs_u_red( *cov, u3_ );
	
	delete cov;
}	
	
	
	
/* helper methods for SVD and EIGS*/	
	
VMML_TEMPLATE_STRING
template< size_t N, size_t R >
void 
VMML_TEMPLATE_CLASSNAME::get_eigs_u_red( const matrix< N, N, T >& data_, matrix< N, R, T >& u_ )
{
	typedef matrix< N, N, T_svd > cov_matrix_type;
	typedef vector< R, T_svd > eigval_type;
	typedef	matrix< N, R, T_svd > eigvec_type;
	//typedef	matrix< N, R, T_coeff > coeff_type;
	
	//compute x largest magnitude eigenvalues; x = R
	eigval_type* eigxvalues =  new eigval_type;
	eigvec_type* eigxvectors = new eigvec_type; 
	
	lapack_sym_eigs< N, T_svd >  eigs;
	cov_matrix_type* data = new cov_matrix_type;
	data->cast_from( data_ );
	if( eigs.compute_x( *data, *eigxvectors, *eigxvalues) ) {
		
		/*if( _is_quantify_coeff ){
			coeff_type* evec_quant = new coeff_type; 
			T min_value = 0; T max_value = 0;
			u_.cast_from( *eigxvectors );
			u_.quantize( *evec_quant, min_value, max_value );
			evec_quant->dequantize( u_, min_value, max_value );
			delete evec_quant;
		} else */ if ( sizeof( T ) != 4 ){
			u_.cast_from( *eigxvectors );
		} else {
			u_ = *eigxvectors;
		}
		
	} else {
		u_.zero();
	}
	
	delete eigxvalues;
	delete eigxvectors;
	delete data;
	
}

VMML_TEMPLATE_STRING
template< size_t M, size_t N, size_t R >
void 
VMML_TEMPLATE_CLASSNAME::get_svd_u_red( const matrix< M, N, T >& data_, matrix< M, R, T >& u_ )
{
	typedef	matrix< M, N, T_svd > svd_m_type;
	//FIXME: typedef	matrix< M, N, T_coeff > coeff_type;
	typedef	matrix< M, N, T > m_type;
	typedef vector< N, T_svd > lambdas_type;
	
	svd_m_type* u_double = new svd_m_type; 
	u_double->cast_from( data_ );
	
	//FIXME:: coeff_type* u_quant = new coeff_type; 
	m_type* u_out = new m_type; 
	
	lambdas_type* lambdas  = new lambdas_type;
	lapack_svd< M, N, T_svd >* svd = new lapack_svd<  M, N, T_svd >();
	if( svd->compute_and_overwrite_input( *u_double, *lambdas )) {
		
		/*		if( _is_quantify_coeff ){
		 T min_value = 0; T max_value = 0;
		 u_comp->cast_from( *u_double );
		 //FIXME: u_comp->quantize( *u_quant, min_value, max_value );
		 //FIXME: u_quant->dequantize( *u_internal, min_value, max_value );
		 } else */ if ( sizeof( T ) != 4 ){
			 u_out->cast_from( *u_double );
		 } else {
			 *u_out = *u_double;
		 }
		
		u_out->get_sub_matrix( u_ );
		
	} else {
		u_.zero();
	}
	
	delete lambdas;
	delete svd;
	delete u_double;
	//delete u_quant;
	delete u_out;
}	

#undef VMML_TEMPLATE_STRING
#undef VMML_TEMPLATE_CLASSNAME

}//end vmml namespace

#endif