/usr/include/vmmlib/tucker3_tensor.hpp is in libvmmlib-dev 1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 | /*
* VMMLib - Tensor Classes
*
* @author Susanne Suter
* @author Jonas Boesch
*
* The Tucker3 tensor class is consists of the same components (core tensor, basis matrices u1-u3) as the tucker3 model described in:
* - Tucker, 1966: Some mathematical notes on three-mode factor analysis, Psychometrika.
* - De Lathauwer, De Moor, Vandewalle, 2000a: A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl.
* - De Lathauwer, De Moor, Vandewalle, 2000b: On the Best rank-1 and Rank-(R_1, R_2, ..., R_N) Approximation and Applications of Higher-Order Tensors, SIAM J. Matrix Anal. Appl.
* - Kolda & Bader, 2009: Tensor Decompositions and Applications, SIAM Review.
*
* see also quantized Tucker3 tensor (qtucker3_tensor.hpp)
*/
#ifndef __VMML__TUCKER3_TENSOR__HPP__
#define __VMML__TUCKER3_TENSOR__HPP__
#include <vmmlib/t3_hooi.hpp>
namespace vmml
{
template< size_t R1, size_t R2, size_t R3, size_t I1, size_t I2, size_t I3, typename T_value = float, typename T_coeff = double >
class tucker3_tensor
{
public:
typedef float T_internal;
typedef tucker3_tensor< R1, R2, R3, I1, I2, I3, T_value, T_coeff > tucker3_type;
typedef t3_hooi< R1, R2, R3, I1, I2, I3, T_coeff > t3_hooi_type;
typedef tensor3< I1, I2, I3, T_value > t3_type;
typedef tensor3< R1, R2, R3, T_coeff > t3_core_type;
typedef matrix< I1, R1, T_coeff > u1_type;
typedef matrix< I2, R2, T_coeff > u2_type;
typedef matrix< I3, R3, T_coeff > u3_type;
typedef tensor3< I1, I2, I3, T_internal > t3_comp_type;
typedef tensor3< R1, R2, R3, T_internal > t3_core_comp_type;
typedef matrix< I1, R1, T_internal > u1_comp_type;
typedef matrix< I2, R2, T_internal > u2_comp_type;
typedef matrix< I3, R3, T_internal > u3_comp_type;
static const size_t SIZE = R1*R2*R3 + I1*R1 + I2*R2 + I3*R3;
tucker3_tensor();
tucker3_tensor( t3_core_type& core );
tucker3_tensor( t3_core_type& core, u1_type& U1, u2_type& U2, u3_type& U3 );
tucker3_tensor( const t3_type& data_, u1_type& U1, u2_type& U2, u3_type& U3 );
tucker3_tensor( const tucker3_type& other );
~tucker3_tensor();
void set_core( t3_core_type& core ) { _core = t3_core_type( core ); _core_comp.cast_from( core ); } ;
void set_u1( u1_type& U1 ) { *_u1 = U1; _u1_comp->cast_from( U1 ); } ;
void set_u2( u2_type& U2 ) { *_u2 = U2; _u2_comp->cast_from( U2 ); } ;
void set_u3( u3_type& U3 ) { *_u3 = U3; _u3_comp->cast_from( U3 ); } ;
void get_core( t3_core_type& data_ ) const { data_ = _core; } ;
void get_u1( u1_type& U1 ) const { U1 = *_u1; } ;
void get_u2( u2_type& U2 ) const { U2 = *_u2; } ;
void get_u3( u3_type& U3 ) const { U3 = *_u3; } ;
void set_core_comp( t3_core_comp_type& core ) { _core_comp = t3_core_comp_type( core ); _core.cast_from( _core_comp ); } ;
void set_u1_comp( u1_comp_type& U1 ) { *_u1_comp = U1; _u1->cast_from( U1 ); } ;
void set_u2_comp( u2_comp_type& U2 ) { *_u2_comp = U2; _u2->cast_from( U2 ); } ;
void set_u3_comp( u3_comp_type& U3 ) { *_u3_comp = U3; _u3->cast_from( U3 ); } ;
void get_core_comp( t3_core_comp_type& data_ ) const { data_ = _core_comp; } ;
void get_u1_comp( u1_comp_type& U1 ) const { U1 = *_u1_comp; } ;
void get_u2_comp( u2_comp_type& U2 ) const { U2 = *_u2_comp; } ;
void get_u3_comp( u3_comp_type& U3 ) const { U3 = *_u3_comp; } ;
//get number of nonzeros for tensor decomposition
size_t nnz() const;
size_t nnz( const T_value& threshold ) const;
size_t nnz_core() const;
size_t size_core() const;
size_t size() const { return SIZE; } ;
void threshold_core( const size_t& nnz_core_, size_t& nnz_core_is_ );
void threshold_core( const T_coeff& threshold_value_, size_t& nnz_core_ );
void reconstruct( t3_type& data_ );
template< typename T_init>
void decompose( const t3_type& data_, T_init init );
template< typename T_init>
void tucker_als( const t3_type& data_, T_init init );
template< typename T_init>
void incr_block_diag_als( const t3_type& data_, T_init init );
template< size_t K1, size_t K2, size_t K3>
void reduce_ranks( const tucker3_tensor< K1, K2, K3, I1, I2, I3, T_value, T_coeff >& other ); //call TuckerJI.reduce_ranks(TuckerKI) K1 -> R1, K2 -> R2, K3 -> R3
template< size_t K1, size_t K2, size_t K3>
void subsampling( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, const size_t& factor );
template< size_t K1, size_t K2, size_t K3>
void subsampling_on_average( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, const size_t& factor );
template< size_t K1, size_t K2, size_t K3>
void region_of_interest( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other,
const size_t& start_index1, const size_t& end_index1,
const size_t& start_index2, const size_t& end_index2,
const size_t& start_index3, const size_t& end_index3);
friend std::ostream& operator << ( std::ostream& os, const tucker3_type& t3 )
{
t3_core_type core; t3.get_core( core );
u1_type* u1 = new u1_type; t3.get_u1( *u1 );
u2_type* u2 = new u2_type; t3.get_u2( *u2 );
u3_type* u3 = new u3_type; t3.get_u3( *u3 );
os << "U1: " << std::endl << *u1 << std::endl
<< "U2: " << std::endl << *u2 << std::endl
<< "U3: " << std::endl << *u3 << std::endl
<< "core: " << std::endl << core << std::endl;
delete u1;
delete u2;
delete u3;
return os;
}
void cast_members();
void cast_comp_members();
protected:
tucker3_type operator=( const tucker3_type& other ) { return (*this); };
private:
//t3_core_type* _core ;
u1_type* _u1 ;
u2_type* _u2 ;
u3_type* _u3 ;
t3_core_type _core ;
//used only internally for computations to have a higher precision
t3_core_comp_type _core_comp ;
u1_comp_type* _u1_comp ;
u2_comp_type* _u2_comp ;
u3_comp_type* _u3_comp ;
}; // class tucker3_tensor
#define VMML_TEMPLATE_STRING template< size_t R1, size_t R2, size_t R3, size_t I1, size_t I2, size_t I3, typename T_value, typename T_coeff >
#define VMML_TEMPLATE_CLASSNAME tucker3_tensor< R1, R2, R3, I1, I2, I3, T_value, T_coeff >
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( )
{
_core.zero();
_u1 = new u1_type(); _u1->zero();
_u2 = new u2_type(); _u2->zero();
_u3 = new u3_type(); _u3->zero();
_core_comp.zero();
_u1_comp = new u1_comp_type(); _u1_comp->zero();
_u2_comp = new u2_comp_type(); _u2_comp->zero();
_u3_comp = new u3_comp_type(); _u3_comp->zero();
}
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( t3_core_type& core )
{
_core = core;
_u1 = new u1_type(); _u1->zero();
_u2 = new u2_type(); _u2->zero();
_u3 = new u3_type(); _u3->zero();
_u1_comp = new u1_comp_type(); _u1_comp->zero();
_u2_comp = new u2_comp_type(); _u2_comp->zero();
_u3_comp = new u3_comp_type(); _u3_comp->zero();
_core_comp.cast_from( core );
}
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( t3_core_type& core, u1_type& U1, u2_type& U2, u3_type& U3 )
{
_core = core;
_u1 = new u1_type( U1 );
_u2 = new u2_type( U2 );
_u3 = new u3_type( U3 );
_u1_comp = new u1_comp_type();
_u2_comp = new u2_comp_type();
_u3_comp = new u3_comp_type();
cast_comp_members();
}
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( const t3_type& data_, u1_type& U1, u2_type& U2, u3_type& U3 )
{
_u1 = new u1_type( U1 );
_u2 = new u2_type( U2 );
_u3 = new u3_type( U3 );
_u1_comp = new u1_comp_type();
_u2_comp = new u2_comp_type();
_u3_comp = new u3_comp_type();
t3_hooi_type::derive_core( data_, *_u1, *_u2, *_u3, _core );
cast_comp_members();
}
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( const tucker3_type& other )
{
_u1 = new u1_type();
_u2 = new u2_type();
_u3 = new u3_type();
_u1_comp = new u1_comp_type();
_u2_comp = new u2_comp_type();
_u3_comp = new u3_comp_type();
other.get_core( _core );
other.get_u1( *_u1 );
other.get_u2( *_u2 );
other.get_u3( *_u3 );
cast_comp_members();
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::cast_members()
{
_u1->cast_from( *_u1_comp );
_u2->cast_from( *_u2_comp );
_u3->cast_from( *_u3_comp );
_core.cast_from( _core_comp);
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::cast_comp_members()
{
_u1_comp->cast_from( *_u1 );
_u2_comp->cast_from( *_u2 );
_u3_comp->cast_from( *_u3 );
_core_comp.cast_from( _core);
}
VMML_TEMPLATE_STRING
size_t
VMML_TEMPLATE_CLASSNAME::nnz_core() const
{
return _core_comp.nnz();
}
VMML_TEMPLATE_STRING
size_t
VMML_TEMPLATE_CLASSNAME::size_core() const
{
return _core_comp.size();
}
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::~tucker3_tensor( )
{
delete _u1;
delete _u2;
delete _u3;
delete _u1_comp;
delete _u2_comp;
delete _u3_comp;
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::reconstruct( t3_type& data_ )
{
t3_comp_type data;
data.cast_from( data_ );
data.full_tensor3_matrix_multiplication( _core_comp, *_u1_comp, *_u2_comp, *_u3_comp );
//convert reconstructed data, which is in type T_internal (double, float) to T_value (uint8 or uint16)
if( (sizeof(T_value) == 1) || (sizeof(T_value) == 2) ){
data_.float_t_to_uint_t( data );
} else {
data_.cast_from( data );
}
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::threshold_core( const size_t& nnz_core_, size_t& nnz_core_is_ )
{
nnz_core_is_ = _core_comp.nnz();
T_coeff threshold_value = 0.00001;
while( nnz_core_is_ > nnz_core_ ) {
_core_comp.threshold( threshold_value );
nnz_core_is_ = _core_comp.nnz();
//threshold value scheme
if( threshold_value < 0.01) {
threshold_value *= 10;
} else if ( threshold_value < 0.2) {
threshold_value += 0.05;
} else if ( threshold_value < 1) {
threshold_value += 0.25;
} else if (threshold_value < 10 ) {
threshold_value += 1;
} else if (threshold_value < 50 ) {
threshold_value += 10;
} else if (threshold_value < 200 ) {
threshold_value += 50;
} else if (threshold_value < 500 ) {
threshold_value += 100;
} else if (threshold_value < 2000 ) {
threshold_value += 500;
} else if (threshold_value < 5000 ) {
threshold_value += 3000;
} else if (threshold_value >= 5000 ){
threshold_value += 5000;
}
}
_core.cast_from( _core_comp);
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::threshold_core( const T_coeff& threshold_value_, size_t& nnz_core_ )
{
_core_comp.threshold( threshold_value_ );
nnz_core_ = _core_comp.nnz();
_core.cast_from( _core_comp);
}
VMML_TEMPLATE_STRING
template< typename T_init>
void
VMML_TEMPLATE_CLASSNAME::decompose( const t3_type& data_, T_init init )
{
tucker_als( data_, init );
}
VMML_TEMPLATE_STRING
template< typename T_init >
void
VMML_TEMPLATE_CLASSNAME::tucker_als( const t3_type& data_, T_init init )
{
t3_comp_type data;
data.cast_from( data_ );
typedef t3_hooi< R1, R2, R3, I1, I2, I3, T_internal > hooi_type;
hooi_type::als( data, *_u1_comp, *_u2_comp, *_u3_comp, _core_comp, init );
cast_members();
}
VMML_TEMPLATE_STRING
template< typename T_init >
void
VMML_TEMPLATE_CLASSNAME::incr_block_diag_als( const t3_type& data_, T_init init )
{
t3_comp_type data;
data.cast_from( data_ );
//for number of increments, do a block of tucker with size R1=R2=R3 and set core only in diagonal, all other core values = zero; first approach
typedef t3_hooi< R1, R2, R3, I1, I2, I3, T_internal > hooi_type;
hooi_type::als( data, *_u1_comp, *_u2_comp, *_u3_comp, _core_comp, init );
cast_members();
}
VMML_TEMPLATE_STRING
template< size_t K1, size_t K2, size_t K3>
void
VMML_TEMPLATE_CLASSNAME::reduce_ranks( const tucker3_tensor< K1, K2, K3, I1, I2, I3, T_value, T_coeff >& other )
//TuckerJI.rank_recuction(TuckerKI) K1 -> R1, K2 -> R2, K3 -> R3; I1, I2, I3 stay the same
{
assert(R1 <= K1);
assert(R2 <= K2);
assert(R3 <= K3);
//reduce basis matrices
matrix< I1, K1, T_coeff >* u1 = new matrix< I1, K1, T_coeff >();
other.get_u1( *u1);
for( size_t r1 = 0; r1 < R1; ++r1 )
{
_u1->set_column( r1, u1->get_column( r1 ));
}
matrix< I2, K2, T_coeff >* u2 = new matrix< I2, K2, T_coeff >();
other.get_u2( *u2 );
for( size_t r2 = 0; r2 < R2; ++r2)
{
_u2->set_column( r2, u2->get_column( r2 ));
}
matrix< I3, K3, T_coeff >* u3 = new matrix< I3, K3, T_coeff >();
other.get_u3( *u3 );
for( size_t r3 = 0; r3 < R3; ++r3)
{
_u3->set_column( r3, u3->get_column( r3 ));
}
//reduce core
tensor3<K1, K2, K3, T_coeff > other_core;
other.get_core( other_core );
for( size_t r3 = 0; r3 < R3; ++r3 )
{
for( size_t r1 = 0; r1 < R1; ++r1 )
{
for( size_t r2 = 0; r2 < R2; ++r2 )
{
_core.at( r1, r2, r3 ) = other_core.at( r1, r2, r3 );
}
}
}
cast_comp_members();
delete u1;
delete u2;
delete u3;
}
VMML_TEMPLATE_STRING
template< size_t K1, size_t K2, size_t K3>
void
VMML_TEMPLATE_CLASSNAME::subsampling( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, const size_t& factor )
{
assert(I1 <= K1);
assert(I1 <= K2);
assert(I1 <= K3);
//subsample basis matrices
matrix< K1, R1, T_coeff >* u1 = new matrix< K1, R1, T_coeff >();
other.get_u1( *u1 );
for( size_t i1 = 0, i = 0; i1 < K1; i1 += factor, ++i )
{
_u1->set_row( i, u1->get_row( i1 ));
}
matrix< K2, R2, T_coeff >* u2 = new matrix< K2, R2, T_coeff >();
other.get_u2( *u2 );
for( size_t i2 = 0, i = 0; i2 < K2; i2 += factor, ++i)
{
_u2->set_row( i, u2->get_row( i2 ));
}
matrix< K3, R3, T_coeff >* u3 = new matrix< K3, R3, T_coeff >() ;
other.get_u3( *u3 );
for( size_t i3 = 0, i = 0; i3 < K3; i3 += factor, ++i)
{
_u3->set_row( i, u3->get_row( i3 ));
}
other.get_core( _core );
cast_comp_members();
delete u1;
delete u2;
delete u3;
}
VMML_TEMPLATE_STRING
template< size_t K1, size_t K2, size_t K3>
void
VMML_TEMPLATE_CLASSNAME::subsampling_on_average( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, const size_t& factor )
{
assert(I1 <= K1);
assert(I1 <= K2);
assert(I1 <= K3);
//subsample basis matrices
matrix< K1, R1, T_coeff >* u1 = new matrix< K1, R1, T_coeff >();
other.get_u1( *u1 );
for( size_t i1 = 0, i = 0; i1 < K1; i1 += factor, ++i )
{
vector< R1, T_internal > tmp_row = u1->get_row( i1 );
T_internal num_items_averaged = 1;
for( size_t j = i1+1; (j < (factor+i1)) & (j < K1); ++j, ++num_items_averaged )
tmp_row += u1->get_row( j );
tmp_row /= num_items_averaged;
_u1->set_row( i, tmp_row);
}
matrix< K2, R2, T_coeff >* u2 = new matrix< K2, R2, T_coeff >();
other.get_u2( *u2 );
for( size_t i2 = 0, i = 0; i2 < K2; i2 += factor, ++i)
{
vector< R2, T_internal > tmp_row = u2->get_row( i2 );
T_internal num_items_averaged = 1;
for( size_t j = i2+1; (j < (factor+i2)) & (j < K2); ++j, ++num_items_averaged )
tmp_row += u2->get_row( j );
tmp_row /= num_items_averaged;
_u2->set_row( i, u2->get_row( i2 ));
}
matrix< K3, R3, T_coeff >* u3 = new matrix< K3, R3, T_coeff >();
other.get_u3( *u3 );
for( size_t i3 = 0, i = 0; i3 < K3; i3 += factor, ++i)
{
vector< R3, T_internal > tmp_row = u3->get_row( i3 );
T_internal num_items_averaged = 1;
for( size_t j = i3+1; (j < (factor+i3)) & (j < K3); ++j, ++num_items_averaged )
tmp_row += u3->get_row( j );
tmp_row /= num_items_averaged;
_u3->set_row( i, u3->get_row( i3 ));
}
other.get_core( _core );
cast_comp_members();
delete u1;
delete u2;
delete u3;
}
VMML_TEMPLATE_STRING
template< size_t K1, size_t K2, size_t K3>
void
VMML_TEMPLATE_CLASSNAME::region_of_interest( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other,
const size_t& start_index1, const size_t& end_index1,
const size_t& start_index2, const size_t& end_index2,
const size_t& start_index3, const size_t& end_index3)
{
assert(I1 <= K1);
assert(I1 <= K2);
assert(I1 <= K3);
assert(start_index1 < end_index1);
assert(start_index2 < end_index2);
assert(start_index3 < end_index3);
assert(end_index1 < K1);
assert(end_index2 < K2);
assert(end_index3 < K3);
//region_of_interes of basis matrices
matrix< K1, R1, T_internal >* u1 = new matrix< K1, R1, T_internal >();
other.get_u1_comp( *u1 );
for( size_t i1 = start_index1, i = 0; i1 < end_index1; ++i1, ++i )
{
_u1_comp->set_row( i, u1->get_row( i1 ));
}
matrix< K2, R2, T_internal>* u2 = new matrix< K2, R2, T_internal>();
other.get_u2_comp( *u2 );
for( size_t i2 = start_index2, i = 0; i2 < end_index2; ++i2, ++i)
{
_u2_comp->set_row( i, u2->get_row( i2 ));
}
matrix< K3, R3, T_internal >* u3 = new matrix< K3, R3, T_internal>();
other.get_u3_comp( *u3 );
for( size_t i3 = start_index3, i = 0; i3 < end_index3; ++i3, ++i)
{
_u3_comp->set_row( i, u3->get_row( i3 ));
}
other.get_core_comp( _core_comp );
//cast_comp_members();
delete u1;
delete u2;
delete u3;
}
VMML_TEMPLATE_STRING
size_t
VMML_TEMPLATE_CLASSNAME::nnz() const
{
size_t counter = 0;
counter += _u1_comp->nnz();
counter += _u2_comp->nnz();
counter += _u3_comp->nnz();
counter += _core_comp.nnz();
return counter;
}
VMML_TEMPLATE_STRING
size_t
VMML_TEMPLATE_CLASSNAME::nnz( const T_value& threshold ) const
{
size_t counter = 0;
counter += _u1_comp->nnz( threshold );
counter += _u2_comp->nnz( threshold );
counter += _u3_comp->nnz( threshold );
counter += _core_comp.nnz( threshold );
return counter;
}
#undef VMML_TEMPLATE_STRING
#undef VMML_TEMPLATE_CLASSNAME
} // namespace vmml
#endif
|