This file is indexed.

/usr/include/vmmlib/tucker3_tensor.hpp is in libvmmlib-dev 1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/* 
 * VMMLib - Tensor Classes
 *  
 * @author Susanne Suter
 * @author Jonas Boesch
 *
 * The Tucker3 tensor class is consists of the same components (core tensor, basis matrices u1-u3) as the tucker3 model described in:
 * - Tucker, 1966: Some mathematical notes on three-mode factor analysis, Psychometrika.
 * - De Lathauwer, De Moor, Vandewalle, 2000a: A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl.
 * - De Lathauwer, De Moor, Vandewalle, 2000b: On the Best rank-1 and Rank-(R_1, R_2, ..., R_N) Approximation and Applications of Higher-Order Tensors, SIAM J. Matrix Anal. Appl.
 * - Kolda & Bader, 2009: Tensor Decompositions and Applications, SIAM Review.
 * 
 * see also quantized Tucker3 tensor (qtucker3_tensor.hpp)
 */

#ifndef __VMML__TUCKER3_TENSOR__HPP__
#define __VMML__TUCKER3_TENSOR__HPP__

#include <vmmlib/t3_hooi.hpp>

namespace vmml
{
	
	template< size_t R1, size_t R2, size_t R3, size_t I1, size_t I2, size_t I3, typename T_value = float, typename T_coeff = double >
	class tucker3_tensor
	{
public:    
	typedef float T_internal;	
	
	typedef tucker3_tensor< R1, R2, R3, I1, I2, I3, T_value, T_coeff > tucker3_type;
	typedef t3_hooi< R1, R2, R3, I1, I2, I3, T_coeff > t3_hooi_type;
	
	typedef tensor3< I1, I2, I3, T_value > t3_type;
	typedef tensor3< R1, R2, R3, T_coeff > t3_core_type;
	typedef matrix< I1, R1, T_coeff > u1_type;
	typedef matrix< I2, R2, T_coeff > u2_type;
	typedef matrix< I3, R3, T_coeff > u3_type;
	
	typedef tensor3< I1, I2, I3, T_internal > t3_comp_type;
	typedef tensor3< R1, R2, R3, T_internal > t3_core_comp_type;
	typedef matrix< I1, R1, T_internal > u1_comp_type;
	typedef matrix< I2, R2, T_internal > u2_comp_type;
	typedef matrix< I3, R3, T_internal > u3_comp_type;
		
	static const size_t SIZE = R1*R2*R3 + I1*R1 + I2*R2 + I3*R3;
		
	tucker3_tensor();
	tucker3_tensor( t3_core_type& core );
	tucker3_tensor( t3_core_type& core, u1_type& U1, u2_type& U2, u3_type& U3 );
	tucker3_tensor( const t3_type& data_, u1_type& U1, u2_type& U2, u3_type& U3 );
	tucker3_tensor( const tucker3_type& other );
	~tucker3_tensor();
		
	void set_core( t3_core_type& core )  { _core = t3_core_type( core ); _core_comp.cast_from( core ); } ;
	void set_u1( u1_type& U1 ) { *_u1 = U1; _u1_comp->cast_from( U1 ); } ;
	void set_u2( u2_type& U2 ) { *_u2 = U2; _u2_comp->cast_from( U2 ); } ;
	void set_u3( u3_type& U3 ) { *_u3 = U3; _u3_comp->cast_from( U3 ); } ;
	
	void get_core( t3_core_type& data_ ) const { data_ = _core; } ;
	void get_u1( u1_type& U1 ) const { U1 = *_u1; } ;
	void get_u2( u2_type& U2 ) const { U2 = *_u2; } ;
	void get_u3( u3_type& U3 ) const { U3 = *_u3; } ;
		
	void set_core_comp( t3_core_comp_type& core )  { _core_comp = t3_core_comp_type( core ); _core.cast_from( _core_comp ); } ;
	void set_u1_comp( u1_comp_type& U1 ) { *_u1_comp = U1; _u1->cast_from( U1 ); } ;
	void set_u2_comp( u2_comp_type& U2 ) { *_u2_comp = U2; _u2->cast_from( U2 ); } ;
	void set_u3_comp( u3_comp_type& U3 ) { *_u3_comp = U3; _u3->cast_from( U3 ); } ;

	void get_core_comp( t3_core_comp_type& data_ ) const { data_ = _core_comp; } ;
	void get_u1_comp( u1_comp_type& U1 ) const { U1 = *_u1_comp; } ;
	void get_u2_comp( u2_comp_type& U2 ) const { U2 = *_u2_comp; } ;
	void get_u3_comp( u3_comp_type& U3 ) const { U3 = *_u3_comp; } ;
		
	//get number of nonzeros for tensor decomposition
	size_t nnz() const;
	size_t nnz( const T_value& threshold ) const;	
	size_t nnz_core() const;
	size_t size_core() const;
	size_t size() const { return SIZE; } ;
	
	void threshold_core( const size_t& nnz_core_, size_t& nnz_core_is_ ); 
	void threshold_core( const T_coeff& threshold_value_, size_t& nnz_core_ ); 
	void reconstruct( t3_type& data_ ); 
		
	template< typename T_init>
	void decompose( const t3_type& data_, T_init init );
		
	template< typename T_init>
	void tucker_als( const t3_type& data_, T_init init  );	
	template< typename T_init>
	void incr_block_diag_als( const t3_type& data_, T_init init  );	
		
		
	template< size_t K1, size_t K2, size_t K3>
	void reduce_ranks( const tucker3_tensor< K1, K2, K3, I1, I2, I3, T_value, T_coeff >& other ); //call TuckerJI.reduce_ranks(TuckerKI) K1 -> R1, K2 -> R2, K3 -> R3

	template< size_t K1, size_t K2, size_t K3>
	void subsampling( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, const size_t& factor  );

	template< size_t K1, size_t K2, size_t K3>
	void subsampling_on_average( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, const size_t& factor  );

	template< size_t K1, size_t K2, size_t K3>
	void region_of_interest( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, 
                                 const size_t& start_index1, const size_t& end_index1, 
                                 const size_t& start_index2, const size_t& end_index2, 
                                 const size_t& start_index3, const size_t& end_index3);

	friend std::ostream& operator << ( std::ostream& os, const tucker3_type& t3 )
	{
		t3_core_type core; t3.get_core( core );
		u1_type* u1 = new u1_type; t3.get_u1( *u1 );
		u2_type* u2 = new u2_type; t3.get_u2( *u2 );
		u3_type* u3 = new u3_type; t3.get_u3( *u3 );
		
		os << "U1: " << std::endl << *u1 << std::endl
		<< "U2: " << std::endl << *u2 << std::endl
		<< "U3: " << std::endl << *u3 << std::endl
		<< "core: " << std::endl << core << std::endl;
		
		delete u1;
		delete u2;
		delete u3;
		return os;
	}
		
		
        void cast_members();
        void cast_comp_members();
 		
protected:
		tucker3_type operator=( const tucker3_type& other ) { return (*this); };
		
private:
       //t3_core_type* _core ;
        u1_type* _u1 ;
        u2_type* _u2 ;
        u3_type* _u3 ;
		t3_core_type _core ;
		
		//used only internally for computations to have a higher precision
        t3_core_comp_type _core_comp ;
        u1_comp_type* _u1_comp ;
        u2_comp_type* _u2_comp ;
        u3_comp_type* _u3_comp ;
		
}; // class tucker3_tensor


#define VMML_TEMPLATE_STRING        template< size_t R1, size_t R2, size_t R3, size_t I1, size_t I2, size_t I3, typename T_value, typename T_coeff >
#define VMML_TEMPLATE_CLASSNAME     tucker3_tensor< R1, R2, R3, I1, I2, I3, T_value, T_coeff >


VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( )
{
	_core.zero();
	_u1 = new u1_type(); _u1->zero();
	_u2 = new u2_type(); _u2->zero();
	_u3 = new u3_type(); _u3->zero();	 
	_core_comp.zero();
	_u1_comp = new u1_comp_type(); _u1_comp->zero();
	_u2_comp = new u2_comp_type(); _u2_comp->zero();
	_u3_comp = new u3_comp_type(); _u3_comp->zero();	
}
	
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( t3_core_type& core )
{
	_core = core;
	_u1 = new u1_type(); _u1->zero();
	_u2 = new u2_type(); _u2->zero();
	_u3 = new u3_type(); _u3->zero();	
	_u1_comp = new u1_comp_type(); _u1_comp->zero();
	_u2_comp = new u2_comp_type(); _u2_comp->zero();
	_u3_comp = new u3_comp_type(); _u3_comp->zero();	
	_core_comp.cast_from( core );
}

VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( t3_core_type& core, u1_type& U1, u2_type& U2, u3_type& U3 )
{
	_core = core;
	_u1 = new u1_type( U1 );
	_u2 = new u2_type( U2 );
	_u3 = new u3_type( U3 );
	_u1_comp = new u1_comp_type(); 
	_u2_comp = new u2_comp_type(); 
	_u3_comp = new u3_comp_type(); 	
	cast_comp_members();
}

VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( const t3_type& data_, u1_type& U1, u2_type& U2, u3_type& U3 )
{
	_u1 = new u1_type( U1 );
	_u2 = new u2_type( U2 );
	_u3 = new u3_type( U3 );
	_u1_comp = new u1_comp_type(); 
	_u2_comp = new u2_comp_type(); 
	_u3_comp = new u3_comp_type(); 	
	
	t3_hooi_type::derive_core(  data_, *_u1, *_u2, *_u3, _core );
	
	cast_comp_members();
}
	
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::tucker3_tensor( const tucker3_type& other )
{
	_u1 = new u1_type();
	_u2 = new u2_type();
	_u3 = new u3_type();
	_u1_comp = new u1_comp_type(); 
	_u2_comp = new u2_comp_type(); 
	_u3_comp = new u3_comp_type(); 	
	
	other.get_core( _core );
	other.get_u1( *_u1 );
	other.get_u2( *_u2 );
	other.get_u3( *_u3 );
	
	cast_comp_members();
}
	
	
	
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::cast_members()
{
	_u1->cast_from( *_u1_comp );
	_u2->cast_from( *_u2_comp );
	_u3->cast_from( *_u3_comp );	
	_core.cast_from( _core_comp);
}
	
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::cast_comp_members()
{
	_u1_comp->cast_from( *_u1 );
	_u2_comp->cast_from( *_u2 );
	_u3_comp->cast_from( *_u3 );	
	_core_comp.cast_from( _core);
}

	
VMML_TEMPLATE_STRING
size_t
VMML_TEMPLATE_CLASSNAME::nnz_core() const
{	
	return _core_comp.nnz();
}

VMML_TEMPLATE_STRING
size_t
VMML_TEMPLATE_CLASSNAME::size_core() const
{	
	return _core_comp.size();
}
	
	
VMML_TEMPLATE_STRING
VMML_TEMPLATE_CLASSNAME::~tucker3_tensor( )
{
	delete _u1;
	delete _u2;
	delete _u3;
	delete _u1_comp;
	delete _u2_comp;
	delete _u3_comp;
}
	
	
VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::reconstruct( t3_type& data_ )
{
	t3_comp_type data;
	data.cast_from( data_ );
	data.full_tensor3_matrix_multiplication( _core_comp, *_u1_comp, *_u2_comp, *_u3_comp );
	
	//convert reconstructed data, which is in type T_internal (double, float) to T_value (uint8 or uint16)
	if( (sizeof(T_value) == 1) || (sizeof(T_value) == 2) ){
		data_.float_t_to_uint_t( data );
	} else {
		data_.cast_from( data );
	}
}
	

VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::threshold_core( const size_t& nnz_core_, size_t& nnz_core_is_ )
{
	nnz_core_is_ = _core_comp.nnz();
	T_coeff threshold_value = 0.00001;
	while( nnz_core_is_ > nnz_core_ ) {
		_core_comp.threshold( threshold_value );
		nnz_core_is_ = _core_comp.nnz();
		
		//threshold value scheme
		if( threshold_value < 0.01) {
			threshold_value *= 10;
		} else if ( threshold_value < 0.2) {
			threshold_value += 0.05;
		} else if ( threshold_value < 1) {
			threshold_value += 0.25;
		} else if (threshold_value < 10 ) {
			threshold_value += 1;
		} else if (threshold_value < 50 ) {
			threshold_value += 10;
		} else if (threshold_value < 200 ) {
			threshold_value += 50;
		} else if (threshold_value < 500 ) {
			threshold_value += 100;
		} else if (threshold_value < 2000 ) {
			threshold_value += 500;
		} else if (threshold_value < 5000 ) {
			threshold_value += 3000;
		} else if (threshold_value >= 5000 ){
			threshold_value += 5000;
		}
	}
	_core.cast_from( _core_comp);
}



VMML_TEMPLATE_STRING
void 
VMML_TEMPLATE_CLASSNAME::threshold_core( const T_coeff& threshold_value_, size_t& nnz_core_ )
{
	_core_comp.threshold( threshold_value_ );
	nnz_core_ = _core_comp.nnz();
	_core.cast_from( _core_comp);
}
	
	
VMML_TEMPLATE_STRING
template< typename T_init>
void 
VMML_TEMPLATE_CLASSNAME::decompose( const t3_type& data_, T_init init ) 

{
	tucker_als( data_, init );
}
	

VMML_TEMPLATE_STRING
template< typename T_init >
void 
VMML_TEMPLATE_CLASSNAME::tucker_als( const t3_type& data_, T_init init )
{
	t3_comp_type data;
	data.cast_from( data_ );

	typedef t3_hooi< R1, R2, R3, I1, I2, I3, T_internal > hooi_type;
	hooi_type::als( data, *_u1_comp, *_u2_comp, *_u3_comp, _core_comp, init ); 

	cast_members();
}
	
VMML_TEMPLATE_STRING
template< typename T_init >
void 
VMML_TEMPLATE_CLASSNAME::incr_block_diag_als( const t3_type& data_, T_init init )
{
	t3_comp_type data;
	data.cast_from( data_ );
	
	//for number of increments, do a block of tucker with size R1=R2=R3 and set core only in diagonal, all other core values = zero; first approach
	
	typedef t3_hooi< R1, R2, R3, I1, I2, I3, T_internal > hooi_type;
	hooi_type::als( data, *_u1_comp, *_u2_comp, *_u3_comp, _core_comp, init ); 
	
	cast_members();
}


VMML_TEMPLATE_STRING
template< size_t K1, size_t K2, size_t K3>
void 
VMML_TEMPLATE_CLASSNAME::reduce_ranks( const tucker3_tensor< K1, K2, K3, I1, I2, I3, T_value, T_coeff >& other )
//TuckerJI.rank_recuction(TuckerKI) K1 -> R1, K2 -> R2, K3 -> R3; I1, I2, I3 stay the same
{
     assert(R1 <= K1);
     assert(R2 <= K2);
     assert(R3 <= K3);	
             
     //reduce basis matrices
     matrix< I1, K1, T_coeff >* u1 = new matrix< I1, K1, T_coeff >();
     other.get_u1( *u1);
     for( size_t r1 = 0; r1 < R1; ++r1 ) 
     {
             _u1->set_column( r1, u1->get_column( r1 ));
     }
     
     matrix< I2, K2, T_coeff >* u2 = new matrix< I2, K2, T_coeff >();
     other.get_u2( *u2 );
     for( size_t r2 = 0; r2 < R2; ++r2) 
     {
             _u2->set_column( r2, u2->get_column( r2 ));
     }
     
     matrix< I3, K3, T_coeff >* u3 = new matrix< I3, K3, T_coeff >();
     other.get_u3( *u3 );
     for( size_t r3 = 0; r3 < R3; ++r3) 
     {
             _u3->set_column( r3, u3->get_column( r3 ));
     }
     
     //reduce core
	tensor3<K1, K2, K3, T_coeff > other_core;
     other.get_core( other_core );

     for( size_t r3 = 0; r3 < R3; ++r3 ) 
     {
          for( size_t r1 = 0; r1 < R1; ++r1 ) 
          {
              for( size_t r2 = 0; r2 < R2; ++r2 ) 
              {
                      _core.at( r1, r2, r3 ) = other_core.at( r1, r2, r3 );
              }
          }
     }

	
	cast_comp_members();

	delete u1;
	delete u2;
	delete u3;
}



VMML_TEMPLATE_STRING
template< size_t K1, size_t K2, size_t K3>
void 
VMML_TEMPLATE_CLASSNAME::subsampling( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, const size_t& factor )
{
     assert(I1 <= K1);
     assert(I1 <= K2);
     assert(I1 <= K3);	
     
     //subsample basis matrices
     matrix< K1, R1, T_coeff >* u1 = new matrix< K1, R1, T_coeff >();
     other.get_u1( *u1 );
     for( size_t i1 = 0, i = 0; i1 < K1; i1 += factor, ++i ) 
     {
             _u1->set_row( i, u1->get_row( i1 ));
     }
     
     matrix< K2, R2, T_coeff >* u2 = new matrix< K2, R2, T_coeff >();
     other.get_u2( *u2 );
     for( size_t i2 = 0,  i = 0; i2 < K2; i2 += factor, ++i) 
     {
             _u2->set_row( i, u2->get_row( i2 ));
     }
     
     matrix< K3, R3, T_coeff >* u3 = new matrix< K3, R3, T_coeff >() ;
     other.get_u3( *u3 );
     for( size_t i3 = 0,  i = 0; i3 < K3; i3 += factor, ++i) 
     {
             _u3->set_row( i, u3->get_row( i3 ));
     }
     
     other.get_core( _core );
	
	cast_comp_members();
	delete u1;
	delete u2;
	delete u3;
}


VMML_TEMPLATE_STRING
template< size_t K1, size_t K2, size_t K3>
void 
VMML_TEMPLATE_CLASSNAME::subsampling_on_average( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, const size_t& factor )
{
    assert(I1 <= K1);
    assert(I1 <= K2);
    assert(I1 <= K3);	
    
    
    //subsample basis matrices
    matrix< K1, R1, T_coeff >* u1 = new matrix< K1, R1, T_coeff >();
    other.get_u1( *u1 );
    for( size_t i1 = 0, i = 0; i1 < K1; i1 += factor, ++i )
    {
            vector< R1, T_internal > tmp_row = u1->get_row( i1 );
            T_internal num_items_averaged = 1;
            for( size_t j = i1+1; (j < (factor+i1)) & (j < K1); ++j, ++num_items_averaged )
                    tmp_row += u1->get_row( j );

            tmp_row /= num_items_averaged;
            _u1->set_row( i, tmp_row);
    }
    
    matrix< K2, R2, T_coeff >* u2 = new matrix< K2, R2, T_coeff >();
    other.get_u2( *u2 );
    for( size_t i2 = 0,  i = 0; i2 < K2; i2 += factor, ++i) 
    {
            vector< R2, T_internal > tmp_row = u2->get_row( i2 );
            T_internal num_items_averaged = 1;
            for( size_t j = i2+1; (j < (factor+i2)) & (j < K2); ++j, ++num_items_averaged )
                    tmp_row += u2->get_row( j );

            tmp_row /= num_items_averaged;
            _u2->set_row( i, u2->get_row( i2 ));
    }
    
    matrix< K3, R3, T_coeff >* u3  = new matrix< K3, R3, T_coeff >();
    other.get_u3( *u3 );
    for( size_t i3 = 0,  i = 0; i3 < K3; i3 += factor, ++i) 
    {
            vector< R3, T_internal > tmp_row = u3->get_row( i3 );
            T_internal num_items_averaged = 1;
            for( size_t j = i3+1; (j < (factor+i3)) & (j < K3); ++j, ++num_items_averaged )
                    tmp_row += u3->get_row( j );
            
            tmp_row /= num_items_averaged;
            _u3->set_row( i, u3->get_row( i3 ));
    }
    
	other.get_core( _core );
	cast_comp_members();
	delete u1;
	delete u2;
	delete u3;
}




VMML_TEMPLATE_STRING
template< size_t K1, size_t K2, size_t K3>
void 
VMML_TEMPLATE_CLASSNAME::region_of_interest( const tucker3_tensor< R1, R2, R3, K1, K2, K3, T_value, T_coeff >& other, 
                                             const size_t& start_index1, const size_t& end_index1, 
                                             const size_t& start_index2, const size_t& end_index2, 
                                             const size_t& start_index3, const size_t& end_index3)
{
    assert(I1 <= K1);
    assert(I1 <= K2);
    assert(I1 <= K3);
    assert(start_index1 < end_index1);
    assert(start_index2 < end_index2);
    assert(start_index3 < end_index3);
    assert(end_index1 < K1);
    assert(end_index2 < K2);
    assert(end_index3 < K3);
    
    //region_of_interes of basis matrices
    matrix< K1, R1, T_internal >* u1 = new matrix< K1, R1, T_internal >();
    other.get_u1_comp( *u1 );
    for( size_t i1 = start_index1,  i = 0; i1 < end_index1; ++i1, ++i ) 
    {
            _u1_comp->set_row( i, u1->get_row( i1 ));
    }
    
    matrix< K2, R2, T_internal>* u2 = new matrix< K2, R2, T_internal>();
    other.get_u2_comp( *u2 );
    for( size_t i2 = start_index2,  i = 0; i2 < end_index2; ++i2, ++i) 
    {
            _u2_comp->set_row( i, u2->get_row( i2 ));
    }
	
    matrix< K3, R3, T_internal >* u3  = new matrix< K3, R3, T_internal>();
    other.get_u3_comp( *u3 );
    for( size_t i3 = start_index3,  i = 0; i3 < end_index3; ++i3, ++i) 
    {
            _u3_comp->set_row( i, u3->get_row( i3 ));
    }
    
    other.get_core_comp( _core_comp );
	
	//cast_comp_members();
	delete u1;
	delete u2;
	delete u3;
}
	
	
VMML_TEMPLATE_STRING
size_t
VMML_TEMPLATE_CLASSNAME::nnz() const
{
	size_t counter = 0;
	
	counter += _u1_comp->nnz();
	counter += _u2_comp->nnz();
	counter += _u3_comp->nnz();
	counter += _core_comp.nnz();
	
	return counter;
}
	
VMML_TEMPLATE_STRING
size_t
VMML_TEMPLATE_CLASSNAME::nnz( const T_value& threshold ) const
{
	size_t counter = 0;
	
	counter += _u1_comp->nnz( threshold );
	counter += _u2_comp->nnz( threshold );
	counter += _u3_comp->nnz( threshold );
	counter += _core_comp.nnz( threshold );

	return counter;
}

	
#undef VMML_TEMPLATE_STRING
#undef VMML_TEMPLATE_CLASSNAME
	
} // namespace vmml

#endif