/usr/sh4-linux-gnu/include/linux/btrfs_tree.h is in linux-libc-dev-sh4-cross 4.15.0-18.19cross1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 | /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
#ifndef _BTRFS_CTREE_H_
#define _BTRFS_CTREE_H_
#include <linux/btrfs.h>
#include <linux/types.h>
/*
* This header contains the structure definitions and constants used
* by file system objects that can be retrieved using
* the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
* is needed to describe a leaf node's key or item contents.
*/
/* holds pointers to all of the tree roots */
#define BTRFS_ROOT_TREE_OBJECTID 1ULL
/* stores information about which extents are in use, and reference counts */
#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
/*
* chunk tree stores translations from logical -> physical block numbering
* the super block points to the chunk tree
*/
#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
/*
* stores information about which areas of a given device are in use.
* one per device. The tree of tree roots points to the device tree
*/
#define BTRFS_DEV_TREE_OBJECTID 4ULL
/* one per subvolume, storing files and directories */
#define BTRFS_FS_TREE_OBJECTID 5ULL
/* directory objectid inside the root tree */
#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
/* holds checksums of all the data extents */
#define BTRFS_CSUM_TREE_OBJECTID 7ULL
/* holds quota configuration and tracking */
#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
/* for storing items that use the BTRFS_UUID_KEY* types */
#define BTRFS_UUID_TREE_OBJECTID 9ULL
/* tracks free space in block groups. */
#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
/* device stats in the device tree */
#define BTRFS_DEV_STATS_OBJECTID 0ULL
/* for storing balance parameters in the root tree */
#define BTRFS_BALANCE_OBJECTID -4ULL
/* orhpan objectid for tracking unlinked/truncated files */
#define BTRFS_ORPHAN_OBJECTID -5ULL
/* does write ahead logging to speed up fsyncs */
#define BTRFS_TREE_LOG_OBJECTID -6ULL
#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
/* for space balancing */
#define BTRFS_TREE_RELOC_OBJECTID -8ULL
#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
/*
* extent checksums all have this objectid
* this allows them to share the logging tree
* for fsyncs
*/
#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
/* For storing free space cache */
#define BTRFS_FREE_SPACE_OBJECTID -11ULL
/*
* The inode number assigned to the special inode for storing
* free ino cache
*/
#define BTRFS_FREE_INO_OBJECTID -12ULL
/* dummy objectid represents multiple objectids */
#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
/*
* All files have objectids in this range.
*/
#define BTRFS_FIRST_FREE_OBJECTID 256ULL
#define BTRFS_LAST_FREE_OBJECTID -256ULL
#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
/*
* the device items go into the chunk tree. The key is in the form
* [ 1 BTRFS_DEV_ITEM_KEY device_id ]
*/
#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
#define BTRFS_BTREE_INODE_OBJECTID 1
#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
#define BTRFS_DEV_REPLACE_DEVID 0ULL
/*
* inode items have the data typically returned from stat and store other
* info about object characteristics. There is one for every file and dir in
* the FS
*/
#define BTRFS_INODE_ITEM_KEY 1
#define BTRFS_INODE_REF_KEY 12
#define BTRFS_INODE_EXTREF_KEY 13
#define BTRFS_XATTR_ITEM_KEY 24
#define BTRFS_ORPHAN_ITEM_KEY 48
/* reserve 2-15 close to the inode for later flexibility */
/*
* dir items are the name -> inode pointers in a directory. There is one
* for every name in a directory.
*/
#define BTRFS_DIR_LOG_ITEM_KEY 60
#define BTRFS_DIR_LOG_INDEX_KEY 72
#define BTRFS_DIR_ITEM_KEY 84
#define BTRFS_DIR_INDEX_KEY 96
/*
* extent data is for file data
*/
#define BTRFS_EXTENT_DATA_KEY 108
/*
* extent csums are stored in a separate tree and hold csums for
* an entire extent on disk.
*/
#define BTRFS_EXTENT_CSUM_KEY 128
/*
* root items point to tree roots. They are typically in the root
* tree used by the super block to find all the other trees
*/
#define BTRFS_ROOT_ITEM_KEY 132
/*
* root backrefs tie subvols and snapshots to the directory entries that
* reference them
*/
#define BTRFS_ROOT_BACKREF_KEY 144
/*
* root refs make a fast index for listing all of the snapshots and
* subvolumes referenced by a given root. They point directly to the
* directory item in the root that references the subvol
*/
#define BTRFS_ROOT_REF_KEY 156
/*
* extent items are in the extent map tree. These record which blocks
* are used, and how many references there are to each block
*/
#define BTRFS_EXTENT_ITEM_KEY 168
/*
* The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
* the length, so we save the level in key->offset instead of the length.
*/
#define BTRFS_METADATA_ITEM_KEY 169
#define BTRFS_TREE_BLOCK_REF_KEY 176
#define BTRFS_EXTENT_DATA_REF_KEY 178
#define BTRFS_EXTENT_REF_V0_KEY 180
#define BTRFS_SHARED_BLOCK_REF_KEY 182
#define BTRFS_SHARED_DATA_REF_KEY 184
/*
* block groups give us hints into the extent allocation trees. Which
* blocks are free etc etc
*/
#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
/*
* Every block group is represented in the free space tree by a free space info
* item, which stores some accounting information. It is keyed on
* (block_group_start, FREE_SPACE_INFO, block_group_length).
*/
#define BTRFS_FREE_SPACE_INFO_KEY 198
/*
* A free space extent tracks an extent of space that is free in a block group.
* It is keyed on (start, FREE_SPACE_EXTENT, length).
*/
#define BTRFS_FREE_SPACE_EXTENT_KEY 199
/*
* When a block group becomes very fragmented, we convert it to use bitmaps
* instead of extents. A free space bitmap is keyed on
* (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
* (length / sectorsize) bits.
*/
#define BTRFS_FREE_SPACE_BITMAP_KEY 200
#define BTRFS_DEV_EXTENT_KEY 204
#define BTRFS_DEV_ITEM_KEY 216
#define BTRFS_CHUNK_ITEM_KEY 228
/*
* Records the overall state of the qgroups.
* There's only one instance of this key present,
* (0, BTRFS_QGROUP_STATUS_KEY, 0)
*/
#define BTRFS_QGROUP_STATUS_KEY 240
/*
* Records the currently used space of the qgroup.
* One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
*/
#define BTRFS_QGROUP_INFO_KEY 242
/*
* Contains the user configured limits for the qgroup.
* One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
*/
#define BTRFS_QGROUP_LIMIT_KEY 244
/*
* Records the child-parent relationship of qgroups. For
* each relation, 2 keys are present:
* (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
* (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
*/
#define BTRFS_QGROUP_RELATION_KEY 246
/*
* Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
*/
#define BTRFS_BALANCE_ITEM_KEY 248
/*
* The key type for tree items that are stored persistently, but do not need to
* exist for extended period of time. The items can exist in any tree.
*
* [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
*
* Existing items:
*
* - balance status item
* (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
*/
#define BTRFS_TEMPORARY_ITEM_KEY 248
/*
* Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
*/
#define BTRFS_DEV_STATS_KEY 249
/*
* The key type for tree items that are stored persistently and usually exist
* for a long period, eg. filesystem lifetime. The item kinds can be status
* information, stats or preference values. The item can exist in any tree.
*
* [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
*
* Existing items:
*
* - device statistics, store IO stats in the device tree, one key for all
* stats
* (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
*/
#define BTRFS_PERSISTENT_ITEM_KEY 249
/*
* Persistantly stores the device replace state in the device tree.
* The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
*/
#define BTRFS_DEV_REPLACE_KEY 250
/*
* Stores items that allow to quickly map UUIDs to something else.
* These items are part of the filesystem UUID tree.
* The key is built like this:
* (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
*/
#if BTRFS_UUID_SIZE != 16
#error "UUID items require BTRFS_UUID_SIZE == 16!"
#endif
#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
* received subvols */
/*
* string items are for debugging. They just store a short string of
* data in the FS
*/
#define BTRFS_STRING_ITEM_KEY 253
/* 32 bytes in various csum fields */
#define BTRFS_CSUM_SIZE 32
/* csum types */
#define BTRFS_CSUM_TYPE_CRC32 0
/*
* flags definitions for directory entry item type
*
* Used by:
* struct btrfs_dir_item.type
*/
#define BTRFS_FT_UNKNOWN 0
#define BTRFS_FT_REG_FILE 1
#define BTRFS_FT_DIR 2
#define BTRFS_FT_CHRDEV 3
#define BTRFS_FT_BLKDEV 4
#define BTRFS_FT_FIFO 5
#define BTRFS_FT_SOCK 6
#define BTRFS_FT_SYMLINK 7
#define BTRFS_FT_XATTR 8
#define BTRFS_FT_MAX 9
/*
* The key defines the order in the tree, and so it also defines (optimal)
* block layout.
*
* objectid corresponds to the inode number.
*
* type tells us things about the object, and is a kind of stream selector.
* so for a given inode, keys with type of 1 might refer to the inode data,
* type of 2 may point to file data in the btree and type == 3 may point to
* extents.
*
* offset is the starting byte offset for this key in the stream.
*
* btrfs_disk_key is in disk byte order. struct btrfs_key is always
* in cpu native order. Otherwise they are identical and their sizes
* should be the same (ie both packed)
*/
struct btrfs_disk_key {
__le64 objectid;
__u8 type;
__le64 offset;
} __attribute__ ((__packed__));
struct btrfs_key {
__u64 objectid;
__u8 type;
__u64 offset;
} __attribute__ ((__packed__));
struct btrfs_dev_item {
/* the internal btrfs device id */
__le64 devid;
/* size of the device */
__le64 total_bytes;
/* bytes used */
__le64 bytes_used;
/* optimal io alignment for this device */
__le32 io_align;
/* optimal io width for this device */
__le32 io_width;
/* minimal io size for this device */
__le32 sector_size;
/* type and info about this device */
__le64 type;
/* expected generation for this device */
__le64 generation;
/*
* starting byte of this partition on the device,
* to allow for stripe alignment in the future
*/
__le64 start_offset;
/* grouping information for allocation decisions */
__le32 dev_group;
/* seek speed 0-100 where 100 is fastest */
__u8 seek_speed;
/* bandwidth 0-100 where 100 is fastest */
__u8 bandwidth;
/* btrfs generated uuid for this device */
__u8 uuid[BTRFS_UUID_SIZE];
/* uuid of FS who owns this device */
__u8 fsid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));
struct btrfs_stripe {
__le64 devid;
__le64 offset;
__u8 dev_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));
struct btrfs_chunk {
/* size of this chunk in bytes */
__le64 length;
/* objectid of the root referencing this chunk */
__le64 owner;
__le64 stripe_len;
__le64 type;
/* optimal io alignment for this chunk */
__le32 io_align;
/* optimal io width for this chunk */
__le32 io_width;
/* minimal io size for this chunk */
__le32 sector_size;
/* 2^16 stripes is quite a lot, a second limit is the size of a single
* item in the btree
*/
__le16 num_stripes;
/* sub stripes only matter for raid10 */
__le16 sub_stripes;
struct btrfs_stripe stripe;
/* additional stripes go here */
} __attribute__ ((__packed__));
#define BTRFS_FREE_SPACE_EXTENT 1
#define BTRFS_FREE_SPACE_BITMAP 2
struct btrfs_free_space_entry {
__le64 offset;
__le64 bytes;
__u8 type;
} __attribute__ ((__packed__));
struct btrfs_free_space_header {
struct btrfs_disk_key location;
__le64 generation;
__le64 num_entries;
__le64 num_bitmaps;
} __attribute__ ((__packed__));
#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
/* Super block flags */
/* Errors detected */
#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
/*
* items in the extent btree are used to record the objectid of the
* owner of the block and the number of references
*/
struct btrfs_extent_item {
__le64 refs;
__le64 generation;
__le64 flags;
} __attribute__ ((__packed__));
struct btrfs_extent_item_v0 {
__le32 refs;
} __attribute__ ((__packed__));
#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
/* following flags only apply to tree blocks */
/* use full backrefs for extent pointers in the block */
#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
/*
* this flag is only used internally by scrub and may be changed at any time
* it is only declared here to avoid collisions
*/
#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
struct btrfs_tree_block_info {
struct btrfs_disk_key key;
__u8 level;
} __attribute__ ((__packed__));
struct btrfs_extent_data_ref {
__le64 root;
__le64 objectid;
__le64 offset;
__le32 count;
} __attribute__ ((__packed__));
struct btrfs_shared_data_ref {
__le32 count;
} __attribute__ ((__packed__));
struct btrfs_extent_inline_ref {
__u8 type;
__le64 offset;
} __attribute__ ((__packed__));
/* old style backrefs item */
struct btrfs_extent_ref_v0 {
__le64 root;
__le64 generation;
__le64 objectid;
__le32 count;
} __attribute__ ((__packed__));
/* dev extents record free space on individual devices. The owner
* field points back to the chunk allocation mapping tree that allocated
* the extent. The chunk tree uuid field is a way to double check the owner
*/
struct btrfs_dev_extent {
__le64 chunk_tree;
__le64 chunk_objectid;
__le64 chunk_offset;
__le64 length;
__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));
struct btrfs_inode_ref {
__le64 index;
__le16 name_len;
/* name goes here */
} __attribute__ ((__packed__));
struct btrfs_inode_extref {
__le64 parent_objectid;
__le64 index;
__le16 name_len;
__u8 name[0];
/* name goes here */
} __attribute__ ((__packed__));
struct btrfs_timespec {
__le64 sec;
__le32 nsec;
} __attribute__ ((__packed__));
struct btrfs_inode_item {
/* nfs style generation number */
__le64 generation;
/* transid that last touched this inode */
__le64 transid;
__le64 size;
__le64 nbytes;
__le64 block_group;
__le32 nlink;
__le32 uid;
__le32 gid;
__le32 mode;
__le64 rdev;
__le64 flags;
/* modification sequence number for NFS */
__le64 sequence;
/*
* a little future expansion, for more than this we can
* just grow the inode item and version it
*/
__le64 reserved[4];
struct btrfs_timespec atime;
struct btrfs_timespec ctime;
struct btrfs_timespec mtime;
struct btrfs_timespec otime;
} __attribute__ ((__packed__));
struct btrfs_dir_log_item {
__le64 end;
} __attribute__ ((__packed__));
struct btrfs_dir_item {
struct btrfs_disk_key location;
__le64 transid;
__le16 data_len;
__le16 name_len;
__u8 type;
} __attribute__ ((__packed__));
#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
/*
* Internal in-memory flag that a subvolume has been marked for deletion but
* still visible as a directory
*/
#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
struct btrfs_root_item {
struct btrfs_inode_item inode;
__le64 generation;
__le64 root_dirid;
__le64 bytenr;
__le64 byte_limit;
__le64 bytes_used;
__le64 last_snapshot;
__le64 flags;
__le32 refs;
struct btrfs_disk_key drop_progress;
__u8 drop_level;
__u8 level;
/*
* The following fields appear after subvol_uuids+subvol_times
* were introduced.
*/
/*
* This generation number is used to test if the new fields are valid
* and up to date while reading the root item. Every time the root item
* is written out, the "generation" field is copied into this field. If
* anyone ever mounted the fs with an older kernel, we will have
* mismatching generation values here and thus must invalidate the
* new fields. See btrfs_update_root and btrfs_find_last_root for
* details.
* the offset of generation_v2 is also used as the start for the memset
* when invalidating the fields.
*/
__le64 generation_v2;
__u8 uuid[BTRFS_UUID_SIZE];
__u8 parent_uuid[BTRFS_UUID_SIZE];
__u8 received_uuid[BTRFS_UUID_SIZE];
__le64 ctransid; /* updated when an inode changes */
__le64 otransid; /* trans when created */
__le64 stransid; /* trans when sent. non-zero for received subvol */
__le64 rtransid; /* trans when received. non-zero for received subvol */
struct btrfs_timespec ctime;
struct btrfs_timespec otime;
struct btrfs_timespec stime;
struct btrfs_timespec rtime;
__le64 reserved[8]; /* for future */
} __attribute__ ((__packed__));
/*
* this is used for both forward and backward root refs
*/
struct btrfs_root_ref {
__le64 dirid;
__le64 sequence;
__le16 name_len;
} __attribute__ ((__packed__));
struct btrfs_disk_balance_args {
/*
* profiles to operate on, single is denoted by
* BTRFS_AVAIL_ALLOC_BIT_SINGLE
*/
__le64 profiles;
/*
* usage filter
* BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
* BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
*/
union {
__le64 usage;
struct {
__le32 usage_min;
__le32 usage_max;
};
};
/* devid filter */
__le64 devid;
/* devid subset filter [pstart..pend) */
__le64 pstart;
__le64 pend;
/* btrfs virtual address space subset filter [vstart..vend) */
__le64 vstart;
__le64 vend;
/*
* profile to convert to, single is denoted by
* BTRFS_AVAIL_ALLOC_BIT_SINGLE
*/
__le64 target;
/* BTRFS_BALANCE_ARGS_* */
__le64 flags;
/*
* BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
* BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
* and maximum
*/
union {
__le64 limit;
struct {
__le32 limit_min;
__le32 limit_max;
};
};
/*
* Process chunks that cross stripes_min..stripes_max devices,
* BTRFS_BALANCE_ARGS_STRIPES_RANGE
*/
__le32 stripes_min;
__le32 stripes_max;
__le64 unused[6];
} __attribute__ ((__packed__));
/*
* store balance parameters to disk so that balance can be properly
* resumed after crash or unmount
*/
struct btrfs_balance_item {
/* BTRFS_BALANCE_* */
__le64 flags;
struct btrfs_disk_balance_args data;
struct btrfs_disk_balance_args meta;
struct btrfs_disk_balance_args sys;
__le64 unused[4];
} __attribute__ ((__packed__));
#define BTRFS_FILE_EXTENT_INLINE 0
#define BTRFS_FILE_EXTENT_REG 1
#define BTRFS_FILE_EXTENT_PREALLOC 2
#define BTRFS_FILE_EXTENT_TYPES 2
struct btrfs_file_extent_item {
/*
* transaction id that created this extent
*/
__le64 generation;
/*
* max number of bytes to hold this extent in ram
* when we split a compressed extent we can't know how big
* each of the resulting pieces will be. So, this is
* an upper limit on the size of the extent in ram instead of
* an exact limit.
*/
__le64 ram_bytes;
/*
* 32 bits for the various ways we might encode the data,
* including compression and encryption. If any of these
* are set to something a given disk format doesn't understand
* it is treated like an incompat flag for reading and writing,
* but not for stat.
*/
__u8 compression;
__u8 encryption;
__le16 other_encoding; /* spare for later use */
/* are we __inline__ data or a real extent? */
__u8 type;
/*
* disk space consumed by the extent, checksum blocks are included
* in these numbers
*
* At this offset in the structure, the __inline__ extent data start.
*/
__le64 disk_bytenr;
__le64 disk_num_bytes;
/*
* the logical offset in file blocks (no csums)
* this extent record is for. This allows a file extent to point
* into the middle of an existing extent on disk, sharing it
* between two snapshots (useful if some bytes in the middle of the
* extent have changed
*/
__le64 offset;
/*
* the logical number of file blocks (no csums included). This
* always reflects the size uncompressed and without encoding.
*/
__le64 num_bytes;
} __attribute__ ((__packed__));
struct btrfs_csum_item {
__u8 csum;
} __attribute__ ((__packed__));
struct btrfs_dev_stats_item {
/*
* grow this item struct at the end for future enhancements and keep
* the existing values unchanged
*/
__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
} __attribute__ ((__packed__));
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
struct btrfs_dev_replace_item {
/*
* grow this item struct at the end for future enhancements and keep
* the existing values unchanged
*/
__le64 src_devid;
__le64 cursor_left;
__le64 cursor_right;
__le64 cont_reading_from_srcdev_mode;
__le64 replace_state;
__le64 time_started;
__le64 time_stopped;
__le64 num_write_errors;
__le64 num_uncorrectable_read_errors;
} __attribute__ ((__packed__));
/* different types of block groups (and chunks) */
#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
BTRFS_SPACE_INFO_GLOBAL_RSV)
enum btrfs_raid_types {
BTRFS_RAID_RAID10,
BTRFS_RAID_RAID1,
BTRFS_RAID_DUP,
BTRFS_RAID_RAID0,
BTRFS_RAID_SINGLE,
BTRFS_RAID_RAID5,
BTRFS_RAID_RAID6,
BTRFS_NR_RAID_TYPES
};
#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
BTRFS_BLOCK_GROUP_SYSTEM | \
BTRFS_BLOCK_GROUP_METADATA)
#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
BTRFS_BLOCK_GROUP_RAID1 | \
BTRFS_BLOCK_GROUP_RAID5 | \
BTRFS_BLOCK_GROUP_RAID6 | \
BTRFS_BLOCK_GROUP_DUP | \
BTRFS_BLOCK_GROUP_RAID10)
#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
BTRFS_BLOCK_GROUP_RAID6)
/*
* We need a bit for restriper to be able to tell when chunks of type
* SINGLE are available. This "extended" profile format is used in
* fs_info->avail_*_alloc_bits (in-memory) and balance item fields
* (on-disk). The corresponding on-disk bit in chunk.type is reserved
* to avoid remappings between two formats in future.
*/
#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
/*
* A fake block group type that is used to communicate global block reserve
* size to userspace via the SPACE_INFO ioctl.
*/
#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
BTRFS_AVAIL_ALLOC_BIT_SINGLE)
static __inline__ __u64 chunk_to_extended(__u64 flags)
{
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
return flags;
}
static __inline__ __u64 extended_to_chunk(__u64 flags)
{
return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
}
struct btrfs_block_group_item {
__le64 used;
__le64 chunk_objectid;
__le64 flags;
} __attribute__ ((__packed__));
struct btrfs_free_space_info {
__le32 extent_count;
__le32 flags;
} __attribute__ ((__packed__));
#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
#define BTRFS_QGROUP_LEVEL_SHIFT 48
static __inline__ __u64 btrfs_qgroup_level(__u64 qgroupid)
{
return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
}
/*
* is subvolume quota turned on?
*/
#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
/*
* RESCAN is set during the initialization phase
*/
#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
/*
* Some qgroup entries are known to be out of date,
* either because the configuration has changed in a way that
* makes a rescan necessary, or because the fs has been mounted
* with a non-qgroup-aware version.
* Turning qouta off and on again makes it inconsistent, too.
*/
#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
#define BTRFS_QGROUP_STATUS_VERSION 1
struct btrfs_qgroup_status_item {
__le64 version;
/*
* the generation is updated during every commit. As older
* versions of btrfs are not aware of qgroups, it will be
* possible to detect inconsistencies by checking the
* generation on mount time
*/
__le64 generation;
/* flag definitions see above */
__le64 flags;
/*
* only used during scanning to record the progress
* of the scan. It contains a logical address
*/
__le64 rescan;
} __attribute__ ((__packed__));
struct btrfs_qgroup_info_item {
__le64 generation;
__le64 rfer;
__le64 rfer_cmpr;
__le64 excl;
__le64 excl_cmpr;
} __attribute__ ((__packed__));
struct btrfs_qgroup_limit_item {
/*
* only updated when any of the other values change
*/
__le64 flags;
__le64 max_rfer;
__le64 max_excl;
__le64 rsv_rfer;
__le64 rsv_excl;
} __attribute__ ((__packed__));
#endif /* _BTRFS_CTREE_H_ */
|