/var/lib/mobyle/programs/clustalw-multialign.xml is in mobyle-programs 5.1.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 | <?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron, -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris. -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
<head>
<name>clustalw-multialign</name>
<xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="Entities/ClustalW_package.xml"/>
<doc>
<title>Clustalw: Multiple alignment</title>
<description>
<text lang="en">Do full multiple alignment</text>
</description>
</doc>
<category>alignment:multiple</category>
<command>clustalw -align </command>
</head>
<parameters>
<paragraph>
<name>input</name>
<prompt lang="en">Data Input</prompt>
<parameters>
<parameter ismandatory="1" issimple="1" ismaininput="1">
<name>sequences_input</name>
<prompt lang="en">Sequences File ( a file containing several sequences ) (-infile)</prompt>
<precond>
<code proglang="perl">not $alignment_input or ($sequences_input and $alignment_input)</code>
<code proglang="python">not alignment_input or (sequences_input and alignment_input)</code>
</precond>
<type>
<datatype>
<class>Sequence</class>
</datatype>
<dataFormat>FASTA</dataFormat>
<dataFormat>NBRF</dataFormat>
<dataFormat>EMBL</dataFormat>
<dataFormat>GCG</dataFormat>
<dataFormat>GDE</dataFormat>
<dataFormat>SWISSPROT</dataFormat>
<card>2,n</card>
</type>
<format>
<code proglang="perl">" -infile=$value"</code>
<code proglang="python">" -infile=" + str( value )</code>
</format>
<ctrl>
<message>
<text lang="en">Can not handle both Sequence and Alignment at the same time</text>
</message>
<code proglang="perl">not $alignment_input</code>
<code proglang="python">not alignment_input</code>
</ctrl>
<argpos>1</argpos>
</parameter>
<parameter ismandatory="1" issimple="1" ismaininput="1">
<name>alignment_input</name>
<prompt lang="en">Aligned sequences</prompt>
<precond>
<code proglang="perl">not $sequences_input or ($sequences_input and $alignment_input)</code>
<code proglang="python">not sequences_input or (sequences_input and alignment_input)</code>
</precond>
<type>
<biotype>Protein</biotype>
<biotype>DNA</biotype>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>CLUSTAL</dataFormat>
<dataFormat>FASTA</dataFormat>
<card>1</card>
</type>
<format>
<code proglang="perl">" -infile=$value"</code>
<code proglang="python">" -infile=" + str( value )</code>
</format>
<ctrl>
<message>
<text lang="en">Can not handle both Sequence and Alignment at the same time</text>
</message>
<code proglang="perl">not $sequences_input</code>
<code proglang="python">not sequences_input</code>
</ctrl>
<comment>
<text lang="en"> When the sequences are aligned (all sequences
have the same length and at least one sequence has at least one
gap)</text>
</comment>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>general</name>
<prompt lang="en">General settings</prompt>
<argpos>2</argpos>
<parameters>
<parameter ismandatory="1" issimple="1">
<name>quicktree</name>
<prompt lang="en">Toggle Slow/Fast pairwise alignments (-quicktree)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>slow</value>
</vdef>
<vlist>
<velem>
<value>slow</value>
<label>Slow</label>
</velem>
<velem>
<value>fast</value>
<label>Fast</label>
</velem>
</vlist>
<format>
<code proglang="perl">($value eq "fast") ? " -quicktree" : ""</code>
<code proglang="python">( "" , " -quicktree")[ value == "fast"]</code>
</format>
<comment>
<text lang="en">slow: by dynamic programming (slow but accurate)</text>
<text lang="en">fast: method of Wilbur and Lipman (extremely fast but approximate)</text>
</comment>
</parameter>
<parameter>
<name>typeseq</name>
<prompt lang="en">Protein or DNA (-type)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>auto</value>
</vdef>
<vlist>
<velem undef="1">
<value>auto</value>
<label>Automatic</label>
</velem>
<velem>
<value>protein</value>
<label>Protein</label>
</velem>
<velem>
<value>dna</value>
<label>DNA</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value) ? " -type=$value" : ""</code>
<code proglang="python">("", " -type="+str(value))[value is not None]</code>
</format>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>multalign</name>
<prompt lang="en">Multiple Alignments parameters</prompt>
<argpos>3</argpos>
<comment>
<text lang="en">Multiple alignments are carried out in 3 stages :</text>
<text lang="en">1) all sequences are compared to each other (pairwise alignments);</text>
<text lang="en">2) a dendrogram (like a phylogenetic tree) is constructed, describing the approximate groupings of the sequences by similarity (stored in a file).</text>
<text lang="en">3) the final multiple alignment is carried out, using the dendrogram as a guide.</text>
<text lang="en">Pairwise alignment parameters control the speed/sensitivity of the initial alignments.</text>
<text lang="en">Multiple alignment parameters control the gaps in the final multiple alignments.</text>
</comment>
<parameters>
<parameter>
<name>gapopen</name>
<prompt lang="en">Gap opening penalty (-gapopen)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>10.00</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -gapopen=$value" : ""</code>
<code proglang="python">( "" , " -gapopen=" + str( value ))[ value is not None and value != vdef ]</code>
</format>
</parameter>
<parameter>
<name>gapext</name>
<prompt lang="en">Gap extension penalty (-gapext)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>0.20</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -gapext=$value" : ""</code>
<code proglang="python">( "" , " -gapext=" + str( value ))[ value is not None and value != vdef ]</code>
</format>
</parameter>
<parameter>
<name>endgaps</name>
<prompt lang="en">No end gap separation penalty (-endgaps)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " -endgaps" : ""</code>
<code proglang="python">( "" ," -endgaps" )[ value ]</code>
</format>
<comment>
<text lang="en">End gap separation treats end gaps just
like internal gaps for the purposes of avoiding gaps that
are too close (set by GAP SEPARATION DISTANCE above). If
you turn this off, end gaps will be ignored for this
purpose. This is useful when you wish to align fragments
where the end gaps are not biologically meaningful.</text>
</comment>
</parameter>
<parameter>
<name>gapdist</name>
<prompt lang="en">Gap separation penalty range (-gapdist)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>8</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -gapdist=$value" : ""</code>
<code proglang="python">( "" , " -gapdist=" + str( value ))[ value is not None and value != vdef]</code>
</format>
<comment>
<text lang="en">Gap separation distance tries to decrease
the chances of gaps being too close to each other. Gaps
that are less than this distance apart are penalised more
than other gaps. This does not prevent close gaps; it makes
them less frequent, promoting a block-like appearance of
the alignment.</text>
</comment>
</parameter>
<parameter>
<name>maxdiv</name>
<prompt lang="en">Delay divergent sequences : % ident. for delay (-maxdiv)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>30</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -maxdiv=$value" : ""</code>
<code proglang="python">( "" , " -maxdiv=" + str( value ))[ value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">Delays the alignment of the most distantly
related sequences until after the most closely related
sequences have been aligned. The setting shows the percent
identity level required to delay the addition of a
sequence; sequences that are less identical than this level
to any other sequences will be aligned later.</text>
</comment>
</parameter>
<parameter>
<name>newtree</name>
<prompt lang="en">File for new guide tree (-newtree)</prompt>
<type>
<datatype>
<class>Filename</class>
</datatype>
</type>
<format>
<code proglang="perl">(defined $value) ? " -newtree=$value" : ""</code>
<code proglang="python">( "" , " -newtree=" + str( value ))[value is not None]</code>
</format>
</parameter>
<parameter isout="1">
<name>newtreefile</name>
<prompt>Output tree</prompt>
<type>
<datatype>
<class>Tree</class>
</datatype>
<dataFormat>NEWICK</dataFormat>
</type>
<precond>
<code proglang="perl">defined $newtree</code>
<code proglang="python">newtree is not None</code>
</precond>
<filenames>
<code proglang="perl">$newtree</code>
<code proglang="python">newtree</code>
</filenames>
</parameter>
<parameter>
<name>usetree</name>
<prompt lang="en">File for old guide tree (-usetree)</prompt>
<type>
<datatype>
<class>Tree</class>
</datatype>
<dataFormat>NEWICK</dataFormat>
</type>
<format>
<code proglang="perl">(defined $value) ? " -usetree=$value" : ""</code>
<code proglang="python">( "" ," -usetree=" + str( value ))[value is not None]</code>
</format>
<comment>
<text lang="en">You can give a previously computed tree (.dnd file) - on the same data</text>
</comment>
</parameter>
<paragraph>
<name>multalign_prot</name>
<prompt lang="en">Protein parameters</prompt>
<precond>
<code proglang="perl">$typeseq eq "protein"</code>
<code proglang="python">typeseq == "protein"</code>
</precond>
<parameters>
<parameter>
<name>matrix</name>
<prompt lang="en">Protein weight matrix (-matrix)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>gonnet</value>
</vdef>
<vlist>
<velem>
<value>gonnet</value>
<label>Gonnet series</label>
</velem>
<velem>
<value>blosum</value>
<label>BLOSUM series</label>
</velem>
<velem>
<value>pam</value>
<label>PAM series</label>
</velem>
<velem>
<value>id</value>
<label>Identity matrix</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " -matrix=$value" : ""</code>
<code proglang="python">("", " -matrix="+str(value))[value is not None and value!=vdef]</code>
</format>
<comment>
<text lang="en">There are three 'in-built' series of weight
matrices offered. Each consists of several matrices which
work differently at different evolutionary distances. To
see the exact details, read the documentation. Crudely, we
store several matrices in memory, spanning the full range
of amino acid distance (from almost identical sequences to
highly divergent ones). For very similar sequences, it is
best to use a strict weight matrix which only gives a high
score to identities and the most favoured conservative
substitutions. For more divergent sequences, it is
appropriate to use 'softer' matrices which give a high
score to many other frequent substitutions.</text>
<text lang="en">BLOSUM (Henikoff). These matrices appear to
be the best available for carrying out data base similarity
(homology searches). The matrices used are: Blosum80, 62,
40 and 30.</text>
<text lang="en">The Gonnet Pam 250 matrix has been reported
as the best single matrix for alignment, if you only choose
one matrix. Our experience with profile database searches
is that the Gonnet series is unambiguously superior to the
Blosum series at high divergence. However, we did not get
the series to perform systematically better than the Blosum
series in Clustal W (communication of the authors).</text>
<text lang="en">PAM (Dayhoff). These have been extremely
widely used since the late '70s. We use the PAM 120, 160,
250 and 350 matrices.</text>
</comment>
</parameter>
<parameter>
<name>negative</name>
<prompt lang="en">Negative values in matrix ? (-negative)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " -negative" : ""</code>
<code proglang="python">( "" , " -negative" )[ value ]</code>
</format>
</parameter>
<parameter>
<name>pgap</name>
<prompt lang="en">Residue specific gaps off (-nopgap)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>1</value>
</vdef>
<format>
<code proglang="perl">($value) ? " -nopgap" : ""</code>
<code proglang="python">( "" , " -nopgap" )[ value ]</code>
</format>
<comment>
<text lang="en">Residue specific penalties are amino acid
specific gap penalties that reduce or increase the gap
opening penalties at each position in the alignment or
sequence. As an example, positions that are rich in glycine
are more likely to have an adjacent gap than positions that
are rich in valine.</text>
<text lang="en">Table of residue specific gap modification
factors:</text>
<text lang="en">A 1.13 M 1.29</text>
<text lang="en">C 1.13 N 0.63</text>
<text lang="en">D 0.96 P 0.74</text>
<text lang="en">E 1.31 Q 1.07</text>
<text lang="en">F 1.20 R 0.72</text>
<text lang="en">G 0.61 S 0.76</text>
<text lang="en">H 1.00 T 0.89</text>
<text lang="en">I 1.32 V 1.25</text>
<text lang="en">K 0.96 Y 1.00</text>
<text lang="en">L 1.21 W 1.23</text>
<text lang="en">The values are normalised around a mean value of 1.0 for H. The lower the value, the greater the chance of having an adjacent gap. These are derived from the original table of relative frequencies of gaps adjacent to each residue (12) by subtraction from 2.0.</text>
</comment>
</parameter>
<parameter>
<name>hgap</name>
<prompt lang="en">Hydrophilic gaps off (-nohgap)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>1</value>
</vdef>
<format>
<code proglang="perl">($value) ? " -nohgap" : ""</code>
<code proglang="python">( "" , " -nohgap" )[ value ]</code>
</format>
<comment>
<text lang="en">Hydrophilic gap penalties are used to
increase the chances of a gap within a run (5 or more
residues) of hydrophilic amino acids; these are likely to
be loop or random coil regions where gaps are more
common. The residues that are 'considered' to be
hydrophilic are set by menu item 3.</text>
</comment>
</parameter>
<parameter>
<name>hgapresidues</name>
<prompt lang="en">Hydrophilic residues list (-hgapresidues)</prompt>
<type>
<datatype>
<class>MultipleChoice</class>
</datatype>
</type>
<vdef>
<value>R</value>
<value>N</value>
<value>D</value>
<value>Q</value>
<value>E</value>
<value>G</value>
<value>K</value>
<value>P</value>
<value>S</value>
</vdef>
<vlist>
<velem>
<value>A</value>
<label>A</label>
</velem>
<velem>
<value>R</value>
<label>R</label>
</velem>
<velem>
<value>N</value>
<label>N</label>
</velem>
<velem>
<value>D</value>
<label>D</label>
</velem>
<velem>
<value>C</value>
<label>C</label>
</velem>
<velem>
<value>Q</value>
<label>Q</label>
</velem>
<velem>
<value>E</value>
<label>E</label>
</velem>
<velem>
<value>G</value>
<label>G</label>
</velem>
<velem>
<value>H</value>
<label>H</label>
</velem>
<velem>
<value>I</value>
<label>I</label>
</velem>
<velem>
<value>L</value>
<label>L</label>
</velem>
<velem>
<value>K</value>
<label>K</label>
</velem>
<velem>
<value>M</value>
<label>M</label>
</velem>
<velem>
<value>F</value>
<label>F</label>
</velem>
<velem>
<value>P</value>
<label>P</label>
</velem>
<velem>
<value>S</value>
<label>S</label>
</velem>
<velem>
<value>T</value>
<label>T</label>
</velem>
<velem>
<value>W</value>
<label>W</label>
</velem>
<velem>
<value>Y</value>
<label>Y</label>
</velem>
<velem>
<value>V</value>
<label>V</label>
</velem>
</vlist>
<separator/>
<format>
<code proglang="perl">($value and $value ne $vdef) ? " -hgapresidues=\\"$value\\"" : ""</code>
<code proglang="python">( '' , ' -hgapresidues="%s"' % str(value) )[ value and value != vdef ]</code>
</format>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>multalign_dna</name>
<prompt lang="en">DNA parameters</prompt>
<precond>
<code proglang="perl">$typeseq eq "dna"</code>
<code proglang="python">typeseq == "dna"</code>
</precond>
<parameters>
<parameter>
<name>dnamatrix</name>
<prompt lang="en">DNA weight matrix (-dnamatrix)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>iub</value>
</vdef>
<vlist>
<velem>
<value>iub</value>
<label>IUB</label>
</velem>
<velem>
<value>clustalw</value>
<label>CLUSTALW</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " -dnamatrix=$value" : ""</code>
<code proglang="python">("", " -dnamatrix=" + str(value))[value is not None and value!=vdef]</code>
</format>
<comment>
<text lang="en">1) IUB. This is the default scoring matrix
used by BESTFIT for the comparison of nucleic acid
sequences. X's and N's are treated as matches to any IUB
ambiguity symbol. All matches score 1.9; all mismatches for
IUB symbols score 0.</text>
<text lang="en">2) CLUSTALW(1.6). The previous system used
by ClustalW, in which matches score 1.0 and mismatches
score 0. All matches for IUB symbols also score 0.</text>
</comment>
</parameter>
<parameter>
<name>transweight</name>
<prompt lang="en">Transitions weight (between 0 and 1) (-transweight)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>0.5</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -transweight=$value" : ""</code>
<code proglang="python">( "" , " -transweight=" + str( value ) )[ value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">A weight of
zero means that the transitions are scored as mismatches; a
weight of 1 gives transitions the full match score. For
distantly related DNA sequences, the weight should be near
to zero; for closely related sequences it can be useful to
assign a higher score.</text>
</comment>
</parameter>
</parameters>
</paragraph>
</parameters>
</paragraph>
<paragraph>
<name>fastpw</name>
<prompt lang="en">Fast Pairwise Alignments parameters</prompt>
<precond>
<code proglang="perl">$quicktree eq "fast"</code>
<code proglang="python">quicktree == "fast"</code>
</precond>
<argpos>4</argpos>
<comment>
<text lang="en">These similarity scores are calculated from fast,
approximate, global alignments, which are controlled by 4
parameters. 2 techniques are used to make these alignments very
fast: 1) only exactly matching fragments (k-tuples) are
considered; 2) only the 'best' diagonals (the ones with most
k-tuple matches) are used.</text>
</comment>
<parameters>
<parameter>
<name>ktuple</name>
<prompt lang="en">Word size (-ktuple)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>1</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -ktuple=$value" : ""</code>
<code proglang="python">( "" , " -ktuple=" + str( value ) )[value is not None and value != vdef ]</code>
</format>
<argpos>2</argpos>
<comment>
<text lang="en">K-TUPLE SIZE: This is the size of exactly matching fragment that is used. INCREASE for speed (max= 2 for proteins; 4 for DNA), DECREASE for sensitivity. For longer sequences (e.g. >1000 residues) you may need to increase the default.</text>
</comment>
</parameter>
<parameter>
<name>topdiags</name>
<prompt lang="en">Number of best diagonals (-topdiags)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>5</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -topdiags=$value" : ""</code>
<code proglang="python">( "" , " -topdiags=" + str( value ))[value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">The number of k-tuple matches on each
diagonal (in an imaginary dot-matrix plot) is
calculated. Only the best ones (with most matches) are used
in the alignment. This parameter specifies how
many. Decrease for speed; increase for sensitivity.</text>
</comment>
</parameter>
<parameter>
<name>window</name>
<prompt lang="en">Window around best diags (-window)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>5</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -window=$value" : ""</code>
<code proglang="python">( "" , " -window=" + str( value ) )[ value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">WINDOW SIZE: This is the number of
diagonals around each of the 'best' diagonals that will be
used. Decrease for speed; increase for sensitivity</text>
</comment>
</parameter>
<parameter>
<name>pairgap</name>
<prompt lang="en">Gap penalty (-pairgap)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>3</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -pairgap=$value" : ""</code>
<code proglang="python">( "" , " -pairgap=" + str( value ))[ value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">This is a penalty for each gap in the fast
alignments. It has little affect on the speed or
sensitivity except for extreme values.</text>
</comment>
</parameter>
<parameter>
<name>score</name>
<prompt lang="en">Percent or absolute score ? (-score)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>percent</value>
</vdef>
<vlist>
<velem>
<value>percent</value>
<label>Percent</label>
</velem>
<velem>
<value>absolute</value>
<label>Absolute</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " -score=$value" : ""</code>
<code proglang="python">( "" , " -score=" +str( value ) )[value is not None or value != vdef]</code>
</format>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>slowpw</name>
<prompt lang="en">Slow Pairwise Alignments parameters</prompt>
<precond>
<code proglang="perl">$quicktree eq "slow"</code>
<code proglang="python">quicktree == "slow"</code>
</precond>
<argpos>4</argpos>
<comment>
<text lang="en">These parameters do not have any affect on the
speed of the alignments. They are used to give initial alignments
which are then rescored to give percent identity scores. These %
scores are the ones which are displayed on the screen. The scores
are converted to distances for the trees.</text>
</comment>
<parameters>
<parameter>
<name>pwgapopen</name>
<prompt lang="en">Gap opening penalty (-pwgapopen)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>10.00</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -pwgapopen=$value" : ""</code>
<code proglang="python">( "" , " -pwgapopen=" + str( value ) )[ value is not None and value != vdef ]</code>
</format>
</parameter>
<parameter>
<name>pwgapext</name>
<prompt lang="en">Gap extension penalty (-pwgapext)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>0.10</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -pwgapext=$value" : ""</code>
<code proglang="python">( "" , " -pwgapext=" + str( value ) )[ value is not None and value != vdef ]</code>
</format>
</parameter>
<paragraph>
<name>slowpw_prot</name>
<prompt lang="en">Protein parameters</prompt>
<precond>
<code proglang="perl">$typeseq eq "protein"</code>
<code proglang="python">typeseq == "protein"</code>
</precond>
<parameters>
<parameter>
<name>pwmatrix</name>
<prompt lang="en">Protein weight matrix (-pwmatrix)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>gonnet</value>
</vdef>
<vlist>
<velem>
<value>blosum</value>
<label>BLOSUM30 (Henikoff)</label>
</velem>
<velem>
<value>gonnet</value>
<label>Gonnet 250</label>
</velem>
<velem>
<value>pam</value>
<label>PAM350 (Dayhoff)</label>
</velem>
<velem>
<value>id</value>
<label>Identity matrix</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " -pwmatrix=$value" : ""</code>
<code proglang="python">( "" , " -pwmatrix=" + str(value) )[value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">The scoring table which describes the
similarity of each amino acid to each other. For DNA, an
identity matrix is used.</text>
<text lang="en">BLOSUM (Henikoff). These matrices appear to
be the best available for carrying out data base similarity
(homology searches). The matrices used are: Blosum80, 62,
40 and 30.</text>
<text lang="en">The Gonnet Pam 250 matrix has been reported
as the best single matrix for alignment, if you only choose
one matrix. Our experience with profile database searches
is that the Gonnet series is unambiguously superior to the
Blosum series at high divergence. However, we did not get
the series to perform systematically better than the Blosum
series in Clustal W (communication of the authors).</text>
<text lang="en">PAM (Dayhoff). These have been extremely
widely used since the late '70s. We use the PAM 120, 160,
250 and 350 matrices.</text>
</comment>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>slowpw_dna</name>
<prompt lang="en">DNA parameters</prompt>
<precond>
<code proglang="perl">$typeseq eq "dna"</code>
<code proglang="python">typeseq == "dna"</code>
</precond>
<parameters>
<parameter>
<name>pwdnamatrix</name>
<prompt lang="en">DNA weight matrix (-pwdnamatrix)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>iub</value>
</vdef>
<vlist>
<velem>
<value>iub</value>
<label>IUB</label>
</velem>
<velem>
<value>clustalw</value>
<label>CLUSTALW</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " -pwdnamatrix=$value" : ""</code>
<code proglang="python">( "" , " -pwdnamatrix=" + str(value) )[ value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">For DNA, a single matrix (not a series) is
used. Two hard-coded matrices are available:</text>
<text lang="en">1) IUB. This is the default scoring matrix
used by BESTFIT for the comparison of nucleic acid
sequences. X's and N's are treated as matches to any IUB
ambiguity symbol. All matches score 1.9; all mismatches for
IUB symbols score 0.</text>
<text lang="en">2) CLUSTALW(1.6). The previous system used
by ClustalW, in which matches score 1.0 and mismatches
score 0. All matches for IUB symbols also score 0.</text>
</comment>
</parameter>
</parameters>
</paragraph>
</parameters>
</paragraph>
<paragraph>
<name>outputparam</name>
<prompt lang="en">Output parameters</prompt>
<argpos>5</argpos>
<parameters>
<parameter>
<name>outputformat</name>
<prompt lang="en">Output format (-output)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>null</value>
</vdef>
<vlist>
<velem undef="1">
<value>null</value>
<label>CLUSTAL</label>
</velem>
<velem>
<value>FASTA</value>
<label>FASTA</label>
</velem>
<velem>
<value>GCG</value>
<label>GCG</label>
</velem>
<velem>
<value>GDE</value>
<label>GDE</label>
</velem>
<velem>
<value>PHYLIPI</value>
<label>PHYLIP</label>
</velem>
<velem>
<value>PIR</value>
<label>PIR/NBRF</label>
</velem>
<velem>
<value>NEXUS</value>
<label>NEXUS</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value ) ? " -output=$value" : ""</code>
<code proglang="python">( "" , " -output=" + str( value) )[ value is not None ]</code>
</format>
</parameter>
<parameter>
<name>seqnos</name>
<prompt lang="en">Output sequence numbers in the output file (for clustalw output only) (-seqnos)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<precond>
<code proglang="perl">not defined $outputformat</code>
<code proglang="python">outputformat is None</code>
</precond>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -seqnos=on" : ""</code>
<code proglang="python">( "" , " -seqnos=on")[ value is not None and value != vdef]</code>
</format>
</parameter>
<parameter>
<name>outorder</name>
<prompt lang="en">Result order (-outorder)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>aligned</value>
</vdef>
<vlist>
<velem>
<value>input</value>
<label>Input</label>
</velem>
<velem>
<value>aligned</value>
<label>Aligned</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " -outorder=$value" : ""</code>
<code proglang="python">( "" , " -outorder=" + str(value))[ value is not None and value != vdef ]</code>
</format>
</parameter>
<parameter>
<name>outfile</name>
<prompt lang="en">Sequence alignment file name (-outfile)</prompt>
<type>
<datatype>
<class>Filename</class>
</datatype>
</type>
<format>
<code proglang="perl">(defined $value) ? " -outfile=$value" : ""</code>
<code proglang="python">( "" , " -outfile=" + str( value))[ value is not None ]</code>
</format>
</parameter>
<parameter isout="1">
<name>clustalaligfile</name>
<prompt>Alignment file</prompt>
<type>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>CLUSTAL</dataFormat>
</type>
<precond>
<code proglang="perl">not defined $outputformat</code>
<code proglang="python">outputformat is None</code>
</precond>
<filenames>
<code proglang="perl">(defined $outfile)? "$outfile":"*.aln"</code>
<code proglang="python">("*.aln", str(outfile))[outfile is not None]</code>
</filenames>
<comment>
<text lang="en">In the conservation line output in the clustal format alignment file, three characters are used:</text>
<text lang="en">'*' indicates positions which have a single, fully conserved residue.</text>
<text lang="en">':' indicates that one of the following 'strong' groups is fully conserved (STA,NEQK,NHQK,NDEQ,QHRK,MILV,MILF,HY,FYW).</text>
<text lang="en">'.' indicates that one of the following 'weaker' groups is fully conserved (CSA,ATV,SAG,STNK,STPA,SGND,SNDEQK,NDEQHK,NEQHRK,FVLIM,HFY).</text>
<text lang="en">These are all the positively scoring groups that occur in the Gonnet Pam250
matrix. The strong and weak groups are defined as strong score >0.5 and weak
score =<0.5 respectively.</text>
</comment>
</parameter>
<parameter isout="1">
<name>aligfile</name>
<prompt>Alignment file</prompt>
<type>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>
<ref param="outputformat"/>
</dataFormat>
</type>
<precond>
<code proglang="perl">$outputformat =~ /^(NEXUS|GCG|PHYLIPI|FASTA)$/</code>
<code proglang="python">outputformat in [ "NEXUS", "GCG", "PHYLIPI","FASTA"]</code>
</precond>
<filenames>
<code proglang="perl">(defined $outfile)? "$outfile":"*.fasta *.nxs *.phy *.msf"</code>
<code proglang="python">{ "OUTFILE":outfile, "FASTA":"*.fasta", "NEXUS": "*.nxs", "PHYLIPI": "*.phy" , 'GCG': '*.msf' }[( "OUTFILE", outputformat)[outfile is None]]</code>
</filenames>
</parameter>
<parameter isout="1">
<name>seqfile</name>
<prompt>Sequences file</prompt>
<type>
<datatype>
<class>Sequence</class>
</datatype>
<dataFormat>
<test param="outputformat" eq="PIR">NBRF</test>
<test param="outputformat" eq="GDE">GDE</test>
</dataFormat>
</type>
<precond>
<code proglang="perl">$outputformat =~ /^(GDE|PIR)$/</code>
<code proglang="python">outputformat in [ 'GDE', 'PIR' ]</code>
</precond>
<filenames>
<code proglang="perl">(defined $outfile)? "$outfile":"*.gde *.pir"</code>
<code proglang="python">{ "OUTFILE":outfile, 'GDE':'*.gde', 'PIR':'*.pir}[( "OUTFILE", outputformat)[outfile is None]]</code>
</filenames>
</parameter>
<parameter isout="1">
<name>dndfile</name>
<prompt>Tree file</prompt>
<type>
<datatype>
<class>Tree</class>
</datatype>
<dataFormat>NEWICK</dataFormat>
</type>
<precond>
<code proglang="perl">not defined $newtree</code>
<code proglang="python">newtree is None</code>
</precond>
<filenames>
<code proglang="perl">"*.dnd"</code>
<code proglang="python">"*.dnd"</code>
</filenames>
</parameter>
<parameter>
<name>gde_lower</name>
<prompt lang="en">Upper case (for GDE output only) (-case)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<precond>
<code proglang="perl">$outputformat eq "GDE"</code>
<code proglang="python">outputformat == "GDE"</code>
</precond>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " -case=upper" : ""</code>
<code proglang="python">( "" , " -case=upper" )[ value ]</code>
</format>
<argpos>2</argpos>
</parameter>
</parameters>
</paragraph>
</parameters>
</program>
|