/var/lib/mobyle/programs/hmmsim.xml is in mobyle-programs 5.1.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 | <?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris. -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
<head>
<name>hmmsim</name>
<xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="Entities/hmmer_package.xml"/>
<doc>
<title>HMMSIM</title>
<description>
<text lang="en">
Collect profile HMM score distributions on random sequences
</text>
</description>
</doc>
<category>hmm:simulation</category>
<command>hmmsim</command>
</head>
<parameters>
<parameter ismandatory="1" issimple="1">
<name>hmmfile</name>
<prompt lang="en">HMM file</prompt>
<type>
<datatype>
<class>HmmProfile</class>
<superclass>AbstractText</superclass>
</datatype>
</type>
<format>
<code proglang="perl">" $value"</code>
<code proglang="python">" "+str(value)</code>
</format>
<argpos>30</argpos>
</parameter>
<paragraph>
<name>generalOptions</name>
<prompt lang="en">General options</prompt>
<argpos>1</argpos>
<parameters>
<parameter>
<name>aln</name>
<prompt lang="en">Obtain alignment length statistics (-a)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<precond>
<code proglang="perl">$altSco eq '--vit'</code>
<code proglang="python">altSco == '--vit'</code>
</precond>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " -a" : ""</code>
<code proglang="python">( "" , " -a" )[ value ]</code>
</format>
<comment>
<text lang="en">Collect expected Viterbi alignment length statistics from each simulated sequence.
This only works with Viterbi scores (the default; see --vit). Two additional fields are
printed in the output table for each model: the mean length of Viterbi alignments,
and the standard deviation.</text>
</comment>
</parameter>
<parameter>
<name>verbose</name>
<prompt lang="en">Verbose: print scores (-v)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " -v" : ""</code>
<code proglang="python">( "" , " -v" )[ value ]</code>
</format>
</parameter>
<parameter>
<name>Length</name>
<prompt lang="en">Length of random target sequences (-L)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>100</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef ) ? " -L $value" : ""</code>
<code proglang="python">( "" , " -L " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<ctrl>
<message>
<text lang="en">value > 0</text>
</message>
<code proglang="perl">$value > 0</code>
<code proglang="python">value > 0</code>
</ctrl>
</parameter>
<parameter>
<name>number</name>
<prompt lang="en">Number of random target sequences (-N)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>1000</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -N $value" : ""</code>
<code proglang="python">( "" , " -N " + str(value) )[ value is not None and value !=vdef]</code>
</format>
<ctrl>
<message>
<text lang="en">value > 0</text>
</message>
<code proglang="perl">$value > 0</code>
<code proglang="python">value > 0</code>
</ctrl>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>AdvancedOptions</name>
<prompt lang="en">Advanced options</prompt>
<argpos>1</argpos>
<parameters>
<parameter>
<name>altAln</name>
<prompt lang="en">Alternative alignment styles</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>--fs</value>
</vdef>
<vlist>
<velem>
<value>--fs</value>
<label>multihit local alignment (fs)</label>
</velem>
<velem>
<value>--sw</value>
<label>unihit local alignment (sw)</label>
</velem>
<velem>
<value>--ls</value>
<label>multihit glocal alignment (ls)</label>
</velem>
</vlist>
<!--<velem> 'Failed to parse command line: Abbreviated option "-s" is ambiguous'
<value>-s</value>
<label>unihit glocal alignment (s)</label>
</velem>
-->
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " $value" : ""</code>
<code proglang="python">( "" , " " + str(value) )[ value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">H3 only uses multihit local alignment ( --fs mode), and this is where we believe the statistical fits. Unihit
local alignment scores (Smith/Waterman; --sw mode) also obey our statistical conjectures. Glocal alignment
statistics (either multihit or unihit) are still not adequately understood nor adequately fitted.</text>
<text lang="en">fs: Collect multihit local alignment scores. This is the default. 'fs comes from HMMER2'
s historical terminology for multihit local alignment as 'fragment search mode'.</text>
<text lang="en">sw: Collect unihit local alignment scores. The H3 J state is disabled. 'sw' comes from
HMMER2's historical terminology for unihit local alignment as 'Smith/Waterman search mode'.</text>
<text lang="en">ls Collect multihit glocal alignment scores. In glocal (global/local) alignment, the entire
model must align, to a subsequence of the target. The H3 local entry/exit transition
probabilities are disabled. 'ls' comes from HMMER2's historical terminology
for multihit local alignment as 'local search mode'.</text>
<text lang="en">s: Collect unihit glocal alignment scores. Both the H3 J state and local entry/exit transition
probabilities are disabled. 's' comes from HMMER2's historical terminology
for unihit glocal alignment.</text>
</comment>
</parameter>
<parameter>
<name>altSco</name>
<prompt lang="en">Option controlling scoring algorithm</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>--vit</value>
</vdef>
<vlist>
<velem>
<value>--vit</value>
<label>Score sequences with the Viterbi algorithm (vit)</label>
</velem>
<velem>
<value>--fwd</value>
<label>Score sequences with the Forward algorithm (fwd)</label>
</velem>
<velem>
<value>--hyd</value>
<label>Score sequences with the Hybrid algorithm (hyd)</label>
</velem>
<velem>
<value>--msv</value>
<label>Score sequences with the MSV algorithm (msv)</label>
</velem>
<velem>
<value>--fast</value>
<label>Use the optimized versions of the above (fast)</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " $value" : ""</code>
<code proglang="python">( "" , " " + str(value) )[ value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">vit: Collect Viterbi maximum likelihood alignment scores. This is the default.</text>
<text lang="en">fwd: Collect Forward log-odds likelihood scores, summed over alignment ensemble.</text>
<text lang="en">hyb: Collect 'Hybrid' scores, as described in papers by Yu and Hwa (for instance, Bioinformatics
18:864, 2002). These involve calculating a Forward matrix and taking the
maximum cell value. The number itself is statistically somewhat unmotivated, but
the distribution is expected be a well-behaved extreme value distribution (Gumbel).</text>
<text lang="en">msv: Collect MSV (multiple ungapped segment Viterbi) scores, using H3's main acceleration
heuristic.</text>
<text lang="en">fast: For any of the above options, use H3's optimized production implementation (using
SIMD vectorization). The default is to use the 'generic' implementation (slow and
non-vectorized). The optimized implementations sacrifice a small amount of numerical
precision. This can introduce confounding noise into statistical simulations
and fits, so when one gets super-concerned about exact details, it's better to be
able to factor that source of noise out.</text>
</comment>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>controlMasse</name>
<prompt lang="en">Controlling range of fitted tail masses</prompt>
<argpos>1</argpos>
<parameters>
<parameter>
<name>tmin</name>
<prompt lang="en">Set lower bound tail mass for fwd,island (--tmin)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>0.02</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --tmin $value" : ""</code>
<code proglang="python">( "" , " --tmin " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Set the lower bound on the tail mass distribution. (The default is 0.02 for the default
single tail mass.)</text>
</comment>
</parameter>
<parameter>
<name>tmax</name>
<prompt lang="en">Set upper bound tail mass for fwd,island (--tmax)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>0.02</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --tmax $value" : ""</code>
<code proglang="python">( "" , " --tmax " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Set the upper bound on the tail mass distribution. (The default is 0.02 for the default
single tail mass.)</text>
</comment>
</parameter>
<parameter>
<name>tpoints</name>
<prompt lang="en">Set number of tail probs to try (--tpoints)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>1</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --tpoints $value" : ""</code>
<code proglang="python">( "" , " --tpoints " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Set the number of tail masses to sample, starting from --tmin and ending at --tmax.
The default is 1, for the default 0.02 single tail mass.</text>
</comment>
</parameter>
<parameter>
<name>tlinear</name>
<prompt lang="en">Use linear not log spacing of tail probs (--tlinear)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " --tlinear" : ""</code>
<code proglang="python">( "" , " --tlinear" )[ value ]</code>
</format>
<comment>
<text lang="en">Sample a range of tail masses with uniform linear spacing. The default is to use
uniform logarithmic spacing.</text>
</comment>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>ECalibration</name>
<prompt lang="en">Options controlling h3 parameter estimation methods</prompt>
<argpos>1</argpos>
<comment>
<text lang="en">H3 uses three short random sequence simulations to estimating the location parameters
for the expected score distributions for MSV scores, Viterbi scores, and Forward scores. These options
allow these simulations to be modified.</text>
</comment>
<parameters>
<parameter>
<name>EmL</name>
<prompt lang="en">Lengt of sequences for MSV Gumbel mu fit (EmL)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>200</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value!=$vdef) ? " --EmL $value" : ""</code>
<code proglang="python">( "" , " --EmL " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Sets the sequence length in simulation that estimates the location parameter mu
for MSV E-values. Default is 200. Enter a value > 0. </text>
</comment>
<ctrl>
<message>
<text lang="en">Enter a value > 0 </text>
</message>
<code proglang="perl">$value > 0 </code>
<code proglang="python">value > 0 </code>
</ctrl>
</parameter>
<parameter>
<name>EmN</name>
<prompt lang="en">Number of sequences for MSV Gumbel mu fit (EmN)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>200</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value!=$vdef) ? " --EmN $value" : ""</code>
<code proglang="python">( "" , " --EmN " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Sets the number of sequences in simulation that estimates the location parameter
mu for MSV E-values. Default is 200. Enter a value > 0.</text>
</comment>
<ctrl>
<message>
<text lang="en">Enter a value > 0 </text>
</message>
<code proglang="perl">$value > 0 </code>
<code proglang="python">value > 0 </code>
</ctrl>
</parameter>
<parameter>
<name>EvL</name>
<prompt lang="en">Lengt of sequences for Viterbi Gumbel mu fit (EvL)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>200</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value!=$vdef) ? " --EvL $value" : ""</code>
<code proglang="python">( "" , " --EvL " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Sets the sequence length in simulation that estimates the location parameter mu
for Viterbi E-values. Default is 200. Enter a value > 0</text>
</comment>
<ctrl>
<message>
<text lang="en">Enter a value > 0 </text>
</message>
<code proglang="perl">$value > 0 </code>
<code proglang="python">value > 0 </code>
</ctrl>
</parameter>
<parameter>
<name>EvN</name>
<prompt lang="en">Number of sequences for Viterbi Gumbel mu fit (EvN)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>200</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --EvN $value" : ""</code>
<code proglang="python">( "" , " --EvN " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Sets the number of sequences in simulation that estimates the location parameter
mu for Viterbi E-values. Default is 200. Enter a value > 0.</text>
</comment>
<ctrl>
<message>
<text lang="en">Enter a value > 0 </text>
</message>
<code proglang="perl">$value > 0 </code>
<code proglang="python">value > 0 </code>
</ctrl>
</parameter>
<parameter>
<name>EfL</name>
<prompt lang="en">Lengt of sequences for Forward exp tail tau fit (EfL)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>100</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --EfL $value" : ""</code>
<code proglang="python">( "" , " --EfL " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Sets the sequence length in simulation that estimates the location parameter tau
for Forward E-values. Default is 100. Enter a value > 0</text>
</comment>
<ctrl>
<message>
<text lang="en">Enter a value > 0 </text>
</message>
<code proglang="perl">$value > 0 </code>
<code proglang="python">value > 0 </code>
</ctrl>
</parameter>
<parameter>
<name>EfN</name>
<prompt lang="en">Number of sequences for Forward exp tail tau fit (EfN)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>200</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --EfN $value" : ""</code>
<code proglang="python">( "" , " --EfN " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Sets the number of sequences in simulation that estimates the location parameter
tau for Forward E-values. Default is 200. Enter a value > 0</text>
</comment>
<ctrl>
<message>
<text lang="en">Enter a value > 0 </text>
</message>
<code proglang="perl">$value > 0 </code>
<code proglang="python">value > 0 </code>
</ctrl>
</parameter>
<parameter>
<name>Eft</name>
<prompt lang="en">Tail mass for Forward exponential tail tau fit (Eft)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>0.04</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --Eft $value" : ""</code>
<code proglang="python">( "" , " --Eft " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Sets the tail mass fraction to fit in the simulation that estimates the location parameter
tau for Forward evalues. Default is 0.04. Enter a value > 0 and < 1</text>
</comment>
<ctrl>
<message>
<text lang="en">Enter a value > 0 and < 1</text>
</message>
<code proglang="perl">$value > 0 and $value < 1</code>
<code proglang="python">value > 0 and value < 1</code>
</ctrl>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>debugg</name>
<prompt lang="en">Debugging options</prompt>
<argpos>1</argpos>
<parameters>
<parameter>
<name>stall</name>
<prompt lang="en">Arrest after start: for debugging MPI under gdb (--stall)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " --stall" : ""</code>
<code proglang="python">( "" , " --stall" )[ value ]</code>
</format>
<comment>
<text lang="en">For debugging the MPI master/worker version: pause after start, to enable the
developer to attach debuggers to the running master and worker(s) processes.
Send SIGCONT signal to release the pause. (Under gdb: (gdb) signal SIGCONT)
(Only available if optional MPI support was enabled at compile-time.)</text>
</comment>
</parameter>
<parameter>
<name>seed</name>
<prompt lang="en">Set random number seed (--seed)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --seed $value" : ""</code>
<code proglang="python">( "" , " --seed " + str(value))[ value is not None and value != vdef ]</code>
</format>
<comment>
<text lang="en">Set the random number seed. The default is 0, which makes the random
number generator use an arbitrary seed, so that different runs of hmmsim will
almost certainly generate a different statistical sample. For debugging, it is useful
to force reproducible results, by fixing a random number seed.</text>
</comment>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>expert</name>
<prompt lang="en">Experiments options</prompt>
<argpos>1</argpos>
<comment>
<text lang="en">These options were used in a small variety of different exploratory experiments.</text>
</comment>
<parameters>
<parameter>
<name>bgflat</name>
<prompt lang="en">Set uniform background frequencies (--bgflat)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " --bgflat" : ""</code>
<code proglang="python">( "" , " --bgflat" )[ value ]</code>
</format>
<comment>
<text lang="en">Set the background residue distribution to a uniform distribution, both for purposes
of the null model used in calculating scores, and for generating the random sequences.
The default is to use a standard amino acid background frequency distribution.</text>
</comment>
</parameter>
<parameter>
<name>bgcomp</name>
<prompt lang="en">Set bg frequencies to model's average composition (--bgcomp)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " --bgcomp" : ""</code>
<code proglang="python">( "" , " --bgcomp" )[ value ]</code>
</format>
<comment>
<text lang="en">Set the background residue distribution to the mean composition of the profile. This
was used in exploring some of the effects of biased composition.</text>
</comment>
</parameter>
<parameter>
<name>lengthmode</name>
<prompt lang="en">Turn the H3 length model off (--x-no-lengthmode)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " --x-no-lengthmode" : ""</code>
<code proglang="python">( "" , " --x-no-lengthmode " )[value ]</code>
</format>
<comment>
<text lang="en">Turn the H3 target sequence length model off. Set the self-transitions for N,C,J
and the null model to 350/351 instead; this emulates HMMER2. Not a good idea
in general. This was used to demonstrate one of the main H2 vs. H3 differences.</text>
</comment>
</parameter>
<parameter>
<name>nu</name>
<prompt lang="en">Set nu parameter (expected HSPs) for GMSV (--nu)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<precond>
<code proglang="perl">$altSco eq '--msv'</code>
<code proglang="python">altSco == '--msv'</code>
</precond>
<vdef>
<value>2.0</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --nu $value" : ""</code>
<code proglang="python">( "" , " --nu " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Set the nu parameter for the MSV algorithm -- the expected number of ungapped
local alignments per target sequence. The default is 2.0, corresponding to a E->J transition probability of 0.5. This was used to test whether varying nu has
significant effect on result (it doesn't seem to, within reason). This option only
works if --msv is selected (it only affects MSV), and it will not work with --fast
(because the optimized implementations are hardwired to assume nu=2.0).</text>
</comment>
</parameter>
<parameter>
<name>pthresh</name>
<prompt lang="en">Set P-value threshold for --ffile (--pthresh)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $ffile</code>
<code proglang="python">ffile is not None</code>
</precond>
<vdef>
<value>0.02</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " --pthresh $value" : ""</code>
<code proglang="python">( "" , " --pthresh " + str(value) )[ value is not None and value !=vdef ]</code>
</format>
<comment>
<text lang="en">Set the filter P-value threshold to use in generating filter power files with --ffile. The
default is 0.02 (which would be appropriate for testing MSV scores, since this is
the default MSV filter threshold in H3's acceleration pipeline.) Other appropriate
choices (matching defaults in the acceleration pipeline) would be 0.001 for Viterbi,
and 1e-5 for Forward.</text>
</comment>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>output_options</name>
<prompt lang="en">Output options</prompt>
<argpos>1</argpos>
<parameters>
<parameter>
<name>save</name>
<prompt lang="en">Direct summary output to file, not stdout. (-o)</prompt>
<type>
<datatype>
<class>Filename</class>
</datatype>
</type>
<format>
<code proglang="perl">(defined $value)? " -o $value" : ""</code>
<code proglang="python">( "" , " -o " + str(value) )[ value is not None ]</code>
</format>
<argpos>1</argpos>
</parameter>
<parameter isout="1">
<name>save_out</name>
<prompt lang="en">Direct summary output to file.</prompt>
<type>
<datatype>
<class>Report</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $save</code>
<code proglang="python">save is not None</code>
</precond>
<filenames>
<code proglang="perl">"$save"</code>
<code proglang="python">str( save )</code>
</filenames>
<argpos>1</argpos>
</parameter>
<parameter>
<name>afile</name>
<prompt lang="en">Output alignment lengths to file (--afile)</prompt>
<type>
<datatype>
<class>Filename</class>
</datatype>
</type>
<precond>
<code proglang="perl">$aln and $altSco eq '--vit'</code>
<code proglang="python">aln and altSco == '--vit'</code>
</precond>
<format>
<code proglang="perl">(defined $value)? " --afile $value" : ""</code>
<code proglang="python">( "" , " --afile " + str(value) )[ value is not None ]</code>
</format>
<argpos>1</argpos>
<comment>
<text lang="en">When collecting Viterbi alignment statistics (the -a option), for each sampled sequence,
output two fields per line to a file: the length of the optimal alignment,
and the Viterbi bit score. Requires that the -a option is also used.</text>
</comment>
</parameter>
<parameter isout="1">
<name>afile_out</name>
<prompt lang="en">Output alignment lengths</prompt>
<type>
<datatype>
<class>Report</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $afile</code>
<code proglang="python">afile is not None</code>
</precond>
<filenames>
<code proglang="perl">"$afile"</code>
<code proglang="python">str( afile )</code>
</filenames>
<argpos>1</argpos>
</parameter>
<parameter>
<name>efile</name>
<prompt lang="en">Output E vs. E plots to file in xy format (--efile)</prompt>
<type>
<datatype>
<class>Filename</class>
</datatype>
</type>
<format>
<code proglang="perl">(defined $value)? " --efile $value" : ""</code>
<code proglang="python">( "" , " --efile " + str(value) )[ value is not None ]</code>
</format>
<argpos>1</argpos>
<comment>
<text lang="en">Output a rank versus. E-value plot in XMGRACE xy format to file. The x-axis is the
rank of this sequence, from highest score to lowest; the y-axis is the E-value calculated
for this sequence. E-values are calculated using H3's default procedures (i.e.
the 'pmu, plambda' parameters in the output table). You expect a rough match
between rank and E-value if E-values are accurately estimated.</text>
</comment>
</parameter>
<parameter isout="1">
<name>efile_out</name>
<prompt lang="en">Output E vs. E plots to file in xy format</prompt>
<type>
<datatype>
<class>Report</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $efile</code>
<code proglang="python">efile is not None</code>
</precond>
<filenames>
<code proglang="perl">"$efile"</code>
<code proglang="python">str( efile )</code>
</filenames>
<argpos>1</argpos>
</parameter>
<parameter>
<name>ffile</name>
<prompt lang="en">Output filter fraction: sequences passing P thresh (--ffile)</prompt>
<type>
<datatype>
<class>Filename</class>
</datatype>
</type>
<format>
<code proglang="perl">(defined $value)? " --ffile $value" : ""</code>
<code proglang="python">( "" , " --ffile " + str(value) )[ value is not None ]</code>
</format>
<argpos>1</argpos>
<comment>
<text lang="en">Output a 'filter power' file: for each model, a line with three fields: model
name, number of sequences passing the P-value threshold, and fraction of sequences
passing the P-value threshold. See --pthresh for setting the P-value
threshold, which defaults to 0.02 (the default MSV filter threshold in H3). The
P-values are as determined by H3's default procedures (the 'pmu,plambda' parameters
in the output table). If all is well, you expect to see filter power equal to
the predicted P-value setting of the threshold.</text>
</comment>
</parameter>
<parameter isout="1">
<name>ffile_out</name>
<prompt lang="en">Output filter fraction: sequences passing P thresh</prompt>
<type>
<datatype>
<class>Report</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $ffile</code>
<code proglang="python">ffile is not None</code>
</precond>
<filenames>
<code proglang="perl">"$ffile"</code>
<code proglang="python">str( ffile )</code>
</filenames>
<argpos>1</argpos>
</parameter>
<parameter>
<name>pfile</name>
<prompt lang="en">Output cumulative survival plots (--pfile)</prompt>
<type>
<datatype>
<class>Filename</class>
</datatype>
</type>
<format>
<code proglang="perl">(defined $value)? " --pfile $value" : ""</code>
<code proglang="python">( "" , " --pfile " + str(value) )[ value is not None ]</code>
</format>
<argpos>1</argpos>
<comment>
<text lang="en">Output cumulative survival plots (P(S>x)) to file in XMGRACE xy format.
There are three plots: (1) the observed score distribution; (2) the maximum likelihood
fitted distribution; (3) a maximum likelihood fit to the location parameter
(mu/tau) while assuming lambda=log 2.</text>
</comment>
</parameter>
<parameter isout="1">
<name>pfile_out</name>
<prompt lang="en">Output cumulative survival plots</prompt>
<type>
<datatype>
<class>Report</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $pfile</code>
<code proglang="python">pfile is not None</code>
</precond>
<filenames>
<code proglang="perl">"$pfile"</code>
<code proglang="python">str( pfile )</code>
</filenames>
<argpos>1</argpos>
</parameter>
<parameter>
<name>xfile</name>
<prompt lang="en">Output bitscores as binary double vector to file (--xfile)</prompt>
<type>
<datatype>
<class>Filename</class>
</datatype>
</type>
<format>
<code proglang="perl">(defined $value)? " --xfile $value" : ""</code>
<code proglang="python">( "" , " --xfile " + str(value) )[ value is not None ]</code>
</format>
<argpos>1</argpos>
<comment>
<text lang="en">Output the bit scores as a binary array of double-precision floats (8 bytes per score)
to file. Programs like Easel's esl-histplot can read such binary files. This is
useful when generating extremely large sample sizes.</text>
</comment>
</parameter>
<parameter isout="1">
<name>xfile_out</name>
<prompt lang="en">Output bitscores as binary double vector to file</prompt>
<type>
<datatype>
<class>BitScores</class>
<superclass>Binary</superclass>
</datatype>
</type>
<precond>
<code proglang="perl">defined $xfile</code>
<code proglang="python">xfile is not None</code>
</precond>
<filenames>
<code proglang="perl">"$xfile"</code>
<code proglang="python">str( xfile )</code>
</filenames>
<argpos>1</argpos>
</parameter>
</parameters>
</paragraph>
</parameters>
</program>
|